
Unsatisfiability Reasoning in ORM Conceptual
Schemes

Mustafa Jarrar1 Stijn Heymans2

1 STAR Lab, Vrije Universiteit Brussel, Belgium, mjarrar@vub.ac.be
2TINF, Vrije Universiteit Brussel, Belgium, sheymans@vub.ac.be

Abstract. ORM (Object-Role Modeling) is a rich and well-known conceptual
modeling method. As ORM has a formal semantics, reasoning tasks such as
satisfiability checking of an ORM schema naturally arise. Satisfiability
checking allows a developer to automatically detect contradicting constraints.
However, no complete satisfiability checker is known for ORM. In this paper,
we revisit existing patterns from literature that indicate unsatisfiability of ORM
schemes i.e., schemes that cannot be populated, and we propose refinements as
well as additions for them. Although this does not yield a complete procedure –
there may be ORM schemes passing the pattern checks while containing
unsatisfiable roles – it yields an efficient and easy to implement detection
mechanism (specially in interactive modeling tools) for the most common
conceptual modeling mistakes.

1 Introduction

ORM (Object-Role Modeling) is a conceptual modeling approach and the historic
successor of the NIAM (Natural-language Information Analysis Method) [VB82].
ORM schemes can be translated into pseudo natural language statements. The
graphical representation and the translation into pseudo natural language make it a lot
easier, also for non-computer scientists, to create, check and adapt the knowledge
about the Universe of Discourse (UoD) needed in an information system.
Although ORM was originally developed as a database modeling approach, it
has been also successfully reused in other conceptual modeling scenarios,
such as ontology modeling [J05], business rule modeling [H97,N99,DJM02a], XML-
Schema conceptual design [BGH99], etc. Hence, we shall regard an ORM schema, in
this paper, as a general conceptual model independently of a certain modeling
scenario or domain1.
ORM has a well-defined formal semantics (see e.g. [H89,BHW91,T96,TM95]). This
formal semantics naturally leads to the question of satisfiability checking, i.e. given a
concept/role in a schema, is there a model (an interpretation/population of the schema
that satisfies all constraints) such that the concept/role has a non-empty population.
From a practical perspective, such reasoning procedures can help the developer in
analyzing the validity of the constructed schema for the domain. In particular, it
allows to detect concepts and roles in a schema that always have an empty population,

1 We sometimes interchange the term “ORM schema” with the term “axiomatization” to refer

to the same thing.

symptoms of a faulty model: there are too many constraints or constraints are too
harsh2.
For example, consider Fig. 1, stating that Students and Employees are types of
Persons where no Student can be an Employee (and vice versa), and a PhD Student is
both a Student and an Employee. Thus, the PhDStudent type cannot be populated.
Otherwise, a PhD Student would be both a student and an employee which contradicts
with the fact that Student and Employee need to be disjoint types (by the exclusion
constraint). Although there are types in the schema in Fig. 1 that cannot be satisfied,
there is a formal model satisfying the global schema: e.g. let PhDStudent have an
empty population, Student and Employee disjoint populations, and Person some
superset of the union of the populations of Student and Employee.

Fig. 1. Unsatisfiability of ORM schema.

Types of Satisfiability. Formally, we distinguish between three types of satisfiability
of an ORM schema [BHW91]. First, schema satisfiability checking of an ORM
schema is checking whether there exists a model of the schema (or less abstract, some
population for the schema) as a whole. A satisfiable ORM schema does not need to
satisfy any concepts or roles per se, as exemplified in Fig. 1. The only condition is
that all constraints are satisfied by the (possibly empty) populations. Second, concept
satisfiability checking amounts to checking whether all concepts (i.e. object-types) are
satisfied (can be populated) by a model (by a population) of the schema. Concept
satisfiability is thus stronger than schema satisfiability as a model of the schema that
satisfies all concepts is, by definition, also a model of the schema. Finally, role
satisfiability checking amounts to checking whether there exists a model of the
schema that satisfies (populates) all roles in the schema. This is the strongest form of
satisfiability checking as it implies concept satisfiability: if a role is satisfied, the
corresponding concept that plays the role is also satisfied. Given these implications
(role then concept then schema satisfiable), we refer to role satisfiability as strong
satisfiability and to schema satisfiability as weak satisfiability.
In this context, we are particularly interested in strong satisfiability: checking whether
all roles in the schema are satisfiable: since a weakly satisfiable model may contain
empty roles, problems with contradictory constraints are not necessarily detected.
Note that if the schema does not contain roles we will also look at concept
satisfiability.
In this paper, we refine, optimize, and re-represent existing ORM “formation rules”
found formed in [H89,DMV,BHW91], as well as introduce new ones for detecting
unsatisfiable roles (we call it unsatisfiability constraint patterns). Furthermore, we

2 We assume the UoD itself is consistent, such that faults in the model have their origin in the

modeling and not in the UoD.

indicate how a significant part of these existing rules are not aimed at detecting
unsatisfiability but are guidelines for good modeling, e.g., to avoid redundant/implied
constraints.
Our patterns approach for detecting unsatisfiable models is motivated by the needs
that unsatisfiability procedures should be easy to implement and applicable in
interactive modeling. The latter requirement enforces that the procedures should be
fast as well. We shall come back to this motivation in Sec. 4, and illustrate how our
approach can be applied in interactive ontology modeling tools, which indeed help
ontology builders to quickly detect unsatisfiability in the early phases of ontology
modeling. Our experience in applying this approach for the development of a
customer complaint ontology (developed by 10s of lawyers) will be reported in Sec. 4
as well.
Although our approach covers the most common unsatisfiability cases in practice, it
cannot be complete, i.e., there are ORM schemas that are not strongly satisfiable but
will fail to be detected by our patters. This is because of the general problem of
determining consistency for all possible constraint patterns in ORM is undecidable
[H97], e.g., the use of transitivity combined with frequency constraints is problematic
with regards to decidability. In Sec. 4, we shall discuss and compare our patterns
approach with the work that we have done on mapping (large part of) ORM into
description logics (DLs) [JF05]. We shall discuss that the patterns approach (which
we present in this paper) offers fast and easy to implement and understand reasoning
mechanism specially for interactive modeling. We believe that both approaches
complement each other.
The remainder of the paper is organized as follows. In Sec. 2, we introduce 9 patterns
for detecting unsatisfiability of ORM models. Section 3 discusses related work, Sec. 4
illustrates the implementation of the patterns, and Sec. 5 contains discussion,
conclusions and directions for future work.

2 Unsatisfiability Patterns in ORM Conceptual Schemes

In this section, we present and discuss 9 patterns that can be used to detect
unsatisfiability in an ORM conceptual schema3. We adopt the ORM formalization and
syntax as found in [H89,H01], except three things. First, although ORM supports n-
ary predicates, only binary predicates are considered. Second, our approach does not
support objectification, or the so-called nested fact-types in ORM. Finally, our
approach does not support the derivation constraints that are not part of the ORM
graphical notation.

Pattern 1 (Top common supertype)
In this pattern, subtypes that do not have a top common supertype are detected. In
ORM, all object-types are assumed by definition to be mutually exclusive, except
those that are subtypes of the same supertype. Thus, if a subtype has more than one
supertype, these supertypes must share a top supertype; otherwise, the subtype cannot

3 An extended version of this work can be found in [J05].

be satisfied. In Fig. 2 the object-type C cannot be satisfied because its supertypes A
and B do not share a common supertype, i.e. A and B are mutually exclusive.

Fig. 2. Subtype without a top common supertype.

Formally, for each subtype T in the schema, let persT.DirectSu be the set of all n
direct supertypes of T . Let .SuperspersT.DirectSu i be all supertypes of the i-th direct
supertype of T . If (T.DirectSupers1.supers∩ ...∩ T.DirectSupersn .supers) =∅, then the
object-typeT cannot be satisfied. See the appendix for the implementation detail.

Pattern 2 (Exclusive constraint between types)
In this pattern, subtypes of mutually exclusive supertypes (caused by an exclusive
constraint) are detected. Fig. 3 shows a case where D cannot be satisfied because its
supertypes are mutually exclusive. The set of instances of D is the intersection of the
instances of B and C, which is an empty set according to the exclusive constraint
between B and C.

Fig. 3. Subtype with exclusive supertypes.

Formally, for each exclusive constraint between a set of object-types }T,{T T n1 …= ,
let .SubsTi be the set of all possible subtypes of the object-type iT , and .SubsTj be
the set of all possible subtypes of the object-type jT , where ji ≠ , the set
(.SubsT.SubsT ji ∩) must be empty. See the appendix for the implementation detail.

Pattern 3 (Exclusion-Mandatory)
In this pattern, contradictions between exclusion and mandatory constraints are
detected. In Fig. 4, we show three examples of unsatisfiable schemes.

Fig. 4. Unsatisfiable schemes because of mandatory and exclusion conflicts.

In the first case (a), the role r3 will never be played. The mandatory and exclusion
constraints restrict that each instance of A must play r1 and the instance that plays r1
cannot play r3. In the second case (b), both r1 and r3 will never be played. According
to the two mandatory constraints, each instance of A must play both r1 and r3. At the
same time, according to the exclusion constraints, an instance of A cannot play r1 and
r3 together. Likewise, in the third case (c), r3 and r5 will never be played. As B is a
subtype of A, instances of B inherit all roles and constraints from A. For example, if
an instance of B plays r5, then this instance – which is also instance of A – cannot
play r1 or r3. However, according to the mandatory constraint, each instance of A
must play r1 and, according to the exclusion constrain, it cannot play r1, r3 and r5 all
at the same time. In general, a contradiction occurs if an object-type plays a
mandatory role that is exclusive with other roles played by this object-type or one of
its subtypes. Formally, for each exclusion constraint between a set of single roles R ,
let .TRi be the object-type that plays the role iR , RRi ∈ . For each (iR , jR), where

ji ≠ and iR is mandatory, If TRTR ji .. = or SubsTRTR ij ... ∈ -where SubsORi .. is
the set of all subtypes of the object-type Ri.O, then some roles in R cannot be
populated.

Pattern 4 (Frequency-Value)

In this pattern, contradictions between value and frequency constraints are detected.

Fig 5. Contradiction between value and frequency constraints.

In Fig. 5, the role r1 cannot be populated. If the frequency constraint FC(3 - 5) on r1
is satisfied, each instance of A must play r1 at least three times, and thus three
different instances of B are required. However, there are only two possible instances
of B, which are declared by the value constraint {‘x1’, ‘x2’}. For each fact-type

(BrA), let c be the number of the possible values of B that can be calculated from
its value constraint, and let FC(mn −) be a frequency constraint on the role r , then c
must be equal or more than n . Otherwise, the role r cannot be satisfied, as the value
and the frequency constraints contradict each other.

Pattern 5 (Value-Exclusion-Frequency)
In this pattern, contradictions between value, exclusion, and frequency constraints are
detected. Fig. 6 shows a particular contradiction between those three constraints. Due
to the frequency constraint, there should be at least two different values to populate
r1. In order to populate r3, we need, by the exclusion constraint, a value different
from the two for role r1. In total, we thus need three different values in order to be
able to populate both r1 and r2, but this contradicts with the value constraint on
object-type A: we only have 2 values at our disposal. Note that any combination with
only two of the three constraints does not amount to unsatisfiability; we explicitly
need the combination of the three of them.

Fig. 6. Contradiction between value, exclusion, and frequency constraints.

A special case occurs in the absence of frequency constraints, e.g., Fig. 7: according
to the exclusion constraint, there should be at least three different values of A to play
r1, r2 and r3. However, according to the value constraint, there are only two possible
values of A.

Fig. 7. Contradiction between value and exclusion constraints.

We assume that exclusion constraints are in their most compact form. For example,
the exclusion constraint in Fig. 7 is the compact representation of three different
exclusion constraints: between r1 and r3, r3 and r5, and r1 and r5.
Formally, for each exclusion constraint, let }R , ,{R R n1 …= be the set of roles
participating in this constraint. With each of those roles Ri, we associate the inverse
role Si, and we let fi be the minimum of the frequency constraint on Si (if there is no

frequency constraint on Si, we take fi equal to 1). Let T be the object-type that plays
all roles in R . Let C be the number of the possible values of T , according to the
value constraint. C must always be more than or equal to f1+…+ fn. Otherwise, some
roles in R cannot be satisfied. See the appendix for the implementation detail. Note
that this pattern is actually a generalization of the previous pattern where there are no
exclusion constraints. However, the current pattern explicitly focuses on the exclusion
constraints attached to a role, taking into account the frequency constraints, to decide
whether some roles are unsatisfiable. As pattern 4 does not contain exclusion
constraints, a similar strategy would not work.

Pattern 6 (Set-comparison constraints)
In this pattern, contradictions between exclusion, subset, and equality constraints are
detected. Fig. 8 shows a contradiction between the exclusion and the subset
constraints. This contradiction implies that both predicates cannot be populated.

Fig. 8. A non fact-type populatable schema.

The exclusion constraint between the two roles r1 and r3 means that their populations
should be distinct. However, in order to satisfy the subset constraint between (r1, r2)
and (r3, r4), the populations of r1 and r3 should not be distinct. In other words, the
exclusion constraint between r1 and r3 implies an exclusion constraint between (r1,
r2) and (r3, r4) [H89], which contradicts any subset or equality constraint between
both predicates. Fig. 9 shows the implications for each set-comparison constraint that
might be declared between parts of role sequences. These implications are taken into
account when reasoning for contradictions between the three set-comparison
constraints.

Fig. 9. Main set-comparison implications.

In addition, an equality constraint is equivalent to two subset constraints. Hence, we
refer to a subset or an equality constraint as a SetPath. Formally, for each exclusion
constraint between A and B: If A and B are two predicates, there should not be any
(direct or implied) SetPath between these predicates; If A and B are single roles, there
should not be any (direct or implied) SetPath between both roles or between the
predicates that include these roles. Otherwise, the two predicates cannot be populated,

as the two constraints contradict each other. See the appendix for the implementation
detail.

Pattern 7 (Uniqueness-Frequency)
In this pattern, all occurrences of a uniqueness constraint that contradicts with a
frequency constraint on the role are detected. E.g., in Fig. 10 the uniqueness
constraint indicates that the role r1 should be played by at most one element, while
the frequency constraint demands that there are at least 2 and at most 5 participants in
the role (denoted as FC(2-5)). It is thus impossible to populate r1. Formally,
unsatisfiability of a role occurs if there is a frequency constraint FC(min-max) and a
uniqueness constraint on some role (or predicate) r where min is strictly greater than
1. See the appendix for the implementation detail.

Fig. 10. Unsatisfiability of frequency and uniqueness constraint.

Pattern 8 (Ring constraints)
ORM allows ring constraints to be applied to a pair of roles that are connected
directly to the same object-type in a fact-type, or indirectly via supertypes. Six kinds
of ring constraints are supported by ORM: antisymmetric (ans), asymmetric (as),
acyclic (ac), irreflexive (ir), intransitive (it), and symmetric (sym) [H01,H99]. For
example, Fig. 11 shows an irreflexivity on the Sister Of role, indicating that no
woman is her own sister.

Fig. 11. Irreflexivity on the ring constraint

The relationships between the six ring constraints are formalized by [H01] using the
Euler diagram as in Fig. 12. This formalization indeed helps to visualize the
implication and incompatibility between the constraints. For example, one can see
that acyclic implies reflexivity, intransitivity implies reflexivity, the combination
between antisymmetric and irreflexivity is exactly asymmetric, and acyclic and
symmetric are incompatible, i.e. their combination leads to unsatisfiability).

Fig. 12. Relationships between ring constraints [H01].

In general, unsatisfiability occurs if two ring constraints that are disjoint in the Euler
diagram are used. Based on the Euler diagram, we derive in Table 1. all possible
compatible combinations of the six ring constraints. Combinations that do not appear
in the table are incompatible and lead to unsatisfiable roles, e.g., (Sym, it) and (Ans),
(Sym, it) and (It, ac), or (Ans, it) and (Ir, sym).

Table. 1. All possible compatible combinations or ring constraints.

 Pattern 9 (Loops in Subtypes)
In this pattern, loops in the subtype relation are detected. Since in ORM, the
population of a subtype is a strict subset, i.e. a subset and not equal, of the population
of its supertype [H01], one cannot have loops. Otherwise, one would have that a
population is a strict subset of itself, which is not possible. In Fig. 13, none of the
object-types A, B, or C can be satisfied since they form a loop.

Fig. 13. Loop in subtypes.

Formally, for each subtype T in the schema, let T.Supers be the set of all supertypes
of T . If T in T.Supers, then the object-typeT cannot be satisfied. See the appendix
for the implementation detail. Note that there is no analogous pattern for subset
constraints; no strict subset relation is required for subset constraints, such that loops
in subset constraints imply equality of the involved roles but do not lead to
unsatisfiability in general.

3 Related Work

In [H89], 7 formation rules for constraints on ORM conceptual schemes are
described. We discuss to which extent these rules can also be used for detecting
unsatisfiability of roles and how they relate to the patterns described in the previous
section.
Formation rule 1 (A frequency constraint of 1 is never used (the uniqueness constraint
must be used instead)) and rule 2 (A frequency constraint cannot span a whole
predicate) prefer one syntactical form over another (rule 1) or prohibit a, from a
logical perspective, nonsensical4 frequency constraint (rule 2). Rule 1 is, however, not
relevant, where we call a rule relevant if it is relevant from an unsatisfiability
detection perspective, i.e. a rule is relevant, if in case it is violated, there is an
unsatisfiable role. Regarding rule 2, as the population of an ORM predicate is
basically a set, any frequency constraint FC(min-max) where min is strictly greater
then 1 leads to unsatisfiability. Rule 2 is, however, too strict in the sense that a
frequency constraint FC(1-max), although redundant, does not lead to unsatisfiability.
Pattern 7 takes care of the latter case (where it is assumed, as is implicit in ORM, that
a predicate is spanned by a uniqueness constraint). Note that we are only interested in
unsatisfiability; from a modeling perspective the formation rules are most certainly
useful, in the sense that they, e.g., avoid adding redundant constraints to the schema.
Rule 3 (No role sequence exactly spanned by a uniqueness constraint can have a
frequency constraint) is again too strict by itself to be relevant for unsatisfiability. For
example, a constraint FC(1 – 5) and a uniqueness constraint on the same role do not
yield an unsatisfiable role. They are, however, equivalent with FC(1 – 1) or with a
mandatory plus a uniqueness constraint, thus, from a modeling perspective, formation
rule 3 makes sense, but it does not necessarily lead to an unsatisfiable role. We
loosened up rule 3 to take this into account in pattern 7.
Rule 4 (No uniqueness constraint can be spanned by a longer uniqueness constraint)
is again not relevant for unsatisfiability. Rule 5 (An exclusion constraint cannot be

4 Nonsensical, since predicates are interpreted as sets, where each element in a set is, by

definition of sets, unique in that set.

specified between roles if at least one of these roles is marked as mandatory) is
exactly pattern 3; we made it explicit that the rule applies to subtypes as well.
Rule 6 (An exclusion constraint cannot be specified between two roles attached to
object-types one of which is specified as a subtype of the other) is not relevant for
unsatisfiability. There are ORM conceptual schemes violating rule 6, although all
roles are satisfiable, e.g., Fig. 14.

Fig. 14. ORM schema violating formation rule 6 but with satisfiable roles.

For example, populate r5 with some ‘a’, then ‘a’, by the subtyping, must play one of
the roles r1 or r3. It cannot play r3 due to the exclusion constraint but nothing keeps it
from playing r1.
The last formation rule, rule 7 (A frequency constraint with upper bound n cannot be
specified on a role sequence if n is less than the product of the maximum cardinalities
of the other role populations for the predicate), is covered by pattern 4 since we
restrict ourselves to binary predicates5. The 7 ORM formation rules thus provide
useful criteria for constructing ORM schemes: in a lot of cases they avoid
unsatisfiability as well as implied (redundant) constraints. However, the rules mix
both syntactical and semantical criteria, occasionally yielding too strict criteria for
detecting unsatisfiability. The constraint patterns, described in Sec. 3, focus on the
semantical aspect of unsatisfiability only.
In [DMV], the RIDL-A module of the RIDL* workbench, a database engineering tool
based on the NIAM methodology [VB82], checks whether a conceptual schema is
correctly constructed. Since NIAM is the predecessor of ORM, it is interesting to
compare the criteria RIDL-A employs to our patterns. Of particular interest in the
RIDL-A module are the Validity Analysis (rules V1-V6) and Set Constraint Analysis
(rules S1 – S4) parts.
It appears that none of the Validity Analysis rules are relevant for unsatisfiability. The
Set Constraint Analysis part contains 4 rules dealing with three types of constraints:
subset, equality, and exclusion. S1 and S3 say that a subset (resp. equality) constraint
may not be superfluous6. Although interesting from a modeling perspective, neither
S1 nor S3 lead to unsatisfiability of roles in itself. S2 (A subset constraint may not
contain any loops) is not relevant for unsatisfiability; the population of the roles
would be equal but can be non-empty. Note that we use the definition of subset
constraints on predicates as in [H89], i.e. a role r1 is a subset of r2 if every element

5 Maximal cardinalities in [H89] correspond to value constraints.
6 A constraint is superfluous – or implied – if it can be derived from other constraints.

playing role r1 also plays r2. In particular, r1 does not need to be a strict subset of r2:
they may be equal. S2 is relevant for subset constraints between subtypes since those
are strict; we covered this with pattern 9.
Finally, S4 (The OTSETS7 involved on an exclusion constraint may not have a
common subset) is a valid condition for detecting inconsistency. It is, however, too
general, in the sense that it is actually the definition of an exclusion constraint, and
does not indicate how the exclusion might yield unsatisfiable roles.

4 Implementation and Discussion

The DogmaModeler, an ontology and business rules engineering tool, implements the
patterns described in this paper. Fig. 15 displays these patterns as a menu in the
DogmaModeler Validator Settings window8. Users can choose to enable or disable the
enforcement of these validation patterns when reasoning about the satisfiability of an
ORM model. The DogmaModeler typically implements the satisfiability patterns that
we have developed in Sec. 2. In the appendices, we present 9 algorithms, which are
written in a JAVA-like code, to implement the 9 patterns in DogmaModeler. One can
see, from these algorithms, that DogmaModeler does not only detect unsatisfiable
ORM models, but also, it gives (through the generated message) details about the
detected problems, such as, which constraints cause the unsatisfiability, the problems
with the other constraints, etc.

7 The OTSET of a role corresponds, roughly, to the population of a role.
8 The specification of the last three implication patterns is adopted from [H89].

Fig. 15. DogmaModeler’s support of logical validations.

Experience in developing ontologies in DogmaModeler shows that detecting
unsatisfiability in an interactive manner helps ontology builders in quick detection of
mistakes. In other words, we found that interactive detection of unsatisfiability
improves the modeling skills of ontology builders, especially those who are not well
trained in ontology modeling and logics.
It is probably worth to note that our motivation for developing this patterns-approach
was derived from our experience in using ORM to develop a Customer Complaint
Ontology [J05,JVM03], which was done within the CCFORM project, IST-2001-
38248. This ontology was built by 10s of lawyers, and the presented reasoning patters
were applied to guide those lawyers to detect inconsistency problems in early phases.
One of the interesting lessons we have learned in this project is that the
implementation of the patterns (in an interactive manner during the ontology
modeling process) enabled the lawyers to learn how to avoid such mistakes the next
time. Some of them even admitted that they understood some logics from their
experience in using DogmaModeler9.
As we have mentioned earlier, we have also tackled the ORM satisfiability problem in
another way. We have mapped ORM into the DLR Description Logic [JF05], DLR is
a powerful and decidable fragment of first order logic [CDLNR98]. This mapping10
provides us a complete reasoning support for ORM schemes, i.e. users are able to
check (strong and weak) satisfiability of an ORM schema by satisfiability checking of
the corresponding DLR knowledge base, which can be done using RACER11.
On comparison between pattern detection approaches and a complete reasoning
procedure in description logic, we find that both approaches complement each other.
Pattern detection approaches are easy to implement, specially in interactive modeling
tools, and is bound to be cheaper in terms of reasoning time than a complete
reasoning procedure. A complete procedure, e.g. by mapping an ORM schema to a
DL knowledge base and deploying existing DL reasoners, typically is exponential.
So even in the presence of a complete reasoner, the patterns can be used to quickly
detect any “trivial” inconsistencies before calling the more expensive (but complete)
procedure, thus speeding up the modeling process. Last but not least, a pattern
detection algorithm can be designed and optimized for certain usages, e.g. specifically
for ORM unsatisfiability, while a DL translation would rely on a general knowledge
base reasoning which e.g. cannot be optimized for ORM constructs.

9 More details about DogmaModeler and our experience in CCFORM are not presented in this

paper because of the space limitations, but can be found e.g. in [J05], [J06], [JVM03] and
[JDM03].

10 Some ORM constrains (but are rarely used in practice) cannot be mapped into DLR such as
ring constraints, frequency constraints on several roles, etc.

11 http://www.racer-systems.com/products/download/index.phtml (July 2005).

5 Conclusions and Further Research

We presented 9 patterns to detect unsatisfiability of roles in an ORM schema, and
discussed the relation with existing rules in the literature. The implementation and
application of this approach has been illustrated and discussed.
In the future, we intend to devise more patterns for unsatisfiability checking, e.g.,
checking which combinations that involve more than 2 constraints lead to
unsatisfiability while leaving out one constraint would not lead to unsatisfiability (as
in pattern 5). Moreover, we intend to extend our approach to detect unsatisfiability for
ORM derivation rules, assertional knowledge, etc.

Although the 9 patterns are patters that arise frequently in faulty modeling, they are
by no means complete. E.g., one could demand that for irreflexive roles at least 2
different values need to be present.
One may notice that our patterns can be easily translated to other knowledge
representation languages, especially for ontology and business-rules modeling tools12.

References

[BCMNP03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook. Cambridge University Press, 2003.

[BGH99] Bird, L., Goodchild, A., Halpin, T.A.: Object Role Modelling and XML-Schema. In:
Laender, A., Liddle, S., Storey, V. (eds.): Proc. of the 19th International Conference on
Conceptual Modeling (ER’00). LNCS, Springer, 1999.

[BHW91] P. van Bommel, A.H.M. ter Hofstede, and Th.P. van der Weide. Semantics and
verification of object role models. Information Systems, 16(5), pp. 471-495, 1991.

[BvHHHMP04] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P.
F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref/, 2004.

[CDLNR98] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati. Information
integration : Conceptual Modeling and reasoning support. In Proceedings of the 6th
International Conference on Cooperative Information Systems (CoopIS’98), pp. 280-291,
1998.

[DJM02a]: Demey, J., Jarrar, M., Meersman, R.: A Conceptual Markup Language that supports
interoperability between Business Rule modeling systems. Proc. of the Tenth International
Conference on Cooperative Information Systems (CoopIS 02). Springer LNCS 2519, pp. 19-
35, 2002.

[DMV] O. De Troyer, R. Meersman, and P. Verlinden. RIDL* on the CRIS case: A
Workbench for NIAM. Technical report. INFOLAB, Tilburg University, The Netherlands.

[H] T. Halpin. Object-Role Modeling: an overview. White paper, http://www.orm.net.
[H01] T. Halpin. Information Modeling and Relational Databases. 3rd edn. Morgan-Kaufmann,

2001.
[H89] T. Halpin. A logical analysis of information systems: static aspects of the data-oriented

perspective. PhD thesis, University of Queensland, Brisbane, Australia, 1989.

12 One of our master students aims to implement these patterns in Protégée, as part of his thesis

on interactive ontology modeling.

[H97] Halpin, T.: An Interview- Modeling for Data and Business Rules. In: Ross, R. (eds.):
Database Newsletter. vol. 25, no. 5. (Sep/Oct 1997). -This newsletter has since been
renamed Business Rules Journal and is published by Business Rules Solutions, Inc.

[J06]: Jarrar, M.: Towards the notion of gloss, and the adoption of linguistic resources in formal
ontology engineering. Proceeding of the 15th International World Wide Web Conference,
WWW2006. Edinburgh, Scotland. May 2006. ACM, 2006.

[J05] M. Jarrar. Towards Methodological Principles for Ontology Engineering. PhD thesis,
Vrije Universiteit Brussel, 2005.

[JF05] Jarrar, M., Franconi, E.: Mapping ORM into the DLR description logic. Technical
Report, August 2005.

[JVM03] Jarrar, M., Verlinden, R., Meersman, R.: Ontology-based Customer Complaint
Management. In: Jarrar M., Salaun A., (eds.): Proceedings of the workshop on regulatory
ontologies and the modeling of complaint regulations, Catania, Sicily, Italy. Springer Verlag
LNCS. Vol. 2889. November (2003) pp. 594–606

[N99] North, K.: Modeling, Data Semantics, and Natural Language. In: New Architect maga-
zine, 1999.

[T96] O. De Troyer. A formalization of the binary Object-role Model based on Logic. Data &
Knowledge Engineering 19, North-Holland, Elsevier, pp. 1-37, 1996.

[TM95] O. De Troyer and R. Meersman. A Logic Framework for a Semantics of Object-
Oriented Data Modelling. In Proc. Of 14th International Conference Object-Orientation and
Entity-Relationship Modelling (OO-ER’95), LNCS 1021, pp. 238-249, Springer, 1995.

[VB82] G. Verheijen and P. van Bekkum. NIAM, aN Information Analysis Method. In Proc.
Of the IFIP Conference on Comparative Review of Information Systems Methodologies,
North-Holland, 537-590, 1982

Appendix: Algorithms

Pattern 1
For each subtype T[x] {
 Let T[x].DirectSupers = the set of all direct supertypes of T[x].
 n = T[x].DirectSupers.size
 If (n > 1) {
 For (i = 1 to i=n) {
 Let T[x].DirectSupers[i].Supers = the set of all possible supertypes
 of T[x].DirectSupers[i] }
 // if the intersection of all T[x].DirectSupers[i].supers is not empty,
 then the composition is not satisfiable.
 if (Intersection(T[x].DirectSupers[1].supers, … T[x].DirectSupers[n].supers))
 is empty {
 Satisfiability = false
 Message= (“The subtype T[x].DirectSupers[i] cannot
 be satisfied as its supertypes do not have a top common supertype.“) }} }

Pattern 2
For each exclusive constraint Exv[x] {
 Let Exv[x].T = the set of the object-types participating in Exv[x].
 //For each pair of object-types participating in the exclusion constraint:
 For (i = 1 to i = Exv[x].T.size) {
 For (j = 1 to j = Exv[x].T.size) {
 If (i not equal j) {
 Let Exv[x].T[i].Subs = the set of subtypes of the object-type Exv[x].T[i].
 Let Exv[x].T[j].Subs = the set of subtypes of the object-type Exv[x].T[j].
 S = IntersectionOf(Exv[x].T[i].Subs, Exv[x].T[j].Subs)
 If (S is not empty) {
 Satisfiability = false

 Message = (“all subtypes in <S> cannot be instantiated because of <Exv[x]>“) }}}} }

Pattern 3
For each exclusion constraint Exs[x] between a set of single roles {
 Let Exs[x].roles = the set of all roles participating in Exs[x].
 For (i=1 to Exs[x].roles.size)
 If (Exs[x].roles[i].Mandatory = true) {
 For (j=1 to Exs[x].roles.size) {
 If (I not equal j){
 Let Exs[x].roles[i].T = the object-type that plays the role Exs[x].roles[i]
 Let Exs[x].roles[j].T = the object-type that plays the role Exs[x].roles[j]
 Let Exs[x].roles[i].T.Subs = the set of all subtypes of Exs[x].roles[i].T
 If (Exs[x].roles[i].T = Exs[x].roles[j].T) OR
 In(Exs[x].roles[j].T, Exs[x].roles[i].T.Subs) {
 Satisfiability = false
 Message = (“There are some roles in <Exs[x].roles> that cannot
 be instantiated because of the <Exv[x]>“)}}}}}
An alternative but more compact algorithm can be:
For each exclusion constraint Exs[x] between a set of single roles {
 Let Exs[x].roles = the set of all roles participating in Exs[x].
 Let MandRoles = the set of all mandatory roles from Exs[x].roles.
 If (MandRoles is not empty)
 For (i=1 to ManRoles.size)
 For (j=1 to Exs[x].roles.size)
 Let MandRoles[i].T = the object-type that plays the role MandRoles[i]
 Let Exs[x].roles[j].T = the object-type that plays the role Exs[x].roles[j]
 Let Exs[x].roles[j].T.Subs = the set of all subtypes of Exs[x].roles[j].T
 If Not In(MandRoles[i].T, Exs[x].roles[j].T.Subs)
 Satisfiability = false
 Message= (“There are some roles in
 <Exs[x].roles> that cannot be populated because of the <Exv[x]>“)}}}} }

Pattern 4
For each frequency constraint F[x] {
 Let F[x].min = the lower bound of the frequency constraint F[x].
 Let T = the object-type that is played by the role holding F[x].
 Let T.Values = the value constraint on T.
 // if there is no value constraint on T, then T.Values = null
 If (T.Values is not null) and (T.Values.size < F[x].min) {
 Satisfiability = false.
 Message =(“the role <T.r> cannot be instantiated because the
 <F[x]> and the <T.Values> contradict each other”). } }

Pattern 5
For each exclusion constraint Exs[x] between a set of single roles {
 Let Exs[x].Roles = the set of roles participating in the exclusion Exs[x].
 Let Exs[x].InvRoles = the set of inverse roles of Exs[x].Roles.
 For (Si in Exs[x].InvRoles) {
 If (there is frequency constraint on Si)
 fi = minimum freq. const. on Si;
 else fi = 1; }
 Let F = sum(fi).
 Let O = the object-type that plays all roles in Exs[x].Roles.
 Let O.Values = the value constraint on O.
 // if there is no value constraint on O, then O.Values = null
 If (O.Values is not null) and (O.Values.size < F) {
 Satisfiability = false.
 Message =(“Some roles in <Exs[x].Roles> cannot be instantiated because
 the <Exs[x]> and the <O.Values> contradict each other”).} }

Pattern 6
For each exclusion constraint Exs[x] {
 If (Exs[x] between predicates) {
 Let Exs[x].predicates = the set of all predicates participating in Exs[x].
 \\ For each pair of predicates participating in the exclusion
 For (i = 1 to i = Exs[x].predicates.size) {
 For (j = 1 to j = Exs[x].predicates.size) {
 If (i not equal j) {
 Sp = GetSetPathsBetween(Exs[x].Predicates[i], Exs[x].Predicates[j])
 // Sp is the set of all subset or equality constraints that specify or imply a
 // SetPath between the current tuple of predicates.
 If (Sp is not empty) {
 Satisfiability = false.
 Message = (“the exclusion constraint <Exs[x]> contradicts some subset
 and/or equality constraints on the predicates in <Sp>”).}}}}}
 Else { // then the Exs[x] is between roles
 Let Exs[x].roles = the set of all roles that participate in Exs[x].
 \\ For each pair of roles participating in the exclusion constraint
 For (i = 1 to i = Exs[x].roles.size) {
 For (j = 1 to j = Exs[x].roles.size) {
 If (i not equal j) {
 Sr = GetSetPathsBetween(Exs[x].roles[i], Exs[x].roles[j])
 // Sr is the set of all subset or equality constraints that specify or imply a
 // SetPath between the current tuple of roles.
 Sp = GetSetPathsBetween(Exs[x].Predicates[i], Exs[x].Predicates[j])
 // Sp is the set of all subset or equality constraints that specify or imply a
 // SetPath between the predicates of the current tuple of roles.
 If (Sr is not empty) OR (Sp is not empty) {
 Satisfiability = false.
 Message = (“the exclusion constraint <Exs[x]> contradicts some Subset
 and/or equality constraints on the predicates in Sp”). }}}}}}}

Pattern 7
For each frequency constraint F[x] {
 Let F[x].min = the lower bound of the frequency constraint F[x].
 Let R = the role (predicate) on which F[x] is placed.
 If (there is uniqueness constraint on R) and (F[x].min > 1)
 Satisfiability = false
 Message= (“The frequency constraint F[x] cannot be satisfied as it conflicts with a
uniqueness constraint.“) }

Pattern 8
For each role R {
 Let RC = the set of ring constraints on R
 If (RC not allowed according to Table 1.)
 Satisfiability = false
 Message= (“The ring constraints RC cannot be satisfied.“) }

Pattern 9
For each subtype T[x] {
 Let T[x].Supers = the set of all supertypes of T[x].
If (T[x] in T[x].Supers) {
 Satisfiability = false
 Message= (“The subtype T[x] is part of a loop, thus it cannot be satisfied.“) }}}

