
Visual Modeling of ReActive Web Applications

Federico Michele Facca and Florian Daniel

Dipartimento di Elettronica e Informazione, Politecnico di Milano
P.zza Leonardo da Vinci 32, I-20133 Milano, Italy

{facca,daniel}@elet.polimi.it

Abstract. In our previous research we have proposed a new high-level
model for the specification of Web applications that takes into account
the way in which users interact with the application in order to actively
react and supply appropriate contents or gather profile data. In this con-
text, we have realized a proper execution framework to develop ReActive
Web applications specified by means of the novel modeling paradigm. In
this paper we discuss an e-learning case study implemented using our
framework and introduce the visual design tools we have extended and
developed in order to support the development of ReActive Web appli-
cations.

1 Introduction

Reactivity on the Web is becoming a hot topic, and aims at addressing new issues
within emerging e-business and e-learning Web applications, where retrieval and
update of data plays an essential role. In this context, monitoring the behaviors
of users may enable Web applications to react to such behaviors and to improve
the users navigation comfort and interactivity with the application. This paper
is based on our previous research on ReActive Web applications [1, 2]; the result
of this research is a visual Event-Condition-Action (ECA) paradigm to describe
reactivity triggered by a user’s interactions with the Web application.

The ECA rule paradigm was first implemented in active database systems in
the early nineties [3] to improve the robustness and maintainability of database
applications. Recently, it has also been exploited in other contexts, such as XML
[4] to incorporate reactive functionality in XML documents, Semantic Web [5]
to allow reactive behaviors in ontology evolution, Web applications [6] to realize
reactive behaviors involving distributed applications on the Web.

In our framework it is possible to specify arbitrary composite and timed be-
haviors depending on a user’s navigations and to react by adapting the Web
application and the application’s data. A composite behavior is a behavior in-
cluding different user interactions with the Web application, i.e., user’s inspec-
tions of different portions of the Web application and data instances; a timed
behavior is a behavior where the time gaps between the the users’ actions are
specified by time constrain. In this paper we highlight the potentialities of our
framework by presenting an e-learning case study and by introducing the visual



design tools we used to automatically generate the application presented in the
case study.

This paper is organized as follows: Section 2 introduces the two background
models that we adopt for modeling ReActive Web applications: WebML and
WBM. Section 3 combines WebML and WBM for defining proper ECA rules.
Section 4 illustrates an applicative example, and Section 5 introduces some de-
tails on the framework used to develop ReActive Web applications. Finally, in
Section 6 we address future research efforts and draw some conclusions.

2 Background Models

Our ReActive framework is based on two models, WebML [7] and WBM [2],
which are properly combined to obtain a visual paradigm for ECA rules, enabling
the specification of reactivity of user behaviors.

2.1 Web Modeling Language

The Web Modeling Language, WebML, is a conceptual model for the design of
Web applications [7], supported by a proper CASE tool [8]. The WebML method
fosters a strong separation of concerns, by separating the information content
from its composition into hypertext, navigation, and presentation, which can
be defined and evolved independently. The modeling language offers a set of
visual primitives for defining structural schemas that represent the organization
and navigation of hypertext interfaces on top of the application data, while for
specifying the organization of data the well known Entity-Relationship model is
adopted. Also, primitives for specifying data manipulation operations for updat-
ing the site content or interacting with arbitrary external services are provided.

For further details on WebML, the reader is referred to [7].

2.2 Web Behavior Model

The Web Behavior Model, WBM, is a timed state-transition automaton for rep-
resenting classes of user behaviors on the Web. Graphically, WBM models are
expressed as labeled graphs, allowing for an easy to understand syntax (cf. Fig-
ure 1). A state represents the user’s inspection of a specific portion of hypertext
(i.e., a page or a collection of pages). State labels are mandatory and correspond
to names of pages or page collections. A transition represents a navigation from
one such portion to another and, thus, the evolving from one state to another.
Each WBM specification, called script, has at least an initial state, indicated
by an incoming unlabeled arc, and at least one accepting state, highlighted by
double border lines. Initial states cannot also be accepting states. Each tran-
sition from a source to a target state may be labeled with a pair [tmin, tmax],
expressing a time interval within which the transition must occur in order to
cause a state transition.



Page1 Page2

Page3

[tmin,tmax]

Initial state
indicator

Transition

State

Accepting
page states

Time constraint

Page4

Fig. 1. Example of WBM script with state, link, and time constraints and multiple
exiting transitions from one state.

Finally, the expressive power of WBM has been augmented to better describe
WebML-based applications: state constraints – referring to data contained within
a page – and link constraints – referring to a particular incoming or outgoing link
– have been introduced. For further details on the WBM model and its tailoring
to WebML, the reader is referred to [2].

3 Reacting to User Behaviors

In order to be able to react to observed behaviors and to adapt the running ap-
plication to novel requirements, we combined WebML and WBM. In our frame-
work possible reactions comprise: (i) adaptivity of contents published by specific
pages; (ii) automatic execution of navigation actions toward other pages; (iii)
automatic execution of operations or services; (iv) adaptivity of the overall hy-
pertext structure.

Although independent from one another, expressing adaptation as a combi-
nation of WBM scripts and WebML adaptivity constructs intrinsically leads to
a high-level ECA paradigm for specifying adaptivity. Commonly, ECA rules re-
spect the general syntax: on event if condition do action, where the event part
specifies when the rule should be triggered, the condition part assesses whether
given constraints are satisfied, and the action part states the actions to be au-
tomatically performed if the condition holds. When specifying behavior-aware
Web applications, the event consists of a page or operation request, the condition
checks the state of the WBM scripts associated with the current page, and the
action part specifies some actions to be forced on the Web application which are
expressed as a WebML operations chain, i.e., a sequence of WebML operation
units. The condition is satisfied and, thus, actions are performed, only when the
page’s scripts reaches an accepting state. Actions are executed only when pages
associated with the respective rules are accessed. ReActive pages are labeled in
the WebML hypertext model with A, standing for “Active”. To avoid multiple
rule activation conflicts a priority can be associated with each rule, thus if the



 

Event Condition

Page1 Page1Page2

Action

Page A

Parameters

Chain of adaptation 

operations 

Page request WBM script WebML hypertext model

Fig. 2. High-level ECA rule components.

condition holds for two ore more rules, only the one with the highest priority is
fired.

Figure 2 graphically summarizes the outlined rule construct: The rule reacts
to a user’s visit to Page1 followed by a visit to Page2 at some stage after his/her
visit to Page1. The expressed rule condition only holds when the script reaches
the accepting state Page2. In this case the operations associated to that page
(abstracted as the cloud in Figure 2) are executed and possible reactions may
be performed.

For further details on WebML operations chain and adaptivity in WebML,
the reader is referred to [9].

4 An E-learning Case Study

This section provides an e-learning reference scenario modelled in WebML. Later
we will enrich the scenario with proper reactivity constructs by means of visual
ECA rules as shown in Section 3. This way of presenting the Web application
fully reflects our development method.

The non-adaptive application allows users to browse courses according to
their personal expertise level on the topic of the course and to test the acquired
knowledge by answering related questions, thus possibly enhancing their knowl-
edge level on a topic. Figure 3 depicts the E/R schema underlying the e-learning

User

Unit Course Topic

Level

Question Answer

QuestionSet

TestResult

Course2Unit Course2Topic

Course2Level

User2LevTop User2TestResult

Question2Answer

QuestionSet2Question

Question2CorrectAns

TestResult2QuestionSet

Level2QuestionSet

Topic2QuestionSet

User2CompletedUnit

User2FavTopic

UserAnswer

TestResult2UserAns

UserAns2Ans

1:1 0:N

1:1

0:N

0:N

0:N 0:1

0:1

0:N

1:N

1:N

1:N 1:1

1:1 1:1

1:N

LevelTopic

LevTop2Topic

Level2LevTop

0:N1:1

1:1
1:1

0:N

0:N
1:N

1:N

0:N

0:N
1:1 1:N

0:1

0:N

1:1

1:1

0:N 1:1

Fig. 3. Entity-Relationship schema for the ReActive e-learning application.



Student SiteView

Home

H

Get Unit

CurrentUser
User

User Data

Course

Course

Course

Test

Test Topics

Topic

[Course2Topic]

Get Unit

CurrentUserL

Message

DefaultMsg=null

Question

Question

Question

Compute

Result

Start Test

Answers

Answer

[Question2Answer]

Next Question

OK

Test Result

Your Answers

UserAnswer

[TestResult2UserAns]

TestResult

Test Result

Test End OK

Test Results

TestResult

[User2TestResult]

Unit

UnitUnits Scroller

Unit

[Course2Unit]

Courses

Suitable Courses

Course

[User2SuitCourse]

Get Unit

CurrentUser

L

Suggested Courses

Topic

[User2FavTopic]

NEST Course

[User2LevTop2Course]

QuestionSet

[Topic2QuestionSet]

[UserLev2QuestSet]

Set of Question

L

Fig. 4. The WebML model of the proposed educational Web site.

application: each user has a set of favorite topics and an associated level of ex-
pertise for each topic. Each course is related to one or more levels of expertise
and to one topic. For each level of expertise and each topic there is a set of
questions; each question is associated to a set of possible answers and to one
correct answer. Results achieved by users and their answers to each question are
stored. To simplify the diagram, derived relationship are not shown.

A simplified WebML model for the Student siteview of the e-learning ap-
plication is depicted in Figure 4. The Home page contains User Data, a list of
Suggested Courses, grouped by topic and selected according to the user’s knowl-
edge level on the topic1 and a list of the Test Results scored. The Get Unit allows
accessing the user’s identifier, while the selector conditions below the units allow
binding a unit to a data entity and personalizing the displayed items by applying
filter conditions. From the Home page the user can ask for the Courses page or
1 When a new student registers for the first time to the Web application, his/her level

of knowledge is assumed to be 0 for each topic.



Course

x:=Display

(Course,OID)

Course

y:=Display

(Course,OID)

x!=y

Course

z:=Display

(Course,OID)

z!=x && z!=y
[180,*][180,*] [180,*]

Course A

Get Unit

CurrentUser

z.value

Get WBM var

z

Get Data

QuestionSet

[Course2Topic2QuestionSet]

[UserLev2QuestionSet]

Start Test

Fig. 5. An ECA rule to trigger the evaluation of a student’s knowledge level. The event
part (user click) is omitted for simplicity.

Course

x:=Display

(Course,

Topic)

Course

y:=Display

(Course,

Topic)

x=y

Course

z:=Display

(Course,

Topic)

z=x

[*,*]

Get WBM var

x

Get Unit

CurrentUser

x.value

Connect

User2FavTopic

[DESTINATION:Name=x.value]

[*,*]

Course A

Fig. 6. An ECA rule to profile user preferences.

the Test Result page. L-labeled pages – Home, Test and Courses – are landmark
pages and can be accessed from any page within the hypertext. The Test page
presents a list of Topic and for each of them a Set of Question is selected accord-
ing to the individual knowledge on the selected topic. Once the user has selected
a topic on which he/she wants to test his/her knowledge, he/she can start a
test. Hence a Question is presented with the relative set of possible Answers.
Submitting an answer, its correctness is evaluated and a score is associated to
the the user by the Compute Result operation unit. Then, this unit sends the
user to the next question, or, finally, computes the new expertise level of the
user on the topic he/she wanted to test and redirects the user to the Test Result
page. In this page, the Test Result scored is reported to the user together with
the set of answers he/she selected during the test. In the Courses page, Suitable
Courses according to the user’s knowledge level are presented. From here, the
user can browse a (Course page) where each Course is organized into a set of
smaller contents that can be scrolled.

In the sequel we describe some examples that add a ReActive layer to the
Web application.

Example 1. Evolving the Level of User Expertise. Figure 5 models an
ECA rule to redirect the user to the Test page for the next experience level after
having visited 3 courses (i.e., 3 different instances of Course pages), spending
at least 3 minutes over each different Course page. The ∗ in the final state of
the WBM script specifies the acceptance of any arbitrary page. The WebML
operation chain for adaptation is thus performed when the user asks again for
a Course page. When the chain is activated, the appropriate question set is
retrieved by the Get Data unit using parameters passed by the Get unit and the
Get WBM Variable unit, hence the test starts.



Course A

[0,120]

Course
x:=Display

(Course,OID)
y:=Display
(Unit,num)

Course
z:=Display

(Course,OID)
k:=Display
(Unit,num)

z=x && k=y+1

Get WBM var

y

Unit

Unit

y.value

Fig. 7. An ECA rule to oblige student to spend enough time on a course unit.

[180,*] Test

Result
A Test

“Repeat

the Test”

Invalidate Test

[0,180]

Test End

Message

DefaultMsg=null

Fig. 8. An ECA rule to invalidate too long tests.

Example 2. Student Profiling. Suppose we want to personalize the appli-
cation according to the user’s preferences traceable from his/her navigational
choices (cf. Figure 6). The script detects that a user is interested in a certain
topic, whenever he/she navigates at least three different Course pages presenting
three courses belonging to the same topic. The identified topic is stored within
the variable x. In response to this behavior, the WebML operation chain stores
the derived preference: the value of the variable x is retrieved by the Get WBM
Variable unit and the identified topic is associated to the current user. Now,
when the user enters the Home page, courses belonging to the same topic are
automatically presented by means of the Suggested Courses unit (cf. Figure 4).

Example 3. Imposing time of page browsing. Figure 7 depicts an ECA
rule to oblige students to spend enough time on a course unit before accessing
the next one: the WBM script tracks users that access a course Unit within the
Course page and then ask for the next course Unit of the same course in less
than 2 minutes. In such case, we suppose the user has not carefully read the
unit, and hence the action part of the rule forces him to stay on the same course
Unit.

Example 4. Invalidating a Test. Suppose it is not enough for us that a
student successfully passes a test to improve his/her level, but we also want
him/her to pass it within a certain amount of time (cf. Figure 8). The WBM
script reaches a success state only if the user starts a test and reaches the Test
Result page in more than 180 seconds, in such case he/she is redirected to the
Test page where the Message unit asks him/her to repeat the test.

Further ECA rules that can be applied to the e-learning Web application
may include: dynamical increase/decrease of the difficulty level of the question



Fig. 9. The WebRatio modeling tool, extended with the new reactivity-supporting
units and the WBM CASE tool.

according to the answer time of a user to each single question; forcing students
to browse the same contents as the teacher (a sort of “collaborative” reaction);
monitoring of effectively active students on the Web application (not only logged
into the application but also actively interacting with it); determination of ef-
fectively completed course units (units where the student spent at least the
minimum required time).

5 A Framework for Building ReActive Web Applications

In our framework, Web application code generation is based on WebRatio [8], a
CASE tool for WebML that supports the visual design of the application schema
and the automatic code generation, starting from WebML schemas and using a
proprietary, extensible runtime engine. Automatic code generation is based on
parametric code components corresponding to WebML units. Parametric com-
ponents are configured at runtime using XML descriptors that contain SQL
queries and parameters for retrieving contents from the application data source.
The implementation of the extension introduced in this paper exploits WebRa-
tios native extension mechanisms that allow adding new features by means of
so-called custom units, a mechanism that has already demonstrated its power
when extending the CASE tool to support other functions. The so achieved
extension fully reflects the proposed (visual) design method, and supports the



Script Repository

WBM Engine

Script LoaderWBM
Execution
Environment

DB

User

HTTP
Request

HTTP
Response

WebML Runtime
Environment HTTP

Request

Script Termination

WBM Variables

Fig. 10. Functional architecture of the overall behavior-aware system.

automatic generation and deployment of ReActive Web applications. We imple-
mented the ReActive pages as described in Section 3 and introduced a new unit
to retrieve WBM variables (Get WBM Variable). The implementation of ReAc-
tive pages required an extension of the page logic, yielding a further new unit
(called Active unit), to be used in place of the A-label associated to reactive
pages. This unit triggers the operation chains, indicated by the outgoing links
from the A-label, when a WBM script associated to a page and to the current
user terminates successfully (cf. Figure 9).

To support WBM script’s modeling based on WebML schemas, we developed
a visual tool that can import the XML representation of a WebML schema and
use retrieved data to design WBM script (see Figure 9).

Executing Web applications reacting to users’ behaviors – in addition to the
standard WebML runtime environment – requires proper runtime support for
WBM scripts. The implementation of rule engines for active databases is a well
known and studied topic in the literature on database systems. Our problem of
handling user sessions and WBM scripts resembles to the problem of handling
transactions and rules in active databases. For more details on the implementa-
tion of the WBM engine refer to [2].

5.1 ReActive Architecture

Figure 10 reports the architecture of our framework: HTTP requests toward the
Web application are automatically forwarded to the WBM engine by the WebML
runtime environment, which hosts the actual application. Users interact only
with the Web application itself and are not aware of the WBM engine behind it.

The WBM engine collects and evaluates tracked, user-generated HTTP re-
quests for (i) instantiating new scripts at runtime, and (ii) enhancing the states of
possible running WBM scripts, as well as (iii) communicating possible script ter-
minations. Script instantiation is managed by a proper Script loader module and
the set of scripts that can be instantiated for a particular application is retrieved
from a Script Repository. Finally a dedicated WBM Execution Environment, is
in charge of progressing instantiated, running scripts. Once a script reaches its



accepting state, the execution environment communicates the successful termi-
nation to the Web application by modifying suitable data structures within the
shared database.

After the successful termination of a WBM script, the Web application pos-
sesses all the necessary data for executing the possibly associated actions. As
soon as a user requests one of the pages within the scope of the high-level rule
whose condition is satisfied by the terminated WBM script, the Web application
executes the operations associated to the requested page. For this purpose, page
computation starts by checking whether scripts connected to the page have ter-
minated or not, before proceeding with the actual rendering of the page. If there
are terminated scripts for that page, one or more rules could be executed. Thus,
computation proceeds with the determined adaptation operations, producing
effects as described in Section 3. Only afterward, if no automatic navigation ac-
tions are triggered, computation continues with the actual page, and a suitable
HTTP response is produced.

6 Conclusion and Future Work

In this paper we introduced a practical case study showing a potential applica-
tion of the general purpose approach for building ReActive Web applications.
Furthermore, we presented our current implementation of the WBM engine and
the CASE tools we used to design advanced ReActive Web sites. The adopted
CASE tools prove that combining WebML and WBM yields a very powerful
visual ECA model, with adequate expressive power for capturing highly sophis-
ticated Web dynamics and providing suitable reactivity mechanisms.

In our future work, we are planning to enrich the proposed ECA paradigm,
including not only events related to user behaviors but also data events and
other Web events. We also intend to better integrate the two CASE tools
presented for providing a unique and complete tool to easily design and deploy
Web applications reacting to user behaviors.

Acknowledgement
We acknowledge the commitment of Luca Sonzogni and Cristian Rossi to the
implementation of the WBM engine and the prototype application, and Luca
Cavagnoli who developed the WBM CASE tool.

References

1. F. M. Facca, S. Ceri, J. Armani, V. Demaldé, Building reactive web applications,
in: Proceedings of the 14th international conference on World Wide Web, WWW
2005, Chiba, Japan, May 10-14, 2005 - Special interest tracks and posters, ACM,
2005, pp. 1058–1059.

2. S. Ceri, F. Daniel, , F. M. Facca, Modeling web applications reacting to user be-
haviors, to appear on a Special Issue of the Computer Networks journal on Web
Dynamics.



3. J. Widom, The Starburst Active Database Rule System, IEEE Trans. Knowl. Data
Eng. 8 (4) (1996) 583–595.

4. A. Bonifati, S. Ceri, S. Paraboschi, Active rules for XML: A new paradigm for
E-services, The VLDB Journal 10 (1) (2001) 39–47.

5. G. Papamarkos, A. Poulovassilis, P. T. Wood, Event-Condition-Action Rule Lan-
guages for the Semantic Web, in: Proceedings of SWDB’03, Berlin, Germany,
September 7-8, 2003, 2003, pp. 309–327.

6. F. Bry, P.-L. Pătrânjan, Reactivity on the web: Paradigms and applications of the
language XChange, in: Proceedings of ACM Symposium on Applied Computing,
Santa Fe, New Mexico, USA (13th–17th March 2005), 2005.

7. S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, M. Matera, Designing
Data-Intensive Web Applications, Morgan Kauffmann, 2002.

8. WebModels srl: WebRatio. http://www.webratio.com.
9. S. Ceri, F. Daniel, M. Matera, Extending WebML for Modeling Multi-Channel

Context-Aware Web Applications, in: Proceedings of Fourth International Confer-
ence on Web Information Systems Engineering Workshops (WISEW’03), Rome,
Italy, December 12 -13, 2003, IEEE Press, 2003, pp. 225–233.


