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Abstract. Portal Catalogs is a popular means of searching for infor-
mation on the Web. They provide querying and browsing capabilities
on data organized in a hierarchy, on a category/subcategory basis. This
paper presents mining techniques on user navigational patterns in the
hierarchies of portal catalogs. Specifically, we study and implement navi-
gation retrieval methods and clustering tasks based on navigational pat-
terns. The above mining tasks are quite useful for portal administra-
tors, since they can be used to observe users’ behavior, extract personal
preferences and re-organize the structure of the portal to satisfy better
user needs and navigational habits. These mining tasks have been im-
plemented in the NaviMoz, a prototype system for mining navigational
patterns in portal catalogs.

1 Introduction

Portal catalogs provide querying and browsing capabilities on data organized in
a hierarchy on a category/subcategory basis. Users can navigate these hierarchies
to identify data of their preference. Examples of such catalogs can be found in
all popular search engines, e.g. in Google, Yahoo, OpenDirectory Project. Also,
portal catalogs of a specific subject or domain (e.g. e-marketplaces for hardware,
portals for cultural information) are provided by user communities on the Web.
Such catalogs, known as vertical portals, is a valuable collection of resources for
anyone who needs to search for information relevant to the interests of those
communities. Portal catalogs maintain large volumes of information resources
which is not possible for a single user to classify and exploit. For this reason,
they are quite popular as a means for searching information on the Web.

A key point for maintaining portal catalogs is to observe users’ behavior and
extract personal preferences in order to re-organize the structure of the portal
to satisfy better user needs. To support such tasks, current approaches [8, 10, 1]
examine the pages that users visit by investigating the web logs of proxy servers.
However, observing visited pages, without also paying attention to the categories
in which these pages have been classified, cannot give an indication of the user
navigational habits.



Navigational habits are related with how users search and browse in the paths
of a hierarchy in a portal catalog. Paths in hierarchies provide a conceptual clus-
tering of Web pages in groups sharing common properties. During a Web page
search and browsing in a portal catalog, users may visit categories, go forward
in subcategories if they look for pages with specific content or go backwards in
more general categories if they look for Web pages with general content. We
call navigational patterns the paths that users follow in the hierarchy of a portal
catalog during a Web page search and browsing. Observing navigational patterns
can give an indication of the concepts that users are interested in, and their nav-
igational habits, and better support the maintenance of the portal catalog. For
example, knowing that the navigational pattern /gadgets/sound/mp3-players
is quite popular among users, the portal administrator may decide to put a
link for the category mp3-players in the first level of the portal hierarchy to
provide users with instant access to the list of mp3 players available. Also, dis-
covering that many users go back and forth several times within a navigational
pattern, might be an indication that the specific part of portal hierarchy is not
well-designed and users cannot easily determine which category to follow. In this
case, the administrator may decide to change that part, providing new categories
or eliminating some of the old ones.

This paper develops mining techniques on user navigational patterns in the
hierarchies of portal catalogs. Specifically, the work studies and implements nav-
igation retrieval capabilities and clustering tasks based on common navigational
patterns. The above mining tasks are quite useful for portal administrators for
customizing the structure of portal catalog according to user and navigational
habits. We next summarize the contributions of our work:

1. We introduce navigational patterns for hierarchies of portal catalogs.
2. We suggest a metric to capture the structure and content similarity between

two navigational patterns.
3. We study and implement mining tasks for user navigational patterns in the

hierarchies of portal catalogs. We develop navigation retrieval methods, and
clustering tasks based on navigational patterns. In navigation retrieval meth-
ods, given navigational patterns as input, we determine users that follow
navigational patterns which have common characteristics compared to those
input patterns. In clustering tasks, we determine user groups that share
common navigational habits.

4. The above tasks are implemented in the NaviMoz, a prototype system for
mining navigational patterns in portal catalogs.

1.1 Related Work

Bioinformatics is one of the research fields where mining patterns (similar to
navigational patterns that we study here) is a popular research issue. Biological
entities, such as proteins and molecules, consist of sequences of elements, in the
same way that the navigational patterns consist of sequences of categories of the
portal hierarchy [7, 9, 5]. However, in this field, user requirements are different



and, thus, mining tasks needed are different, too (e.g. one can ask for the co-
factors of a reaction) [7].

Also, there are many approaches that exploit Web logs of proxy servers to
observe users behavior in Internet sites [4, 8, 10, 11, 17]. They are based on the
words related to the hyper-links that users click and on the keywords related
to the target Web pages. Some of those approaches [2, 10] assist the creation of
user communities, that is groups of users with similar interests. In [17], a new al-
gorithm is presented, which supports sequence discovery from multidimensional
data, allowing the detection of sequences across monitored attributes, such as
URLs and http referees. As noted in the introduction, observing visited pages,
without also paying attention to the categories in which these pages have been
classified, cannot give an indication of the user navigational habits, as studied in
this paper. Thus, we believe that our work is complementary to the approaches
that exploit Web logs. For a detailed discussion on web mining techniques for
web personalization see [1].

The shape definition language (SLD) presented in [18] is also related to our
work. The SDL language is used to retrieve objects based on shapes contained
in the histories associated with these objects. The notion of shapes is close to
the notion of navigational patterns.

The rest of the paper is organized as follows. Section 2 introduces navigational
patterns in the hierarchies of portal catalog, and defines a similarity metric for
navigational patterns. Section 3 presents the mining tasks developed. Section 4
describes our prototype system, and finally, Section 5 concludes the paper.

2 Hierarchies and Navigational Patterns in Portal
Catalogs

Portal catalogs classify information resources in a semantically meaningful way.
Their purpose is to develop and maintain specific communities of interests on the
Web. Portal catalogs maintain large volumes of information resources, organized
in thematic categories. The overall structure of a portal catalog is actually a
hierarchy on a category/subcategory basis.

We can represent a hierarchy of a portal catalog as a graph structure G =
(V, E). V is the set of nodes representing categories included in the hierarchy,
and E is the set of edges representing category/subcategory relationship. Since
we represent a hierarchy of a portal catalog as a graph structure, a user can
reach a category following different paths. For example, one reaches the cat-
egory History through either Science/Social Science/History or through
Society/History.

A user, during a Web page search and browsing in a portal catalog, may visit
several categories. We call the sequence of categories in those visits navigational
patterns. We note that such patterns may include multiple occurrences of cat-
egories. This might be the result of users going back and forth several times
within a path in the graph of hierarchy.



A key issue for developing mining tasks for navigational patterns is to be able
to estimate how similar two navigational patterns are. In the next subsection
we present a similarity metric to estimate the similarity degree between two
navigational patterns in terms of structure and content.

2.1 A Similarity Metric for Navigational Patterns

We design a similarity metric for navigational patterns in hierarchies of portal
catalogs that takes into consideration both the structure of the pattern and the
keywords used as labels for the categories.

1. To estimate the structure similarity between two navigational patterns, we
consider the elements of navigational patterns as character sequences and
we exploit the metric suggested in [12]. Such a metric is based on the mini-
mum cost sequence of edit operations needed to change one string to become
identical to another string. The set of edit operations include deletion of a
character, insertion of a character and replacement of a character with an-
other one. The calculation of the metric is based on a dynamic programming
algorithm. The final result is the sum of the costs of the considered oper-
ations divided by the sum of the lengths of the navigational patterns. The
result expresses a distance d. Thus, in order to have the similarity we should
calculate 1 − d.

2. To estimate the content similarity between two navigational patterns, we
calculate the ratio of the number of occurrence of the common categories in
both patterns to the total number of categories in both patterns.

The similarity metric is calculated as the average of structure and content simi-
larity.

Let for example A =/Health/Medicine/Fitness and B =/Health/Fitness/
Running/Training/Coaching/Training be two navigational patterns. Their
structural distance is 0.55 (delete Medicine from A and insert /Running/Training/
Coaching/Training : 5 operations, total length=9). Thus, their structural simi-
larity is 0.45. The ratio of the number of occurrence of the common categories in
both patterns to the total number of categories in both patterns is 4/9 = 0.44.
Thus, the similarity between these two navigational patterns is 0.445.

3 Mining Tasks

We study and implement mining tasks for user navigational patterns in the
hierarchies of portal catalogs. Specifically, we develop navigation retrieval tasks
and clustering tasks based on navigational patterns.

3.1 Navigation Retrieval Tasks

In all navigational retrieval tasks, a navigational pattern is given as input. Based
on this input pattern, we can determine users that follow navigational patterns



with common characteristics compared to the input pattern. All tasks can be
performed for a certain time period provided by the user. Specifically, we have
developed the following navigation retrieval tasks:

– Retrieval of navigations which are supersets of the input pattern. This task
identifies users whose navigational patterns contain all the categories from
the input pattern (but these are not the only ones in the user pattern),
keeping their ordering. For example, given that /Arts/Radio is an input
pattern, the following navigational patterns will be part of the answer:
• /Arts/Radio/Personalities/Henrie Phil/Personalities/Radio/
Personalities/Programs/Voice Actors

• /Arts/Radio/Guides/Directories/Directories

– Retrieval of navigations which are subsets of the input pattern. This task
identifies users whose navigational patterns contain only categories from the
input pattern (but these are not the only ones in the user pattern), keeping
their ordering. For example, given that /Arts/Radio/Guides is an input
pattern, the following navigational patterns will be part of the answer:
• /Arts/Radio
• /Arts/Guides

– Retrieval of navigations which are identical to the input pattern. This task
identifies users whose navigational patterns contain all the categories from
the input pattern (and these are the only ones in the user pattern), keeping
their ordering.

– Retrieval of the navigations which are similar to the input pattern. This task
identifies users whose navigational patterns are similar to the input pat-
tern, given a similarity threshold. The threshold is provided by the user.
A navigational pattern is retrieved as part of the answer if the similarity
metric (introduced in the previous section) between itself and the input pat-
tern gives a value that exceeds the threshold provided. We note that the
suggested similarity metric takes into consideration both the structure of
the pattern and the keywords used as labels for the categories. For exam-
ple, given that /Arts/Music is an input pattern, and the threshold is 0.70,
the pattern /Arts/Radio/Music will be retrieved (similarity=0.81), but the
pattern /Arts/Radio will not (similarity=0.62).

3.2 Clustering Tasks

In clustering tasks, we can determine user groups that share common naviga-
tional habits. All tasks can be performed for a certain time period provided by
the user. Specifically, we have developed the following tasks:

– Grouping users that follow similar navigational patterns. To support this task
we have implemented two clustering algorithms: the K-means and the single
link hierarchical clustering algorithm [13, 14]. For both clustering algorithms
we exploit the similarity metric suggested in the previous section.



– Retrieval of the most popular navigations. This task identifies the naviga-
tional patterns which have been followed by the majority of users. We con-
sider such patterns as popular patterns.

– Retrieval of the most undecided users. This task identifies users whose nav-
igational habits indicate that they are undecided during their search and
browse in the portal hierarchy. Also, it ranks the users according to how much
undecided they are. We suppose that when a user goes back and forth during
searching and browsing, he/she is an undecided user. An example of a naviga-
tional pattern which shows that the respective user is undecided is the follow-
ing: /Arts/Music/Pop/Music/Pop/Concerts/Pop/Music/Rock/Concerts. A
user whose navigational pattern is /Arts/Music/Rock/Music/Rock/Concerts
is less undecided than the former, due to lower number of back and forth
(B&F ) movements.

Next, we give an overview of clustering techniques and we discuss in detail
the single link implementation. The key point of our implementation is that
the estimation of the clustering level for single link is performed exploiting the
C-index method [16].

Clustering Algorithms Clustering methods are usually divided into two broad
categories. Non-hierarchical methods group a data set into a number of clusters.
Hierarchical methods produce nested sets of data (hierarchies), in which pairs of
elements or clusters are successively linked until every element in the data set
becomes connected. Non-hierarchical methods have low computational require-
ments, (O(kn), if for example n documents need to be grouped into k clusters),
but certain parameters like the number of formed clusters must be known a pri-
ori. Hierarchical methods are computationally expensive, with time requirements
of O(n2), if n documents need to be clustered. However, hierarchical methods
have been used extensively as a means of increasing the effectiveness and effi-
ciency of retrieval [20–22]. For a wide ranging overview of clustering methods one
can refer to [13, 14]. Single link, complete link and group average link are known
as hierarchical clustering methods. All these methods are based on a similar
idea:

1. Each element of the data set to be clustered is considered to be a single
cluster.

2. The clusters with the minimum distance (i.e. maximum similarity) are merged
and the distance between the remaining clusters and the new, merged one is
recalculated.

3. While there are more than one clusters, go again to step 2.

In single link (complete link), the distance between two non-single clusters
is defined as the minimum (maximum) of the distances between all pairs of
elements so that one element is in the first cluster and the other element is in
the second cluster. In group average link, the distance between two non-single
clusters is defined as the mean of the distances between all pairs of elements



so that one element is in the one cluster and the other element is in the other
cluster.

We implemented a single link clustering algorithm using Prim’s algorithm [23]
for computing the minimum spanning tree (MST) of a graph. Given a graph G
with a set of weighted edges E and a set of vertices V , a MST is an acyclic subset
T ⊆ E that links all the vertices and whose total weight W (T ) (the sum of the
weights for the edges in T ) is minimized. It has been shown [24] that a MST
contains all the information needed in order to perform single link clustering.

Given n navigational patterns, we form a fully connected graph G with n ver-
tices ∈ V and n(n−1)/2 weighted edges ∈ E. The weight of an edge corresponds
to the similarity distance between the vertices (trees) that this edge connects.
The single link clusters for a clustering level l1 can be identified by deleting all
the edges with weight w ≥ l1 from the MST of G. The connected components of
the remaining graph are the single link clusters. Figure 1(a) shows a graph with
7 nodes that correspond to 7 navigational patterns, and 10 edges. The weight
of an edge is the similarity distance between the involved navigational patterns.
For example the similarity distance between patterns 1 and 2 is 0.2. The missing
edges, that is the extra edges that make the graph fully connected, are those that
have weight 1. Figure 1(b) shows the minimum spanning tree of (a). Figure 1(c)
presents the graph remaining after deleting all edges with weight ≥ 0.4. There
are 2 connected components that include nodes (1, 2, 3, 6) and nodes (7, 5), re-
spectively. This indicates the presence of 2 clusters: cluster 1 with (1, 2, 3, 6) as
members and cluster 2 with (7, 5) as members. Nodes which are not connected
to other nodes will be considered as single-node clusters.
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Fig. 1. Minimum Spanning Tree (MST) detection and single link clustering at level
0.6.

A stopping rule is necessary to determine the most appropriate clustering
level for the single link hierarchies. Milligan et al. present 30 such rules [25].
Among these rules, C−index [16] exhibits excellent performance (found in the
top 3 stopping rules). We next present the way we adopt the C−index in a
hierarchical clustering procedure for navigational patterns.

C−index for Hierarchical Clustering C−index is a vector of pairs ((i1, n1),
(i2, n2), . . . , (ip, np)), where i1, i2, . . . , ip are the values of the index and n1,



n2, . . . , np the number of clusters in each clustering arrangement produced by
varying the clustering level of a hierarchical clustering procedure in p different
steps. Let l1 be the first selected clustering level, which produces an arrangement
of N1 clusters (that is n1 = N1): C1 with c1 elements, C2 with c2 elements, . . . ,
CN1 with cN1 elements. We can calculate i1 in order to have the first pair (i1, n1)
of C-index vector:

i1 = (dw − min(dw))/(max(dw) − min(dw))

where:

1. dw = Sum(dw1) + Sum(dw2) + . . . + Sum(dwN1
), with Sum(dwi

) to be the
sum of pairwise similaritites of all members of cluster Ci, 1 ≤ i ≤ n1,

2. max(dw) : the sum of the nd highest pairwise similaritites in the whole set
of data (that is, sort distances, highest first, and take the Top-nd sum),

3. min(dw) : the sum of the nd lowest pairwise similaritites in the whole set of
data (that is, sort distances, highest first, and take the Bottom-nd sum),

with nd = c1 ∗ (c1 − 1)/2 + c2 ∗ (c2 − 1)/2 + . . . + cN1 ∗ (cN1 − 1)/2 (that is
the number of all within cluster pairwise similaritites). Similarly we calculate
all values of C−index for all different p clustering levels, getting the vector
((i1, n1), (i2, n2), . . . , (ip, np)). We point out that:

– Although all pairwise similaritites are needed to compute the C-Index, this
doesn’t require any additional computation because these similaritites need
to be computed anyway for the hierarchical clustering procedure itself.

– Since multiple successive clustering levels can generate the same number of
clusters, we compute the C−Index not for each level but for each number of
clusters generated by different levels.

– The number of clusters with the lowest C−Index is chosen as the correct
clustering, as [25] suggests.

We next present the algorithm exploited to retrieve the most undecided users.

Undecided Users To support this task, we have implemented an algorithm
which counts how many B&F movements a user has made. The term B&F refers
to a pair of categories in the hierarchy of a portal catalog. A pair of categories
(A, B) is B&F if:

– Both A and B belong to the same navigational pattern P .
– label(A) = label(B): the categories are the same.
– There is an odd number of categories (different than A and B) between A

and B in pattern P .
– label(after(A)) = label(before(B)) (after(A) gives the category which is

after A in the examined navigational pattern, while before(A) gives the cat-
egory which is before A in the examined navigational pattern).



According to the above, a B&F pair appears in the primitive navigational pat-
tern A/B/A. We call such B&F pairs as basic B&F s, since the patterns in which
can appear are of minimum length. The algorithm first detects the basic B&F s,
and then the others.

Input: navigational pattern
Output: number of the B&F pairs in the pattern.
Algorithm:
array BF: For every category of the input pattern, it contains its B&F partner
(i.e., the category with which it constitutes a B&F ).
Vector P: Contains all category pairs (A, B) which are candidates for B&F s,
and the number of categories that exist between A and B.
Vectors valueVector: One vector for each category, having the place where the
category occurs in the navigational pattern.
int counter: Contains the number of B&F .

/∗Find basic B&F ∗/
for all categories

if the size of the current category valueVector >1
Check whether there are two successive occurrences in
places i and j of the category in the pattern, such that
no other category exists between places i and j.
If there are not such successive occurrences then

if one category exists between places i and j.
B&F exists for category in i and category in j
Add B&F to array BF

else
if N categories exist between places i and j,
with N odd

candidate B&F exists for category in i and
category in j

add this category pair to Vector P

Sort Vector P according to the number of categories that exist
between categories which constitute a candidate B&F.

/∗Find the rest B&F ∗/
for every pair (A,B) of the sorted Vector P

Check if the categories after(A) and before(B) form a pair in
array BF, and if so, the pair (A,B) is B&F.

Update array BF
else

Find the category in array BF that constitutes a B&F pair
together with after(A)

If that category is before(B)



Add the B&F pair to array BF
else

Find the category in array BF that constitutes a B&F pair
together with BF[after(A)]

/∗Computation of the total number of B&F ∗/
For every non-zero element of array BF, increase counter by 1.
Return counter.

An example is given in case the input to the algorithm is the navigational pattern:
r/s/m/d/m/o/m/s/f/s/f/w/f/w. The algorithm first detects the basic B&F s,
which are the category pairs (2, 4)1 (i.e., m and m), (4, 6), (11, 13), (7, 9), (8, 10)
and (10, 12) (i.e., f and f), and updates the array BF . Vector P keeps the category
pair (1, 7) as a candidate B&F . The algorithm examines the category pair (2, 6)
and finds that there exist B&F pairs (1, 4) and (4, 6). Thus, the pair (1, 7) is
B&F .

3.3 User Identification Tasks

These tasks provide useful information regarding user identification. Specifically,
the system provides (a) user navigation retrieval for a given time period, and
(b) user session retrieval for a given time period.

4 System Description

The above tasks are implemented in the NaviMoz, a prototype system for mining
navigational patterns in portal catalogs. NaviMoz system consists of three basic
modules:

1. User Manager Module. This module provides user login operations and main-
tains the user access to the portal catalog. The users’ navigations are stored
in the database and they are further explored by the system’s manager.

2. Mining Module. This module provides all the mining tasks for navigational
patterns described in this paper.

3. Storage Module. This module is responsible for maintaining an RDBMS used
for storing users information and their navigational patterns.

4. Presentation Module. This module supports the graphical interface of Nav-
iMoz.

The architecture of NaviMoz is presented in Figure 2, while a screen dump
showing a clustering task running is illustrated in Figure 3. Clustering has iden-
tified a cluster involving three users (Christodoulou Eleni, Kalimerh Maria and
Kanellakopoulos Haralampos) whose navigational habits are similar.

1 numbers denote places in the navigational pattern



NP similarity�
calculation�
submodule�

Navigational�
retrieval submodule�

-K-means clustering�
-Single link hierarchical�
clustering�

NP sim. retrieval�
submodule�

(NP: Navigational pattern)�

User identification�
submodule�

NaviMoz�
presentation�

module�

Clustering�
submodule�

-Login operations�
-User access�
-User navigation�
storage�User manager�

module�

Mining module�

Storage�
module�

Fig. 2. Architecture of NaviMoz.

Fig. 3. Clustering task in NaviMoz.

5 Conclusions

Observing user behavior and extracting personal preferences is crucial for main-
taining portal catalogs. Certain navigational habits can indicate the need to
re-organize the structure of the portal to satisfy better user needs. Observing



visited pages in a portal catalog, without also paying attention to the categories
in which these pages have been classified, cannot give an indication of the user
navigational habits.

This paper suggests a set of mining tasks on user navigational patterns in
the hierarchies of portal catalogs. Those mining tasks can help portal admin-
istrators for customizing the structure of portal catalog according to user and
navigational habits. In our work, we introduced navigational patterns for hierar-
chies of portal catalogs, and we designed a metric to capture their structure and
content similarity. Based on this metric, we implemented several mining tasks,
like navigation retrieval methods and clustering methods, for user navigational
patterns in the hierarchies of portal catalogs.

The navigational patterns can be considered as simplified Xpath queries [19].
We will extend our work to employ complex navigational patterns (e.g., branch-
ing path expressions), expressed as Xpath pattern queries. Our future plan for
NaviMoz is to become a full-fledged generic portal management system that will
provide editing operations fully supported by the mining tasks described in this
paper.
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