
Implementing a Linguistic Query Language
for Historic Texts

Lukas C. Faulstich, Ulf Leser, and Thorsten Vitt

Institut für Informatik
{faulstic,leser,vitt}@informatik.hu-berlin.de

Humboldt-Universität zu Berlin
Unter den Linden 6, D-10099 Berlin

Abstract. We describe the design and implementation of the linguistic query
language DDDquery. This language aims at querying a large linguistic database
storing a corpus of richly annotated historic German texts. We use a graph-based
data model that supports multiple independent annotation layers on a shared text
layer as well as alignments of text layers representing the same text or related
texts (e.g., translations). The corpus is stored in an object-relational database sys-
tem with a text retrieval extension.
DDDquery is based on XPath to leverage the familiarity of many users with this
language. It is translated to SQL in a two phase compilation with first order logic
as an intermediate language. This approach effectively decouples the query lan-
guage from the schema of the underlying corpus.
We provide an overview of DDDquery, the underlying ODAG data model, its
implementation as relational schema, the predicates of the intermediate language,
and describe both phases of the translation process.

1 Introduction

The project DDD1 is a large interdisciplinary project of linguists of historical Ger-
man, corpus linguists, computational linguists, and computer scientists for creating a
diachronic corpus of German, i.e., a collection of German texts ranging from the 8th
century to modern German carefully selected to cater linguistic research interests. Most
texts in the DDD corpus will be richly annotated, i.e., words will be annotated with
morphological, lexical, and grammatical information; sentences will be annotated with
their syntactic structure; and whole texts will be annotated with respect to the structure
of their content as well as with bibliographic and other meta-data [1].

In the DDD project, we are developing methods to store and manage large collec-
tions of richly annotated historic texts such as the Sachsenspiegel2 in an RDBMS [2].
The project is faced with non-tree-shaped annotation graphs and multiple annotation
hierarchies with conflicting structure that cannot be represented naturally in XML. For

1 www.deutschdiachrondigital.de
2 The “Sachsenspiegel” is the earliest code of common law written in German. The Heidel-

berg manuscript, a Middle High German version of the “Sachsenspiegel”, is available at
http://digi.ub.uni-heidelberg.de/cpg164; a detail is shown in Fig. 1

Fig. 1. Detail from page 1r of the “Heidelberger Sachsenspiegel”.

instance, the logical organization of a text in sections, paragraphs, sentences, and words
often conflicts with the structure of its physical source (e.g., a manuscript) in pages,
lines, and whitespace-separated groups of characters: sentences may cross several lines,
logical words may be hyphenated etc. Historical linguists use several parallel text layers
(e.g., a so-called diplomatic version close to the original text witness, a more readable
normalized version, a word-by-word translation, alternative versions from different text
witnesses etc.) which need to be carefully aligned with each other (cf. Fig. 2). Searching
within text layers, in different annotation layers and across alignments in combination
with hierarchical and spatial relationships (e.g., precedence, inclusion, intersection of
text spans) poses further challenging requirements to the query language.

volgederwilku°nnenSwer lenrecht

Word Word Word Word

Line

Token Token Token Token Token Token

Sentence

Analysis

Article
gender=m
case=nom
number=sing

d~wilku°nnen volge dis

dis

Word

Line

Token

werlenrechtS

WordInitial

Normalized Text

DiplomaticText

... ...

...

...

...

...

...

...

Fig. 2. Exemplary annotation of the Sachsenspiegel (detail; cf. Fig. 1).

While in principle XML together with a reference mechanism such as XPointer can
be used to encode richly annotated corpora by means of so-called stand-off annota-
tion, we believe (with others [3,4]) that specialized data models are a more natural and
promising way to cope with the requirements of such corpora. Hence we have intro-
duced [5] the graph-based ODAG data model presented in Sec. 2 that extends the XML
data model. The particular requirements of linguists for querying corpora have led to

the development of various linguistic query tools and specialized query languages such
as CQP [6] and TigerSearch [7]. Recently, there have been proposals for XML-based
linguistic query languages such as LPath [8]. While LPath is designed for querying tree
banks encoded in XML, we propose the query language DDDquery for querying richly
annotated corpora represented in our ODAG model. It goes beyond LPath by supporting
queries on text spans, on multiple annotation layers, and across aligned texts.

1.1 Requirements and Design Decisions

Our query language should build on an established and popular standard to leverage the
familiarity of users with this base language. We have decided to base the syntax of our
language on XPath due to its popularity, its simplicity (compared to XQuery) and the
similarity of our data model to XML. We need to extend XPath with linguistic query
operations such as projection through alignments and selection of text spans by content
(full-text retrieval) or according to spatial relationships (textual order).

As search results neither lists of whole documents (like in Information Retrieval)
nor linear sequences of nodes (like in XPath) are sufficient. A query needs to spec-
ify several targets (e.g., a sentence together with a verb and noun phrase within this
sentence) the matches of which must be shown in their textual context together with se-
lected annotations. The result of a DDDquery query is a subgraph of the corpus where
matches of particular targets are specially tagged to facilitate highlighting by the pre-
sentation layer that is in charge of formatting the results. Hence construction of arbitrary
XML documents (as supported by XQuery) is deliberately not offered by DDDquery.

While the DDD corpus will be stored in a object-relational database system, the
language should be independent from the implementation of this storage layer. Hence
we choose first-order logic over a fixed set of primitive predicates as an intermediary
language that abstracts from the underlying database schema.

With the corpus still in its planning stage, user requirements cannot be fully pre-
dicted. Hence we need an easily extensible language. Using the JavaCC and JJTree
tools facilitates syntactical extensions. New primitive predicates can easily be defined
in the logic-based intermediate layer in terms of SQL templates without changing our
logic-to-SQL compiler LoToS. Moreover, changes of the underlying relational schema
can be compensated to some extent by adapting the SQL templates.

1.2 Structure of the Paper

In the next section we discuss the underlying ODAG data model and how it is imple-
mented as relational schema. Then, in Sec. 3 we give an overview of DDDquery. The
intermediate language is presented in Sec. 4. Then we discuss the two translation phases
in Sec. 5 and Sec. 6 before we conclude the paper with Sec. 7.

2 The ODAG Linguistic Data Model

The principle elements of the ODAG linguistic data model are depicted in Fig. 3: Text
layers are represented by a text ID and the actual text content. Spans are continuous

intervals of texts, represented by their left and right border and by an optional score
(which may result from an approximate full text search). Elements, characterized by a
name and further described by a set of Attributes, may refer to a span. An element may
have an ordered sequence of children and one or more parents, thus forming a DAG.
Cycles however are forbidden.

Fig. 3. The ODAG data model in form of an UML class diagram.

The relational schema presented here is a straight-forward implementation of this
data model. It is based on [9]. Text layers are stored in a table

text(id, content)
where content is a string (CLOB) storing the text of the text layer identified by
attribute id. ODAG elements are stored in table

element(id, name, tid, left, right, score)
where tid refers to the identifier of a text layer. If tid is not null, then the tuple
(tid,left,right,score) refers to a text span associated with the element.

The children of each element are stored in table
child(parent, pos, child)

where parent and child reference element.id and pos indicates the position of
a child within its siblings.

Since the ODAG data model generalizes XML to acyclic directed graphs, our stor-
age concept is based on a shredded interval-based storage scheme similar to [10]. In
this model, each document node is stored together with its so-called pre- and post-order
ranks. These ranks result from traversing the document tree depth-first and numbering
each node before (pre-order rank) and after (post-order rank) visiting its children. This
representation allows queries for the XPath axes to be translated into simple conditions
on rank-intervals. This approach has been generalized in [11] to support graph-based
data models such as ODAG. An ODAG element that can be reached on different paths
will be visited multiple times during a complete traversal of the ODAG. Hence for each
visit a different rank is attached to the element:

rank(element, pre, post)
Attribute pre stores a pre-order rank of the element referenced by attribute element
and attribute post stores the corresponding post-order rank.

The attributes of ODAG elements are stored in table
attribute(element, name, value)

An attribute is uniquely identified by the id of the element it describes (referred to by
attribute element) and its name.

3 Overview of the Query Language DDDquery

This section gives a brief overview of DDDquery. For a detailed presentation see [12].
DDDquery extends XPath to fulfill the linguists’ requirements and to handle the data
model outlined in Sec. 2.

As in XPath, DDDquery’s fundamental language element is a path expression com-
posed of location steps. Each step consists at least of an axis and a node test and may
optionally contain predicates (which further constrain the set of matched nodes) and
variables (explained below). A path expression in a query matches a set of paths in the
corpus graph such that the steps match graph nodes and the axes describe the relations
between the respective nodes.

3.1 Complex Query Features

Linguists’ requirements [13] for corpus query languages include regular expressions on
path components and correlation of subqueries. For instance, sample query Q1 from [8]
“Noun phrases NP that immediately follow a verb V” (within the same Sentence S) can
be expressed in DDDquery using a shared variable $NP by

//S$S//V$V//immediately-following::NP$NP & $s//NP$NP

While this query can be expressed as well in LPath (but not in XPath), queries involv-
ing more complex correlations can not. Further features that go beyond LPath such as
alignments and multiple layers are supported using dedicated axes and elements.

3.2 Complex Search Results

Unlike XPath, where the path’s result is simply a sequence of nodes “pointed at” by
the path expression, DDDquery needs to offer more complex query results, e. g. context
information. Hence for each step the matching nodes can be selected for output by
binding the step to a variable. The variable name will be used to annotate the respective
nodes in the result, such that users and front-ends can recognize the mapping between
result nodes and query steps. The subgraph induced by the nodes selected for output will
be the result of the query. For example, //S$s//VP//NP$np selects all NP elements
which are descendants of VP elements which are descendents of S elements, but only
outputs the NP and S elements, marking them with “s” and “np”, respectively.

The purpose of DDDquery is to provide structured results containing all necessary
information needed for their presentation in a Web interface, but not to prepare docu-
ments in a presentation format such as HTML. Hence it does not provide constructs for
assembling arbitrary XML documents but returns the results in a fixed XML format,
which can then be post-processed using, for instance, XSLT.

3.3 Spans and Full Text Search

Spans (i. e. continuous intervals of text) are first class objects of the corpus data model.
They may be initially obtained either by following an association with an element node
or by a full text search in the document. We cope with spans by introducing special node

tests. For instance, DDDquery provides a node test exact-match(’Siegfried’)
which matches all text spans consisting of the exact string “Siegfried”. A similar test
is defined for regular expression matching, and the language is open for extension with
additional tests like a fuzzy text search.

To describe relations between spans there are respective axes like, e. g., contained.
In particular, the semantics of the horizontal XPath axes like following and preceding
have been adapted to refer to relations between spans. To allow navigation from an el-
ement to the associated span and vice versa, we provide special axes. E. g., the path
fragment

exact-match("XPath") / containing-element::sentence /
contained::exact-match("grammar")

navigates from a text span with the content XPath to a text span grammar which must
be contained in the same sentence.

3.4 Syntactic Sugar

Like XPath, DDDquery provides a simple, but rather verbose normative syntax able
to express all language features plus a set of abbreviations for common constructs.
In particular there are, like in LPath [8], shortcut symbols for axis steps using many
common axes (so a/following::b may be abbreviated as a --> b).

4 Intermediate Language

Queries in DDDquery are translated to an intermediate language called DDDlog that
is based on first-order logic with a fixed set of predicates. In DDDlog a query q is
defined as a horn clause H ← F . The head H = h(X1, . . . ,Xm) defines the variables
X1, . . . ,Xm as parameters of q. F is a Boolean formula defined recursively as F ::=
F1 ∨ F2|F1 ∧ F2|¬(F1)|p(t1, . . . ,tn)|p(t1, . . . ,tn)+. h and p are predicate symbols. The
call parameters t j are either constants or variables. The transitive closure operator ()+

provides a limited form of recursion that can be handled by current DBMS. A call
p(t1, . . . ,tn)+ is equivalent to a call r(t1, . . . ,tn) to a recursive predicate r/n defined as

r(X1, . . . ,Xn)≡ p(X1,X2, . . . ,Xn−1,Y) ∧ (Y = Xn ∨ r(Y,X2, . . . ,Xn−1,Xn))

A query result is a substitution σ for all free variables in q such that the result Fσ ,
i.e., applying σ to F , is true.

A predicate is either a macro or a primitive. Macros are defined by a set of non-
recursive horn clauses, i.e., a macro defines an intensional database predicate. Macros
are expanded before query translation. Primitives are defined in terms of templates that
can be instantiated to SQL code. Templates are discussed in Sec. 6.

4.1 Representation of Corpus Nodes

The semantics of DDDquery is defined in terms of (corpus) nodes. Similar to document
nodes in XML there are different types of corpus nodes.

A corpus node is either a span, an instance of an element, or an instance of an at-
tribute. An element instance is an element together with a pre- and post-order rank for
this element and the optional span associated with this element. For each instance of
an element in combination with one of the element’s attributes there exists an attribute
instance. Since our FO-to-SQL compiler does not support polymorphic types, we rep-
resent all nodes by the same tuple type

(EltId,Name,Value,Pre,Post,TextId,Left,Right,Score)

For spans only the last four components are not null. For element instances, component
Name stores the element name while value is null. For attribute instances, name and
value of the attribute are stored in the respective components. Attribute instances are
not associated with spans, hence the last four components are always null.

4.2 Predicates of the Intermediate Language

DDDlog defines a set of predicates for node tests (discussed in Sec. 5.1) and axis steps
(presented in Sec. 5.2). They are defined as macros building on other predicates: (i)
primitives providing the relational tables presented in Sec. 2 as extensional database
predicates, (ii) auxiliary predicates (s. Table 1) for accessing components of nodes, (iii)
basic predicates (s. Table 2) defining relationships between nodes, and (iv) primitives
providing access to various SQL functions.

Due to space limitations we cannot describe all predicates of the intermediate lan-
guage but must limit the presentation to some examples.

Predicate Definition
nodeRank(E,P,Q) E = (I,N,V,P,Q,T,L,R,C)
span(E,T,L,R,S) T �= null ∧ E = (I,N,V,P,Q,T,L,R,S)
elementId(E, I) E = (I,N,V,P,Q,T,L,R,C)

Table 1. Auxiliary Predicates.

Predicate Definition
ancestor(A,D) nodeRank(A,PA,QA) ∧ nodeRank(D,PD,QD) ∧ PA < PD ∧QD < QA

immPrec(X ,Y) span(X ,TX ,LX ,RX ,SX) ∧ span(Y,TY ,LY ,RY ,SY) ∧ TX = TY ∧ RX = LY

alias(X1,X2) X1 = (I,N,V,P1,Q1,T,L,R,C) ∧ X2 = (I,N,V,P2,Q2,T,L,R,C)
Table 2. Basic Predicates defined as macros.

With the help of the auxiliary predicate nodeRank/3 we can define predicate ancestor/2
as a relation on nodes. Similarly we can define spatial predicates such as immPrec/2
on nodes that have spans on the same text layer. immPrec(X ,Y) is satisfied if the right
boundary of the span of X coincides with the left boundary of the span of Y .

The predicate alias/2 tests whether two nodes are instances of the same element.
The textual content of a node associated with a span is computed by the primitive

predicate content(X ,S) that is defined by a SQL template since it needs to use the SQL
function SUBSTR() for computing a substring of a text layer (s. Example 2 in Sec. 6.1).

For full-text retrieval we assume several primitives like matches(P,S,M) that take
a string P conforming to a certain syntax (e.g., for regular expressions) and a node S
with a span and return all sub-spans M that match P. Variants include predicates for
matching a pattern only against the whole span S or against prefixes or suffixes of S.
Since SQL and typical full-text retrieval extensions in existing database systems do
not support this type of operation well, we may need to support these primitives by
appropriate table functions.

5 Translation to DDDlog

The DDDquery-to-DDDlog translation is implemented in JavaCC and JJTree.

5.1 Translation of Node Tests

Node tests are used to generate bindings for node variables. In Table 3 node tests for ele-
ment and attribute instances are presented that take an (optional) argument N specifying
the element/attribute name. Node tests for spans are treated in Sec. 5.3.

Predicate Definition
elementNode(N,E) element(I,N,T,L,R,C) ∧ rank(I,P,Q) ∧ E = (I,N,null,P,Q,T,L,R,C)
attributeNode(N,A) attribute(I,N,V) ∧ rank(I,P,Q) ∧ A = (I,N,V,P,Q,null,null,null,null)

Table 3. Node tests.

5.2 Translation of Axes

Each axis is implemented by a predicate that defines a node relation (s. Table 4) without
necessarily computing node bindings for the target nodes. Note that ancestorAxis/2

Predicate Definition
childAxis(P,C) elementId(P,EP) ∧ elementId(C,EC) ∧ child(EP, ,EC)
parentAxis(C,P) elementId(C,EC) ∧ elementId(P,EP) ∧ child(EP, ,EC)
descendentAxis(A,D) ancestor(A,D)
ancestorAxis(D,A) elementNode(,D′) ∧ alias(D,D′) ∧ ancestor(A,D′)

Table 4. Axis steps.

needs to find also ancestors A not on the path on which the descendent D has been
reached. Hence we need first to find all alias nodes D′ of D (i.e., all element instances
sharing the element with D, but representing different paths to reach this element).

5.3 Combination of Axis Steps and Node Tests

The primitives for text pattern matching mentioned in Sec. 4 conceptually combine an
axis step (e.g., computing all sub-spans of a span) with a node test (e.g., testing whether
the text content of a sub-span equals a given string). It would be extremely inefficient to
actually generate a large number of spans and then filter those spans satisfying the node
test. Hence we translate combinations of axis steps on spans and node tests involving
text pattern matching together. For instance, the query fragment

contains::exact-match(’word’)
is translated to a call exactMatchSubstring("word",S,M). The query fragment

following::re-match(’be.{1,5}en’)
is translated to suffixAfter(S,T)∧regexpMatchSubstring("be.{1,5}en",T,M) where
suffixAfter(S,T) returns for a span S the suffix T of the whole text layer starting at the
right border of S.

In some cases, it is more efficient to bind spans in some other part of the query and
just test whether they match the pattern. This results in a different translation that avoids
to call a table function for text pattern matching. For instance,

contains::exact-match(’where’)/element::word
translates to elementNode(,"word",W)∧ content(W,"where").

5.4 Example

The sample query //S$S//V$V//immediately-following::NP$NP & $s//NP$NP

introduced in Sec. 3.1 is translated to the following predicate definition:

Q1(S,V,NP) ≡ elementNode(’S’,S) ∧
ancestor(S,V) ∧ elementNode(’V’,V) ∧ immPrec(S,NP)
ancestor(S,NP) ∧ elementNode(’NP’,NP)

6 Translation from DDDlog to SQL

6.1 Templates

A primitive predicate p is defined by one or more templates T , each of which provides
an SQL implementation for a certain binding pattern that can be instantiated to an SQL
SELECT statement. The FO-to-SQL compiler combines these templates in such a way
that for every variable in a query there is a template that binds this variable. Primitives
are not necessarily extensional database predicates since their templates may combine
data from multiple tables of the underlying database and may contain calls to SQL
functions (e.g., for full-text search).

Definition 1 (Template).
A template T for a predicate p(a1, . . . ,am) has the form (A, I,R,σ ,τ ,w) where

– A = 〈a1, . . . ,am〉 is the parameter vector of p.
– I ⊆ {a1, . . . ,am} is a set of input parameters that must be bound externally.
– O = {a1, . . . ,am}− I is the set of output parameters that can be computed by p.
– R = {r1, . . . ,rn} is a finite set of table aliases

– ER,I is the set of SQL expressions over aliases R and free variables I.
– σ : O→ ER,I , the output substitution, assigns expressions to output parameters.
– τ : R→ T ∪QR,I , the table assignment, assigns each table alias an element from

the set T of table names or from the set QR,I of sub-queries over R and I.
– w ∈ ER,I is an SQL condition that must be satisfied for each solution of p.

Example 1. The template for predicate element(E,N,T,L,R,C) may be defined as

Telement = (〈E,N,T,L,R,C〉,{e},σelement,{e
→ element}, true)
σelement = {E
→ e.id,N
→ e.name,

T
→ e.tid,L
→ e.left,R
→ e.right,C
→ e.score}

A call to EDB predicate element, for instance element("e21",N,T,L,R,C), induces a
binding β for all (here: zero) input parameters and some output parameters, i.e., β (E) =
"e21". The template can be expanded then to the following SQL query which retrieves
the name and span for element "e21":

SELECT e.name, e.tid, e.left, e.right, e.score
FROM element e
WHERE e.id= "e21"

Example 2. The content of a span is the substring of the underlying text layer starting
from the left span boundary up to the right span boundary. The predicate content(T0,S,X)
is fulfilled if node X is associated with a span in text layer T0 whose content is string S.
The following template supports the binding pattern where X = (I,N,V,P,Q,T,L,R,C)
is given while T0 and S are requested:

Tcontent = (〈T0,S, I,N,V,P,Q,T,L,R,C〉,
{T,L,R},
{t},
{T0
→ t.id,S
→ SUBSTR(t.content,L,R−L)},
{t
→ text},
(t.id = T AND T.id <> null))

6.2 Translation Algorithm

Although FO-to-SQL translation is standard textbook knowledge, we are not aware of
any ready-to-use implementation. Moreover, we wanted to support the transitive clo-
sure operator by using the recursive SQL constructs provided now by several DBMS.
Hence we developed the Logic To SQL compiler LoToS3 described in [14]. Depend-
ing on the underlying database system the transitive closure operator is translated into a
WITH RECURSIVE ... SELECT statement (e.g., DB2) or using the SELECT ...
CONNECT BY construct (Oracle).

3 Available at http://www.informatik.hu-berlin.de/ faulstic/projects/DDD/software/LoToS/

6.3 Result Construction

Executing a DDDquery compiled to SQL produces a result table in which each tuple
represents the bindings of the query variables to corpus nodes. Our goal is to generate
a result document in which all relevant variable bindings are highlighted. Hence we
need a post-processing step in which the union of all variable bindings is computed and
sorted by pre-order rank to allow for the construction of a result document tree.

6.4 Example

The DDDlog representation of sample query Q1 (cf. Sec. 5.4) is translated by LoToS to
the SQL query listed in Table 5 that can be executed against a corpus stored using the
schema presented in Sec. 2.

SELECT
element1.id,
element3.id,
element2.id

FROM
element element1,
rank ancestor1,
rank descendant1,
rank ancestor2,
rank descendant2,
element element2,
element element3

WHERE element1.name="S"

AND element2.name="V"
AND element3.name="NP"
AND element1.id=ancestor1.element
AND ancestor1.element=ancestor2.element
AND descendant1.element=element2.id
AND descendant2.element=element3.id
AND ancestor1.pre=<descendant1.pre
AND descendant1.pre<ancestor1.post
AND ancestor2.pre=<descendant2.pre
AND descendant2.pre<ancestor2.post
AND (element2.tid IS NOT NULL)
AND (element3.tid IS NOT NULL)
AND element2.tid=element3.tid
AND element2.right=element3.left;

Table 5. SQL code for sample query Q1

7 Conclusion and Future Work

We have given an overview of the linguistic query language DDDquery and its imple-
mentation. We are currently integrating the DDDquery parser developed in [12] with
the generic FO-to-SQL compiler LoToS [14] into a linguistic query processor. This
processor will be tested on a small sample corpus. Thorough performance tests on large
corpora need to be undertaken. Until a significant part of the DDD corpus becomes
available, we need to use synthetic data or data from existing corpora. Another open
point is how to support full-text retrieval on historic texts. The requirements of historic
linguists go beyond what is supported in typical full-text indexing solutions: proper
Unicode support, regular expression and substring matching, finding all matches within

texts rather than all matching texts etc. The two-phase compilation approach taken by
DDDquery allows to tune its relational implementation easily without touching the first
translation stage and the generic FO-to-SQL compiler.

References

1. Lüdeling, A., Poschenrieder, T., Faulstich, L.C.: DeutschDiachronDigital - Ein diachrones
Korpus des Deutschen. In: Jahrbuch für Computerphilologie 6 (2004). Mentis Verlag (2005)
119–136

2. Faulstich, L.C., Leser, U., Lüdeling, A.: Storing and Querying Historical Texts in a Re-
lational Database. Informatik-Bericht 176, Inst. für Informatik, Humboldt-Universität zu
Berlin (2005)

3. Carletta, J., Kilgour, J., O’Donnell, T., Evert, S., Voormann, H.: The NITE object model li-
brary for handling structured linguistic annotation on multimodal data sets. In: 3rd Workshop
on NLP and XML, NLPXML-2003. (2003)

4. Dekhtyar, A., Iacob, I.E.: A framework for management of concurrent XML markup. Data
and Knowledge Engineering 52 (2005) 185–208

5. Dipper, S., Faulstich, L.C., Leser, U., Lüdeling, A.: Challenges in Modelling a Richly Anno-
tated Diachronic Corpus of German. In: Workshop on XML-based richly annotated corpora,
Lisbon, Portugal (2004)

6. Christ, O.: A modular and flexible architecture for an integrated corpus query system. In:
COMPLEX’94, Budapest (1994)

7. Lezius, W.: Ein Suchwerkzeug für syntaktisch annotierte Textkorpora. PhD thesis, Institut
für maschinelle Textverarbeitung (IMS), Universität Stuttgart (2002)

8. Bird, S., Chen, Y., Davidson, S., Leea, H., Zheng, Y.: Extending XPath to Support Linguis-
tic Queries. In: Workshop on Programming Language Technologies for XML (PLAN-X).
(2005)

9. Vitt, T.: Speicherung linguistischer Korpora in Datenbanken. Studienarbeit, Institut für
Informatik, Humboldt Universität zu Berlin (2004)

10. Grust, T., Keulen, M.V., Teubner, J.: Accelerating XPath evaluation in any RDBMS. ACM
Transactions on Database Systems 29(1) (2004) 91–131

11. Trissl, S., Leser, U.: Querying ontologies in relational database systems. In: 2nd Conference
on Data Integration in the Life Sciences (DILS05). (2005)

12. Vitt, T.: DDDquery: Anfragen an komplexe Korpora. Diplomarbeit, Institut für Informatik,
Humboldt-Universität zu Berlin (2005)

13. Lai, C., Bird, S.: Querying and updating treebanks: A critical survey and requirements anal-
ysis. In: Proceedings of the Australasian Language Technology Workshop. (2004)

14. Faulstich, L.C., Leser, U.: Implementing Linguistic Query Languages Using LoToS.
Informatik-Bericht 195, Institut für Informatik, Humboldt-Universität zu Berlin (2005)

