
Query Transformation of SQL into XQuery
within Federated Environments

Heiko Jahnkuhn, Ilvio Bruder, Ammar Balouch, Manja Nelius, and
Andreas Heuer

Department of Computer Science, University of Rostock,
18051 Rostock, Germany,

{hj016,ilr,ab006,manel,ah}@informatik.uni-rostock.de

Abstract. Federated information systems integrate various heteroge-
neous autonomic databases and information systems. Queries respect to
the federation have to be translated into the local query language and
must be transformed with respect to the local data model. This paper
deals with the problem of a global query according to an object-relational
federation service. This SQL query is to be translated into an equivalent
XQuery expression, so that it can be processed by the corresponding
XML component database system according to the local schema.

1 Introduction

Federated database and information systems (FDBIS) represent system archi-
tectures for multidatabase systems [1]. In general, one characteristic of FDBIS is
that component database systems are not restricted concerning the underlying
data model or query language. As a result, the participants of the federation
may be very heterogeneous. A general architecture of a federation is shown in
Fig. 1.

The approach introduced in this paper deals with the heterogeneity between
the object-relational and the XML-based data model, for which the query lan-
guages SQL and XQuery are applied respectively. However, this paper does not
focus on transformation from XQuery into SQL, because there are several ap-
proaches and implementation techniques, for example considered in [4, 10]. It
mainly focuses on the transformation of SQL into XQuery, for which two essen-
tial scenarios are possible.

In the first case, there is an XML-based federation service, which uses XQuery
as query language and an object-relational component database system, which
is accessed by a local application via SQL. If the local application queries the
federation with respect to the local schema, this statement has to be transformed
into XQuery and must correspond to the global schema. This scenario is handled
e.g. in [6].

In the second case, to which the introduced algorithm refers, the federation
service is based upon the object-relational data model, which is queried by SQL.
These SQL queries according to the global schema have to be transformed for

Component DBMS 1
(a centralized DBMS)

Component
Database 1
Component
Database 1

Component DBS 1

Component DBMS 2
(a distributed DBMS)

Component
Database 2-1
Component

Database 2-1
Component

Database 2-n
Component

Database 2-n

Component DBS 2

...

...

Component DBMS 1
(another FDBMS)

Component DBS n

...

Federated DBMS

Fig. 1. General architecture of a federation (according to [3])

every participant of the federation. In case of an XML database, every query
must be translated into an XQuery request respect to a single document or a
collection of XML documents.

Using a rule-based system for such a transformation, as described in [5] for
other languages, can cause an unreasonably high administration costs. An XML
database system (XMLDBS) usually does not manage only one document col-
lection which is valid relating to a schema, but uses a multitude of variably
structured documents and diverse schemata. On the contrary, rule systems are
static and cause problems within dynamic applications. However, as data, and
hence the underlying schema descriptions, of XMLDBS in most cases are changed
frequently, every modification would cause an adaptation of the rule system.

To counter these effects, this paper introduces an algorithm, which is able to
automatically perform such a transformation relating to diverse schema descrip-
tions. Former approaches need a valid XML and/or relational representation of
the data. E.g., [6] needs a predefined schema for the transformation. This ap-
proach uses only a set of paths as mapping description of a federation system. A
schema for the query transformation can be automatically and arbitrarily gener-
ated (it depends possibly on the federated system). Changing the schema causes
only the adaptation of the mapping between the local and the global schema; an
adaptation of the algorithm is not required. However, this paper only presents
the fundamental algorithm, which is restricted to the basic SQL statements. This
means, only elementary logical operators (e.g. <, >, =), which can be linked with
AND, OR, and NOT, are allowed for the clauses WHERE and HAVING. Furthermore,
aggregate functions are possible within the HAVING clause. [7] goes into details
concerning the realisation of other SQL constructs (e.g., between, exists, and
contains) and describes further phases and problems occurring at query pro-
cessing in federated information systems.

The purpose of this algorithm is to generate a tuple (schema description,
XQuery statement) based on the mapping of the local schema onto the global
schema and of the SQL query with respect to the global schema. The XQuery

expression within the tuple represents the local equivalent of the global SQL
request and is queried respect to the document collection whose documents are
valid according to the given schema. Then, the federation system sends this tuple
to the appropriate XML CDBS, which processes the request.

2 Query Processing

Starting point of the query processing is a SQL request in turns of the federation
service’s global schema. Assuming a semantics conserving mapping between the
local schema description and the global federation schema, a translation table is
created prior to the actual transformation. This table contains a list of all global
attribute names as well as the local schema’s corresponding path expressions,
which are assigned to the respective global attributes. The global SQL request in
conjunction with this translation table is the basis of the query processing, which
can be subdivided into four separate phases described below and demonstrated
with an example within the next section.

Phase 1

The first step of the algorithm analyses and classifies the query which must be
transformed. For this purpose all occurrences of global attribute names within
the query are determined and substituted with their corresponding path expres-
sion by applying the translation table. As a result of this substitution a list of
paths is generated, which can be interpreted as a tree structure. This tree, in the
following called query tree, represents a sub tree of that one that is described by
the underlying federated schema, and is restricted to that information, which is
relevant to the query.

The nodes of the created query tree are now tagged with three different
flags, which classify the query tree. These flags are called return elements, where
elements and splitting nodes.

The return elements result from those path expressions, which occur within
the SELECT, GROUP BY, HAVING, and ORDER BY clauses after the substitution of
all global attribute names.

The WHERE clause of the query has to be processed to determine the where
elements. Because of a missing schema every element of the query tree has to
be considered as a potential list of path expressions. Therefore, by using the
where elements it is specified which part of the WHERE clause references which
element of the query tree. By regarding the selection condition as a conjunction
of selection conditions, every conjunction term refers to the bottom element in
the query tree, which contains all occurring path expressions in the descendant-
or-self axis. Therefore, the WHERE clause is decomposed into a list of conjunctions
via the distributive law. Consequently, this list consists of either disjunctions or
atomic comparisons and would fit the primal WHERE clause if joined with AND. All
elements of the list include at least one path expression after the substitution
of the global attributes. Then, the most common path (mcp) is determined for

every element within the list. This one is the last element of the query tree,
which includes all elements of the current list element within the descendant-
or-self axis. As a result every mcp now represents a where element in the query
tree.

Finally, the splitting nodes have to be determined. Splitting nodes describe
nodes, which lead to a new FLWR expression within the result query for each
subtree of this node. Therefore, for each element of the query tree is checked,
whether it matches one of the patterns shown in Fig. 2. In case it does, the
element is marked as a splitting node. Pattern a) represents the context of the
query, that is that tree element, which contains all XML elements concerning the
request. Patterns b) to e) analyse, whether the current element includes where
elements as well as return elements within the descendant-or-self axis.

Fig. 2. Patterns of splitting nodes

Consequently, the result of the first transformation step is a tagged query
tree, which is shown exemplarily in Fig. 3. This tree represents the input for the
next phase of the transformation.

Phase 2

The second transformation step is a mapping algorithm which generates a For-
Let-Where-Return (FLWR) expression for every splitting node within the query
tree. The result is a nested XQuery statement representing the tagged query
tree. The mapping uses a top-down method by determining the first splitting
node beginning from the root element. This is the context node the SQL-query
refers to. The outermost FLWR expression is now composed of a for clause,
which declares the splitting node as context node, a where clause, which corre-
sponds to a conjunction of the selection conditions of the where elements, and
a return clause. For generating the return clause the descendant axis of each
node is checked, whether it contains return elements only; in this case, the re-
turn elements are output out directly as path expressions. If the descendant axis

includes a splitting node, it will be used as context node for a new FLWR state-
ment. Then, the mapping algorithm is repeated, whereby the context node is
considered relatively to the superior splitting node, and the where clause repre-
sents a conjunction of all where elements within the descendant-or-self axis of
the current splitting node. Fig. 3 shows an example of this mapping algorithm.

R1

R2

Fig. 3. Example of a mapping

The XQuery statement generated during this second transformation step already
represents a relational SET-OF-TUPLE-OF structure. Consequently, the result
of the XQuery expression is a set of tuple elements, which are valid with respect
to the SELECT clause and contain the specified return elements to emulate the
relational SET-OF-TUPLE-OF representation. This structure is the basis of the
third transformation phase.

Phase 3

The third transformation step realises the optionally specified GROUP BY and
HAVING clauses. As the second phase already generated a relational structure,
the handling of these clauses is not a serious problem anymore. Thereby, this
phase is subdivided into two stages, because a HAVING clause is optional. The
first partial stage realises the grouping by generating a new FLWR statement,
which uses the output of the second transformation step as input. Here, every
grouping attribute is referenced within the for clause, so that an n-dimensional
vector space is spanned. Afterwards, every tuple element is assigned to a point

inside this vector space via the let clause. Every non-empty point, that means
a combination of values at least one tuple element is assigned to, represents a
grouping. Thereupon, by the return clause a result set is created which consists
of a set of group elements. A group element includes the grouping attributes
as well as the tuple elements, which have identic values regarding the grouping
attributes.

Based on this generated structure the selection concerning the HAVING clause
can be realised. Again a FLWR expression is created, which uses the previous
one as input. Thereby, every group element is passed through sequentially by
using the group element inside the for clause as context node. The where clause
results directly from the HAVING clause; only the global attribute names must
be substituted with the corresponding paths and be considered relatively to the
context node. The result set generated within the return clause matches that
one of the first stage. The procedure of this third transformation step is explained
graphically in Fig. 4.

result

tuple

att1

att2

att3

tuple

att1

att2

att3

tuple

att1

att2

att3

result

group group

att1

att2

att1

att2

result

tuple

att1

att2

att3

tuple

att1

att2

att3

tuple

att1

att2

att3

group group

att1

att2

att1

att2

tuple

att1

att2

att3

tuple

att1

att2

att3

tuple

att1

att2

att3

att1 … attn

relation

Conditions

att1 … attn

Conditions

Fig. 4. Realisation of GROUP BY and HAVING clauses

Phase 4

The fourth transformation phase realises the possibly specified ORDER BY clause
as well as the SELECT clause, which may include aggregate functions and re-
namings. For this a new FLWR expression is generated again. Three different
circumstances have to be considered to determine the context node:

1. The global SELECT clause contains aggregate functions only and no at-
tributes. If a grouping exists, the aggregate functions refer to the result’s
group element, otherwise they refer to the result element, thus the whole
result set. In both cases, the aggregate functions refer to the parent node of
the tuple element.

2. The global SELECT clause contains attributes only, no aggregate functions.
If a grouping exists, the attributes have to be declared inside the GROUP BY
clause and consequently refer to the group element. In case of no GROUP BY
clause the attributes refer to every single tuple element. In both cases, the
attributes refer to all direct children of the result element.

3. The global SELECT clause contains attributes as well as aggregate functions.
Hence a GROUP BY clause was specified with respect to those attributes that
occur within the SELECT clause as direct attributes. This also means that
these attributes are identical within all tuple elements of the grouping. Con-
sequently, this case is to be handled analogically to the second one.

The ORDER BY clause of the FLWR statement can be determined analogically to
the HAVING clause, which was described in the third transformation step. Now
the return clause contains aggregate functions, which are referenced directly
via Agg(/tuple/attribute), and attributes, which can be output immediately
via /attribute. Thereby, every output is enclosed in tags which are named
either after the attribute name, after the specified alias, or after the concate-
nation of the aggregate function name and the attribute name. The so defined
output is enclosed in <tuple> tags again. In this way, a SET-OF-TUPLE-OF
representation of the requested output is created.

The output generated during this phase represents the final result of the
query transformation. Now, the tuple (schema name, XQuery statement) can be
transmitted to the respective XML CDBS for evaluation. It is also possible to
optimise or minimise the XQuery expression first. There are several proposals,
[9] describes one of them.

3 Transformation Example

The described algorithm is demonstrated by an example in the following section.
Therefore, the following query example is used:

SELECT Name, Address->City AS City

FROM Hotels

WHERE Name LIKE "Beach%" AND

(Address->ZIP < 20000 OR

Address->City = "Freiburg")

GROUP BY Name, Address->City

During the first step of the transformation a list of all occurring path expressions
is determined. Based on the underlying schema description the list may look like
this:

hotels/hotel/name

hotels/hotel/address

hotels/hotel/address/zip

hotels/hotel/address/city

With this list of path expressions a sub tree of the underlying schema is de-
scribed, which is marked with where elements, return elements and splitting
nodes. In the example the return elements only result from the substituted
path expressions within the SELECT and GROUP BY clause. On the one hand, the
list of where elements contains the atomic comparison

W1 = Name LIKE "Beach%",

on the other hand, it includes the disjunction

W2 = Address->ZIP < 20000 or

Address->City = "Freiburg".

After substituting all global attributes the most common paths of the where
elements are:

mcp(W1) = hotels/hotel/name,

mcp(W2) = hotels/hotel/address.

By applying the patterns in Fig. 2 three splitting nodes can be derived from
this result. This transformation step as well as the marked query tree and the
resulting splitting nodes are shown in Fig. 5.
The second step of the transformation uses the marked query tree in Fig. 5
as input for the mapping algorithm. Starting from the root element the first
splitting node (hotels/hotel) is determined as context node, whereupon the
first FLWR expression is generated accordingly. As both child elements also
contain splitting nodes, two FLWR expressions are generated for them. These
new expressions are positioned relatively to the first splitting node. Within these
splitting nodes, the return elements can be directly referenced as a result. This
transformation phase is illustrated in Fig. 6
As a result of the generated XQuery expression a structure is created, which is
valid respect to the following generic DTD:

<!ELEMENT result (tuple*)>

<!ELEMENT tuple (Name, City)>

<!ELEMENT Name ANY>

<!ELEMENT City ANY>

address

SELECT Name, Address->City

FROM Hotels

WHERE Name LIKE “Beach%“ AND

(Address->ZIP < 20000 OR Address->City = “Freiburg“)

GROUP BY Name, Address->City

global schema - XML schema description

Name - hotels/hotel/name
Address - hotels/hotel/address
Address->City - hotels/hotel/address/city
Address->ZIP - hotels/hotel/address/zip

return element

where element return element

where element

splitting node

ZIP<20000 OR
City = ’Freiburg’

Name LIKE
“Beach%“

Fig. 5. Process of the first transformation step

From this DTD it is recognisable, that the step already created a relational
SET-OF-TUPLE-OF representation of the primary hierarchic structure. This
structure is used again as an input for the third transformation step, which
implements the grouping. Therefore, a new FLWR expression, consisting of a
let and return clause, is generated. Within the let clause a variable is bound
to the output of the second transformation step, which is rearranged within
the return clause. This is done by generating a new FLWR statement, which
references the grouping attributes inside the for clause as well as name and city.
As a result, every possible combination of both attributes is considered. After
that, those tuple elements, which contain the same combination of values, are
assigned to every combination inside the let clause. Finally, within the return
clause is ensured that no empty combinations are accepted for the result and a
group element is created. The latter consists of the combination of all values as
well as of those tuple elements which contain the respective combination. This
grouped structure is used as an input for the fourth step of the transformation.

Based on the case differentiation concerning the SELECT clause, the second
condition is fulfilled (the SELECT clause contains only attributes, but no ag-
gregate functions). Hence, the selection is applied to the child elements of the
result element, which is the tuple element in the example. The just generated
FLWR expression references the tuple element as context node, and the selection
attributes can be output inside the return clause directly. The XQuery state-

Fig. 6. Process of the second transformation step

ment created during this transformation step represents the overall result of the
transformation algorithm1:

for $final in (

let $result :=(

<result>

{ for $a1 in hotels/hotel

where $a1/name LIKE "Beach%" and

($a1/address/zip < 20000

or $a1/address/city = "Freiburg")

return

<tuple>

{ for $a2 in $a1/name

where $a2 LIKE "Beach%"

return

<Name> {$a2 } </Name>,

for $a3 in $a1/address

where $a3/zip < 20000 or

$a3/city = "Freiburg"

return

<City> {$a3/city } </City>}

</tuple>}

1 The LIKE operator acts only as an interim solution and has to be transformed in
accordance with the rules described in [7]. The corresponding XQuery expression
depends on the function fn:substring().

</result>)

return

<result>

{ for $groupBy1 in distinct-values($result/tuple/Name),

$groupBy2 in distinct-values($result/tuple/City)

let $new := $result/tuple[Name = $groupBy1 and

City = $groupBy2]

return

if ($new != " ") then (

<group>

<Name> {$groupBy1 } </Name>

<City> {$groupBy2 } </City>

{$new }

</group>) }

</result>)/child::node()

return

<tuple>

<Name> {$final/Name } </Name>

<City> {$final/City } </City>

</tuple>

This XQuery statement along with the name of the corresponding schema can
be forwarded to the XML CDBS. Based on these information, the latter is able
to determine a document collection whose documents are valid respect to the
given schema and can apply the generated query to this collection.

4 Related Work

With the exception of the approach of Escobar et al. mentioned in Sect. 1, we are
not aware of other architectures which realise an algorithm for transforming SQL
queries into XQuery statements. Though, there are many commercial systems
which integrate disparate data sources (in most cases (object-)relational and
XML-based data) into a global schema, these systems either allow only one
query language according to the global data model or they forward the XQuery
and SQL statements only to the corresponding data sources.

The commercial BizQuery Suite by ATS [2], for instance, is a software sys-
tem for virtual integration of disparate data, which are provided by a unified
XML-based view. In this way, XQuery requests across multiple data sources are
possible, but no transformation of SQL into XQuery statements is performed.
The same approach is realised by the first type 4 JDBC driver for XML files
by Sunopsis [8]. The driver loads (upon connection or user request) the XML,
EDI or IDoc structure and data into a relational schema, using an XML to SQL
mapping. After that, the user works on the relational schema, manipulating data
through regular SQL statements or specific driver commands. Upon disconnec-
tion or user request, the XML driver is able to synchronise the data and the
structure stored in the schema back to the XML file. Similar to the BizQuery
system the JDBC driver implements the querying according to heterogeneous

data sources by mapping the data into a global schema, which is either object-
relational or XML-based, but not by translating the requests.

5 Summary & Future Prospects

The aim of the introduced algorithm is the fully automatic transformation of a
global SQL request into an equivalent XQuery expression which can be delivered
to an XML component database system with relating to an XML document col-
lection. The only precondition for that is a semantics conserving mapping of the
local schema description onto the federation service’s global schema. Based on
this mapping and the current SQL request, the corresponding XQuery statement
is generated. The presented example of such a transformation demonstrates the
application of the algorithm.

However, the algorithm as introduced here is restricted to simple structured
queries and was implemented prototypically to demonstrate the feasibility in
principle. The realisation of further constructs, as for instance the LIKE operator
or nested queries, is discussed in [7]. The application to SQL extensions is also
imaginable. An interesting SQL extension in this context is MM/Full-Text. By
the provided information retrieval techniques, which allow comparisons with
stemming or distance based queries, the full-text supplement of XQuery could
also be realised by this algorithm.

References

1. Bell, D., Grimson, J.: Distributed Database Systems. Addison-Wesley (1992)
2. BizQuery: A Software System for Virtual Integration of Disparate Data. ATS.

http://www.atssoft.com/products/bizquery.htm (22 August 2005)
3. Sheth, A. P., Larson, J. A.: Federated Database Systems for Managing Distributed,

Heterogeneous, and Autonomous Databases. ACM Computing Surveys, Vol. 22,
No. 3 (September 1990)

4. DeHaan, D., Toman, D., Consens, M.P., Özsu, M.T.: A comprehensive XQuery to
SQL translation using dynamic interval encoding. In Proceedings of the 2003 ACM
SIGMOD Int. Conf. San Diego (2003)

5. Elmagarmid, A., Rusinkiewicz, M., Sheth, A.: Management of Heterogeneous and
Autonomous Database Systems. Morgen Kaufmann Publishers Inc. (1999)

6. Escobar, F., Espinosa, E., Lozano, R.: XML Information Retrieval Using
SQL2Xquery. Tecnolgico de Monterrey-Campus cd. De México. Departmento do
Computacin (2002)

7. Jahnkuhn, H.: Transformation von SQL- in XQuery-Anfragen innerhalb föderierter
Informationssysteme. University of Rostock. Department of Computer Science. Stu-
dent research project (2005)

8. JDBCforXML: Sunopsis XML Driver (JDBC Edition) http://www.sunopsis.com/
corporate/us/products/jdbcforxml/ (22 August 2005)

9. Michiels, P.: XQuery Optimization. In Proceedings of VLDB 2003 PhD-Workshop.
Berlin (2003)

10. Rost, G.: Implementierung von XQuery auf objektrelationalen Datenbanken. Uni-
versity of Rostock. Department of Computer Science. Diploma thesis (2002)

