
Activity Policy-based Service Discovery
for Pervasive Computing

Woohyun Kim1, Saehoon Kang1, Younghee Lee1, Dongman Lee1, and Inyoung Ko1

1 Information and Communications University
119, Munjiro, Yuseong-gu, Daejeon 305-732, Korea

{woorung, kang, yhlee, dlee, iko}@icu.ac.kr

Abstract. Service discovery is an essential technique to provide applications
with appropriate resources. However, user mobility and heterogeneous envi-
ronments make the discovery of appropriate resources difficult. The execution
environments will be rapidly changed, so developers cannot predict available
resources exactly in design time. Thus, service discovery frameworks for per-
vasive computing must guarantee transparent development environments to ap-
plication developers. In this paper, we introduce how to semantically describe
and discover a variety of services in different environments. This approach
helps applications to find appropriate services even though the required ones
are not available or not found. For this, we propose a fine-grained effect ontol-
ogy which is used to reasonably evaluate functional similarity among different
services, and a policy-based query coordination which is used to dynamically
apply different resource constraints according to human activities. Finally, we
show with a feasible scenario how to find appropriate services in different envi-
ronments. Our approach helps applications to seamlessly perform their tasks
across a dynamic range of environments.

1 Introduction

Pervasive computing environments are surrounded by a variety of computing devices,
software services, and information sources. Applications must adapt to dynamically
changing environments to seamlessly perform their tasks [1, 2]. However, different
environments have different resources, and their capabilities are also different. Even
though developers specify in design time all the resources required by applications,
appropriate resources may not always be available across a dynamic range of envi-
ronments [1, 8]. Suppose that there are some real instances such as “AlarmClock,”
“TV,” “Audio,” and “Light” in a home environment. A developer would like to use
an instance “AlarmClock” to wake a user out of a deep sleep. Unfortunately, if the in-
stance was not available or not found in real time, which instances could be found
and used instead of the “AlarmClock”?

Traditional service discovery systems (i.e., Jini, UPnP, SLP, and Salutation) are
not proper for pervasive computing since syntactic matching is mainly used [3, 4].
They do not support alternative representations of semantically similar services. In
contrast, context-aware service discovery systems [3-7] take advantage of contextual

information (i.e. location) syntactically or semantically to provide appropriate ser-
vices in pervasive computing environments. Similarly, semantic service discovery
systems [1, 2, 7, 8, 9] make use of abstract representations in various aspects of ser-
vices to transparently provide appropriate services despite different environments.
Nevertheless, these approaches do not seem to deal with yet systematically the se-
mantics in various aspects of services: data semantics (requirement), functional se-
mantics (capability), QoS semantics (effect), and execution semantics (execution pat-
tern) [15]. In this point, Semantic Web [16] which semantically describes and
discovers Web services in the IOPE (Input, Output, Precondition, Effect) level gives
us a noble idea to reasonably provide substitutable services which are functionally
similar to the required ones when they are not available or not found.

In the earlier “AlarmClock” example, some sophisticated inference processes are
required to semantically evaluate functional similarity among other available candi-
dates such as “TV,” “Audio,” and “Light.” Note that “AlarmClock” has a sound ef-
fect, and “TV” and “Audio” also have another type of sound effects. In this paper, we
define an effect as a process to change the state of the world to other state. Each
sound effect has its own properties as follows: impact factor (alarm volume, TV vol-
ume, and audio volume), behavior pattern (sound delivery, multimedia delivery, and
music delivery), and human perceptibility (auditory sense). The enumerated proper-
ties are constructed in some semantic hierarchies. That is, TV volume and audio vol-
ume have equivalent semantics to alarm volume with intensity beyond a certain level.
Similarly, multimedia delivery and music delivery have equivalent semantics in the
aspect of sound delivery. These semantic associations play an important role in evalu-
ating which service can substitute the originally required service.

In this paper, we propose a fine-grained effect ontology which is used to reasona-
bly evaluate functional similarity among different services, and a policy-based query
coordination which is used to dynamically apply different resource constraints ac-
cording to human activities. The goal of our approach aims at enabling applications to
take full advantage of local resources across a dynamic range of environments.

The remainder of this paper is as follows. In Section 2, we describe existing efforts
on service discovery for pervasive computing. Section 3 covers design considera-
tions, and we introduce our approach in detail in Section 4. The implementation de-
tails of the proposed scheme are addressed in Section 5. Finally, we describe our con-
clusions and suggest future work in Section 6.

2 Related Works

Several research efforts have been done on a high level of abstract representations
to solve the problems of mobility and heterogeneity. Gaia [1] introduces an applica-
tion as a set of structural components , MPACC(model, presentation, adaptor, con-
troller, and coordinator). To make applications polymorphic, such a component is
represented as abstract functionalities in ontologies. The actual components are dy-
namically bound in a given environment. And yet, Gaia does not mention how sys-
tematically the ontologies are constructed. The ontologies are predefined by rule of
thumb and made by hand. Aura [2] introduces a service as one of abstract semantics

of coarse-grained functionalities required to perform a user task. It proposes an idea
to be automatically able to bring up all the resources associated with a given task. It
works on a higher level of abstractions such as tasks as coalitions of abstract services.
In other words, Aura does not tell what properties of a service are equivalent to those
of its similar service(s).

On the other hand, several approaches use some policies to find appropriate re-
sources. Olympus [10] proposes the separation of class and instance discovery to al-
low alternative services to be found, which is based on the functionality required by
an original service. When resolving virtual entities into actual ones, it considers de-
veloper-specific constraints, space-level policies, class-/instance-level context-
awareness, and utility function. Olympus insists that even entities of classes that are
highly different from the class specified by the developer can be discovered and used.
In this aspect, Olympus is very similar to the proposed scheme. CARISMA [22] uses
application-specific policies to enable mobile applications to behave according to
contexts such as bandwidth, CPU performance, and even other applications’ behav-
iors. CARMEN [23] uses declarative management policies for migration, binding, ac-
cess control, user preferences, device capabilities, and service component characteris-
tics. However, these approaches do not consider that the semantics of exact or
abstract representations might be dynamically changed in different situations.

3 Design Considerations

Service discovery for pervasive computing has to deal with a user’s mobility and en-
vironment heterogeneity. This leads to the issue of how to formally describe a diver-
sity of services and transparently discover appropriate services despite different envi-
ronments. Thus, we consider two key issues in this paper: transparent accessibility
and high availability.

3.1 Transparent Accessibility

Figure 1 illustrates some processes to discover the Alarm service in pervasive
computing environments. In the developer’s point of view, the Alarm service keeps
an abstract representation level. However, in the system’s point of view, the real se-
mantics of the required Alarm service can be dynamically changed as SoundAlarm,
VibrationAlarm, or DisplayAlarm according to users’ current location. It means that
the Alarm service can be bound with some real instances in the current execution en-
vironments which have sound effects, vibration effect, or display effect. The binding
to real instances is determined in real time, so the Alarm service is transparently kept
in abstract level. In conclusion, service discovery should work on abstract representa-
tions to describe and discover all of the services in pervasive computing environ-
ments.

3.2 High Availability

Figure 1 shows a need to find substitutable services when the best matching in-
stance “AlarmClock” is not available or not found in a given environment. Suppose
that a user sleeps late in the morning. An application should find the Alarm service to
wake him up. But there is no available instance “AlarmClock.” Which instance can
be used instead of the “AlarmClock”?

In the user’s point of view, a certain function such as StartAlarming of “Alarm-
Clock” is supposed to be somewhat equivalent to other functions such as TVTurnOn
function of “TV,” AudioPlayCD function of “Audio,” or even LightTurnOn function
of “Light.” To take full advantage of local resources, consequently, service discovery
frameworks for pervasive computing must provide applications with other substitut-
able instances which are functionally similar to the best matching instance “Alarm-
Clock.”

Fig. 1. The Discovery of the Alarm Service in Pervasive Computing Environments

4 Proposed Approach

Task-based computing [11, 12] and activity-based computing [8] focus on a higher
level of abstraction level such as tasks or activities to enable computing environments
to be aware of users’ intents or requirements. In this paper, we especially pay our at-
tentions to a high level of context model, human activity which means anything that
users intend to do in a specific region by using some resources. The model is for rep-
resenting what a user intends to do, what resources can be utilized for an activity, and
where services can be performed. Thus, we use the activity policy which describes
different resource constraints according to locations, humans, and activities. Further-
more, we use the IOPE model of Semantic Web [16] to describe the capabilities of
services in a fine-grained level, and provide upper ontologies to reasonably evaluate
functional similarity among different services.

4.1 Activity Policy-based Query Coordination

To describe different resource constraints according to human activities, Figure 2
shows how to define activity policies and how the user query is coordinated with the
appropriate resource constraints in service discovery processes.

Fig. 2. Activity Policy and Query Coordination

At first, some policies, the notation “P := An(Ac, H, L, O)” is described. An appli-
cation sends queries (Q) for services and the name of the next activity(An). Our ser-
vice discovery framework receives the contextual information such as the name of the
current activity (Ac), target user (H) for the activity to influence, target place (L) for
the activity to be performed in, and other contexts (O). In this point, an appropriate
policy is selected, and then some resource constraints (C) are extracted according to
the current contexts. The given queries and the selected resource constraints are ad-
justed in the query coordination part. Thus, the proposed scheme can reflect the dy-
namic changes of real semantics between abstraction (queries) and context-awareness
(policies).

Suppose that Alice should receive business-related messages. Location sensors
recognize her current position, and deliver the sensed values of (x, y, z) coordinates
or logical/physical space names to ContextManager. Here, ContextManager [21] is a
part of context-aware middleware to aggregate contexts and interpret their semantics.
Authentication sensors could also deliver the ID number of Alice to ContextManager.
If ContextManager could recognize even human activities, our service discovery
framework would infer appropriate resource constraints according to Alice’s activi-
ties as Figure 3. In this point, the context model of Gaia [14] based on first order
logic would be useful for such a context fusion.

Fig. 3. An Example of Activity Policy-based Query Coordination

The application intends to find some local resources to present the messages to Al-
ice as the query, Input=Message and Effect=PresentEffect. Our service discovery
framework knows that Alice works with a computer at the office and the application
wants to deliver some messages to her. Thus, the framework selects an appropriate
resource constraint, Effect=DisplayEffect, and start coordinating it with the given
query, Input=Message and Effect=PresentEffect. In this point, the effect parts be-
tween the query and the constraint trigger a conflict in the coordination part. To re-
solve this conflict, simple coordination rules are used with some subsumption rela-
tions such as the parent, the child, and the sibling relation in our ontologies as
following.

− If A is a parent of B, then we select B;
− If A is a child of B, then we select A;
− If A is a sibling of B, then we select B;
 (A is a part of resource constraints, B is a part of queries)

Finally, the new coordinated query, Input=Message and Effect=DisplayEffect, en-

ables Alice to receive the messages through “WindowsPopupMessage,” when Alice
works at the office not to distract other co-workers.

4.2 IOPE-based Semantic Matching

To maximize high availability of services in heterogeneous environments, it is very
important to define how to semantically describe and discover services by using on-
tologies [15]. In this paper, we use the IOPE model to formally describe the capabili-
ties of services in a fine-grained level. This enables services to be richly represented
in data semantics, functional semantics, and QoS semantics.

Fig. 4. Upper Ontologies to Formally Describe Various Resources

Figure 4 shows two upper ontologies designed by OWL [18] to describe the diver-
sity of services and effects in pervasive computing environments. Ovals represent
classes (or concepts), black arrows represent characterized properties (or roles), white
arrows represent inverse properties, and dotted lines represent subsumption (parent
and child) relations among some classes. In Figure 4 (b), the rectangle means some
value instances of the parent class. That is, the parent class Intensity can be instanti-
ated to one of the instance values such as Any, Level1, Level2, Level3, Level4, and
Level5. Specific intensities can be defined in this way. In case of the volume of “TV”
or “Audio,” as an instance of the class Impact, a specific instance SmallVolume can
be defined with the instance Level1 as the value of the property hasIntensity. Simi-
larly, another specific instance LargeVolume can be defined with the instance Level5
as the value of the hasIntensity. In case of the brightness of “Light,” some specific in-
stances such as WeakBrightness, ModerateBrightness, and StrongBrightness can be
respectively defined with some value instances of the Intensity. Therefore, we can
make use of such a specific instance to evaluate functional similarity among some
services.

At first, we define effect as a process to change the states of the world to other
states. According to this definition, we consider three main properties: perceivedBy,
hasImpact, and hasPattern. We understand some effects of services in human-centric
aspects, so the effects which we deal with in this paper are those which can be per-
ceived by the five senses of human beings. Moreover, the effects give some impacts
on the states of the world, and those kinds of changes are achieved in the specific be-
havior patterns. Figure 4 (b) illustrate how to define the effects with the classes such
as FiveSenses, Impact, and BehaviorPattern. To more easily explain, the following
BNF format is used.

<HumanPerceivableEffect> := <perceivedBy> | <perceivedBy> <op> <HumanPerceivableEffect>
<perceivedBy> := <FiveSenses> (<hasImpact>, <hasPattern>)
<op> := and | or
<FiveSenses> := Sight | Auditory | Touch | Olfactory | Taste | …
<hasImpact> := Volume | Brightness | Temperature | Vibration | FontSize | Color

| Message | Music | Document | Multimedia | Image | …
<hasPattern> := Appear | Disappear | Increase | Decrease | Maximize | Minimize | FadeIn

| FadeOut | ZoomIn | ZoomOut | Deliver | Reserve | KeepInLimitTime | …

For example, the effect of “TVVolumeUP” action is to increase the volume of TV

to a certain level. The effect is perceived by the auditory sense of human beings. Its
impact factor is the volume of TV, and its behavior pattern is to increase. That is, the
effect can be described as TVVolumeIncreaseEffect := Auditory(TVVolume, Increase).
Similarly, the effect of “AudioVolumeUP” action is to increase the volume of Audio,
so it can be described as AudioVolumeIncreaseEffect := Auditory(AudioVolume, In-
crease). In this way, we define a diversity of effects, and the effects are associated
with some semantic hierarchies. Consequently, the effect of “TVVolumeUP” is simi-
lar to the effect of “AudioVolumeUP.” Thus, both of them have the effect to make
the volume of sound increased in a specific region. It is quite an interesting feature in
pervasive computing environments since it shows that the different functions,
“TVVolumeUP” and “AudioVolumeUP,” can trigger some equivalent effects in a
specific region. Such a feasible example is shown in Figure 5.

Fig. 5. Substitutability of “AlarmClock,” “SamsungTV,” “LotteAudio” in the Effect Ontology

When Alice sleeps late in the morning, an intelligent application checks her sched-
ule and recognizes that she has an important business meeting today. Suppose that the
application tries to find “AlarmClock” in the bedroom, but fails to find it. In this case,

it knows that some substitutable services such as “LotteAudio” or “SamsungTV” can
be used instead of “AlarmClock.” To make it possible, “AlarmClock,” “LotteAudio,”
and “SamsungTV” are described as Figure 5. “AlarmClock” service has a function
“StartAlarming.” The function gives the effect AlarmClockSoundDeliverEffect on a
target user. Similarly, “AudioPlayCD” function of “LotteAudio” has AudioMusicDe-
liverEffect, and “TVTurnOn” function of “SamsungTV” has TVMultimediaDeliverEf-
fect. All the effects can be perceived by the auditory sense of human beings. More-
over, they have the behavior patterns to deliver some impact factors with different
levels of intensities. Through the common properties, we have an inferred hierarchy
in the effect ontology as shown in Figure 5. AlarmClockSoundDeliverEffect is an in-
stance of SoundDeliverEffect, and MultimediaDeliverEffect and MusicDeliverEffect
are inferred as subclasses of the SoundDeliverEffect. Each subclass has the instance
TVMultimediaDeliverEffect and AudioMusicDeliverEffect, respectively. In conclu-
sion, we can see that the different effects have a semantic hierarchy in the effect on-
tology by dynamically inferring the relative relations of the properties such as
FiveSenses, Impact, and BehaviorPattern.

In the earlier part, we have already shown how to define some specific semantics
related to Intensity and Impact. In Figure 5, each service was described with these
specific instances. Initially, AlarmClockSoundDeliverEffect would be different from
AudioMusicDeliverEffect and TVMultimediaDeliverEffect in the aspect of Intensity.
Later, AudioMusicDeliverEffect and TVMultimediaDeliverEffect would have volume
intensities beyond a certain level, which might be corresponded to that of Alarm-
ClockSoundDeliverEffect. Through these processes, we can finally make sense that
the effects of “TVTurnOn” function and “AudioPlayCD” function can be provided
instead of that of “StartAlarming” function.

5 Implementation

We implemented the proposed scheme as the service discovery part in Active Sur-
roundings [21], which is a middleware for pervasive computing environments. Figure
6 shows home appliances, location sensors, and IR (Infrared Rays) transceiver de-
ployed in our prototype smart home environment. Especially, the IR transceiver is
used to convey an IR signal corresponding to a user command to a target device.

Fig. 6. Home Appliances, Location Sensors, and IR Transceiver in the Prototyped Home

Each agent program corresponding to the devices is extended from the basic class
ServiceProxy which has the fundamental interfaces such as discovery, registry, and
invocation. The agent automatically registers its description file to the proposed ser-
vice discovery server, which uses soft-state mechanism to maintain the state informa-

tion of each service. Our communications are implemented on HTTP protocols.
Therefore, end-users can use local services in familiar ways. In addition, each service
works as a server to allow other applications to invoke its service in peer-to-peer
ways. Our framework manages all of the services in our ontologies, which are devel-
oped by using OWL [18] and Protégé [19]. Activity policies will be also managed in
the ontologies, and inferred by Racer [20].

5.1 Activity Policy-based Service Discovery Framework

Figure 7 shows a hierarchical architecture of the proposed service discovery
framework. ServiceProxy includes some operations to register, discover, and invoke
services. Communications between ServiceProxy and ServiceDiscoveryServer are
achieved on HTTP protocols. That is, the operations such as WWWRegister,
WWWDiscover, WWWShow, and WWWCall are implemented as GET or POST
methods of HTTP servers. ServiceProxy hides complex protocols required for the op-
erations. Applications just use the given functions such as register(), discover(), and
invoke(). In addition, general users can use the proposed scheme by using Web
browsers such as Internet Explorer because we provide the operations as GET or
POST methods of HTTP protocols.

Fig. 7. Activity Policy-based Service Discovery Framework

On the other hand, all of the services must be extended from ServiceProxy to peri-
odically register the service description files to ServiceDiscoveryServer. When the
register() function is executed in each service, ServiceProxy creates a thread to auto-
matically register the specific description file. The thread sleeps and wakes with the
given lifetime which is described in the description file. The descriptions are stored in
description repository and ontologies. Furthermore, ServiceProxy provides function-
alities of micro-HTTP server to the services to support remote invocations. When ap-
plications invoke some functions in remote services, ServiceDiscoveryServer pro-
vides the reference to the desired services such as IP address, port number, class

name, and method name, and then the ServiceProxy in the side of applications in-
vokes the remote calls to the micro-HTTP server of the target services. ServiceMan-
ager governs most of the operations which are occurred in ServiceDiscoveryServer. It
closely interacts with the reasoning engine, RacerPro [20]. Activity policies and on-
tologies are operated with the reasoning engine. ServiceManager uses JRacer and
nRQL [17] to perform policy-based query coordination and IOPE-based semantic
matching.

5.2 Message Delivery Example

To illustrate the effectiveness of the proposed scheme, we use the activity Receiv-
ing

Table 1. Experiment Results of the Activity Policy, ReceivingMessage

Message introduced in Figure 3. We compare two types of service discovery ap-
proaches. Type 1 does not use policies, but use IOPE-based queries, while Type 2
uses policies with IOPE-based queries.

Table 1 present the experiment results of the ReceivingMessage activity. Note that
the queries are not changed according to different environments in the developer’s
aspect. However, in the system’s aspect, the queries are dynamically coordinated in
the QueryPolicyCoordinator component. When working on a computer in the office,
Alice would like to receive message through “WindowsPopupMessage” not to dis-
tract other people. When driving a car, she wants to use “NateTTS” function for the
sake of safety. In result, Type 1 might provide inappropriate services, while Type 2

provides appropriate services according to context aware resource constraints. Fur-
thermore, our approach can take full advantage of local resources although mobile
users move from one to another place. In this case, Alice can use a variety of local re-
sources such as VoiceSpeech, WindowsPopupMessage, NateCarNavigation,
FreeTTS, and CaptionMaker to receive messages.

6 Conclusions and Future Work

We introduce a service discovery framework using activity policies. Existing re-
se

-
me

7 Acknowledgements

This research was supported in part by the Ubiquitous Autonomic Computing and
Ne

References

1. A. Ranganathan, S. Chetan, R. Campbell, “Mobile Polymorphic Applications in Ubiquitous

rlan, “Aura: an architectural framework for user mobility in ubiquitous

aev, M. van Sinderen, J. Koolwaaij, P. D. Costa, “Context-Aware, Ontol-

proach to Enable Context-awareness for
Service Discovery," In proceedings of third IEEE/IPSJ Symposium on Applications and the In-
trnet, Orlando, Florida, January 2003.

arch efforts on service discovery have focused on context-awareness and semantics
support. However, due to the dynamic changes of semantics according to different
contexts, the instances acquired in real environments might not be permitted or not
exercise great influence on target users in certain situations. In order to resolve these
problems, activity policies provide flexible and reusable resource constraints accord-
ing to dynamically changing contexts. Thus, our approach enables developers to
transparently make use of appropriate services despite heterogeneous environments.

In the future, we must refine activity policies into a dynamic range of environ
nts as well as a home environment. Human activities will be divided to domain-

independent and domain-specific activities. The predefined policies can be reused or
customized by users, developers, or policy designers. Therefore, we need to provide
them with some manners to simply manage the policies.

twork Project, 21st Century Frontier R&D Program of the Ministry of Information
and Communication (MIC) and by the Digital Media Lab. Support Program of the
MIC and the Institute of Information Technology Assessment (IITA), in Korea.

Computing Environments,” In Mobiquitous 2004 : The First Annual International Conference
on Mobile and Ubiquitous Systems:Networking and Services, August 22-25, 2004 - Boston,
Massachusetts, USA.
2. J. Sousa and D. Ga
computing environments,” In 3rd Working IEEE/IFIP Conference on Software Architecture,
pages 29--43, 2002.
3. T. Broens, S. Pokr
ogy-Based Service Discovery,” EUSAI 2004: 72-83.
4. C. Lee and A. Helal, "Context Attributes: An Ap

5. Guanling Chen and David Kotz, “Context-sensitive resource discovery,” In Proceedings of
the First IEEE International Conference on Pervasive Computing and Communications (Per-
Com 2003), pages 243-252, Fort Worth, TX, March 2003.

covery for Context-Aware Service

for Service Composition,

), 2004.

PerCom 2005), Kauai Island,

nd Y. Labrou, "Task Computing—The Semantic Web Meets Per-

ois at Urbana-Champaign UiUCDCS-R-2002-2284 UILU-ENG-2002-1728, 2002

e, Festschrift zum 60. Geburtstag von Gunter Schlageter, Publication Hagen,

w.w3.org/2004/OWL/

, S. J. Hyun, Y. H. Lee, and G. Lee, “A Group-
 Computing Environments,” ICAT 2004,

l.pdf.

9, No. 12, December 2003

6. A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The anatomy of a context-
aware application,” In Mobicom 99, ACM Press, pages 59–68, 1999.
7. A. Toninelli, A. Corradi, R. Montanari, “Semantic Dis
Provisioning in Mobile Environments,” 9th MCMP 2005, Ayia Napa, Cyprus
8. J. E. Bardram, “Activity-Based Service Discovery – An Approach
Orchestration and Context-Aware Service Discovery,” CfPC 2004-PB-67, 2004,
http://www.daimi.au.dk/~bardram/pvc/papers/absd.pdf
9. Z. Song, Y. Labrou, and R. Masuoka, “Dynamic Service Discovery and Management in
Task Computting,” presented at First Annual International Conference on Mobile and Ubiqui-
tous Systems: Networking and Services(MobiQuitous’04
10. A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell, M. D. Mickunas, “Olympus: A
High-Level Programming Model for Pervasive Computing Environments,” In IEEE Interna-
tional Conference on Pervasive Computing and Communications (
Hawaii, March 8-12, 2005.
11. Z. Wang and D. Garlan, “Task-Driven Computing,” Technical Report CMU-CS-00-154,
School of Computer Science, Carnegie Mellon University, May 2000
12. R. Masuoka, B. Parsia, a
vasive Computing," Proc. 2nd Int'l Semantic Web Conf. 2003 (ISWC 03), Springer-Verlag,
2003
13. Roman M. and Campbell R. H., “A User-Centric, Resource-Aware, Context-Sensitive,
Multi-Device, Application Framework for Ubiquitous Computing Environments,” University
of Illin
14. A. Ranganathan, and R. H. Campbell, “An Infrastructure for Context-Awareness based on
First Order Logic,” Journal of Personal and Ubiquitous Computing, Vol. 7, Issue 6, Dec. 2003,
pp. 353-364.
15. Sivashanmugam, K., Sheth A., Miller J., Verma K., Aggarwal R., Rajasekaran P., “Meta-
data and Semantics for Web Services and Processes,” Book Chapter, Datenbanken und Infor-
mationssystem
October 2003-09-26.
16. “Semantic Web projects,” http://www.semanticweb.org/
17. “New Racer Query Lanauge,” http://www.cs.concordia.ca/~haarslev/racer/racer-queries.pdf
18. “OWL,” http://ww
19. “Protégé,” http://protege.stanford.edu/
20. “Racer,” http://www.racer-systems.com/
21. D. Lee, S. Han, I. Park, S. Kang, K. Lee
Aware Middleware for Ubiquitous
http://as.icu.ac.kr/www/pdf_paper/icat04-fina
22. L. Capra, W. Emmerich, and C. Mascolo, “CARISMA: Context-Aware Reflective Middle-
ware System for Mo-bile Applications,” IEEE Transactions on Software Engineering, 29(10),
2003
23. P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli, “Context-Aware Middleware for
Resource Management in the Wireless Internet,” IEEE Transactions on Software Engineering,
Vol. 2

