Flexible Pattern Management within PSYCHO

Barbara Catania and Anna Maddalena

Dipartimento di Informatica e Scienze dell’Informazione
Universita degli Studi di Genova (Italy)
{catania,maddalena}@disi.unige.it

Abstract. Patterns are concise, but rich in semantic, representation
of data. The approaches proposed in the literature and by commercial
systems for pattern management usually deal with few types of knowl-
edge artifacts and mainly concern pattern extraction issues. Little ef-
fort has been posed in designing an overall framework dedicated to the
management of different types of patterns, possibly user-defined, in an
homogeneous way. PSYCHO (Pattern based SYstem arCHitecture prO-
totype) is a recently developed tool, built on top of Oracle technologies,
for generating, representing, and manipulating heterogeneous patterns,
possibly user-defined. The aim of this paper is to present the PSYCHO
system, by discussing the underlying theory, the reference architecture,
and providing concrete examples of its usage.

1 Introduction

A pattern can be defined as a compact and rich in semantics representation
of raw data. Clusters, association rules, frequent itemsets, symptom-diagnosis
correlation, and moving object trajectories are common examples of patterns.
Pattern management is an important issue in many different contexts, such as
data mining, information retrieval, image processing, and clickstream analysis.
The specific characteristics of patterns make traditional DBMSs unsuitable
for pattern representation and management. In particular, patterns can be gen-
erated from different application contexts resulting in very heterogeneous struc-
tures. Moreover, patterns can be mined (a-posteriori patterns) but also known
by the users and used for example to check how well some data source is repre-
sented by them (a-priori patterns). To maintain the semantic alignment between
patterns and raw data it is also important to determine whether existing pat-
terns, after a certain time, still represent the data source from which they have
been generated, possibly being able to update pattern information. Finally, all
kinds of patterns should be manipulated (e.g. extracted, synchronized, deleted)
and queried through dedicated languages. All the previous reasons motivate the
need for ad hoc Pattern Management Systems (PBMSs), i.e., systems for han-
dling (storing/processing/retrieving) patterns defined over raw data [10].
Recently, several approaches have been provided for pattern management.
Scientific community efforts mainly deal with the definition of a pattern man-
agement framework providing a full support for heterogeneous patterns. In the

3W Model [5] and in the PANDA framework [10], raw data are stored and man-
aged in a traditional way by using a DBMS whereas patterns are stored and
managed by a dedicated PBMS. In the inductive databases approach, mainly
investigated in the context of the CINQ project [6], raw data and patterns are
stored together, by using the same data model, and managed in the same way.
On the other hand, industrial proposals mainly deal with standard representa-
tion purposes for patterns resulting from data mining, in order to support their
exchange between different architectures. Examples of such approaches are the
Predictive Model Markup Language (PMML) [11] and the Java Data Mining
API (JDM) [8]. PMML simply deals with pattern representation issues, pro-
viding an XML-based format to represent data mining results and the used
mining algorithm. JDM represents patterns within the Java environment and
provides manipulation support through JAVA primitives. In all these cases, no
user-defined patterns can be specified. Concerning commercial systems, the most
important DBMSs (e.g., Oracle and MS-SQL Server) provide an applicational
layer offering features for representing and managing typical data mining pat-
terns.

Even if several approaches have been proposed, an integrated environment
satisfying the requirements introduced above is still missing. Starting from these
limitations and relying on the results achieved in the context of the PANDA
Project [10], we have designed and implemented PSYCHO (Pattern based Sys-
tem arCHitecture prOtotype) [4,12], a system built on top of Oracle technologies,
for generating, representing, and manipulating heterogeneous patterns, possibly
user-defined. According to our knowledge, PSYCHO is the first proposal of a
PBMS system coping with most of the features cited above. Differently from ex-
isting proposals, that are mainly focused on common data mining patterns (e.g.
association rules, frequent itemsets, and clusters), PSYCHO allows the design of
user-defined pattern types and the management of both a-posteriori and a-priori
patterns. Moreover, by exploiting the logical model proposed in [3], it allows the
representation of pattern validity information and pattern hierarchies. Besides
basic manipulation operations, PSYCHO supports synchronization between pat-
terns and raw data. Concerning query capabilities, PSYCHO, by exploiting the
power of the logical model, supports interesting queries combining both data
and patterns in order to get a deeper knowledge of their correlations.

This paper is organized as follows. In Section 2, the model underlying the
PSYCHO development is briefly discussed. Details about the PSYCHO archi-
tecture are presented in Section 3, while Section 4 is focused on PSYCHO usage.
Finally, Section 5 presents some concluding remarks and outlines future work.

2 PSYCHO: the model

PSYCHO is a prototype of a Pattern Based Management System (PBMS) ex-
ploiting the logical framework for pattern management proposed in the context
of the PANDA Project [10]. In particular, it relies on the logical model and the
languages for pattern generation, manipulation, and querying introduced in [2—-

4]. The PSYCHO logical model used to represent patterns is based on three
basic concepts: pattern type, pattern, and class (see [3,10] for further details).

A pattern type gives a formal description of the pattern structure of each of
its instances. It is characterized by six components: (i) the pattern name n; (ii)
the structure schema ss, which defines the structure of the patterns instances of
the pattern type; (iii) the source schema ds, which describes the dataset from
which patterns, instances of the pattern type being defined, are constructed;
(iv) the measure schema ms, which is a tuple describing the measures which
quantify the quality of the source data representation achieved by the pattern;
(v) the formula f, carrying the semantics of the pattern. f is a constraint-based
formula describing, possibly in an approximate way, the relation between data
represented by the pattern and the pattern structure; (vi) the wvalidity period
schema vs, defining the schema of the temporal validity interval associated with
each instance of the pattern type.

Patterns are instances of a specific pattern type, containing the proper in-
stantiation of the corresponding schema components in the pattern type. In
particular, the formula component of a pattern is obtained from the one in the
corresponding pattern type pt by instantiating each attribute appearing in ss
with the corresponding value, and letting the attributes appearing in ds range
over the source space.

We remark that the data source represents the overall dataset over which
the pattern has been extracted (in case of a-posteriori patterns). On the other
hand, the formula represents, in an intensional and possibly approximated way,
the specific subset of data represented by the pattern.

A class is a set of semantically related patterns and constitutes the key
concept in defining a pattern query language. A class is defined for a given
pattern type and contains only patterns of that type. A pattern may belong to
any number of classes. If it does not belong to any class, it cannot be queried.

In the context of the PANDA Project [10], some interesting relationships
supporting hierarchical pattern definition have also been proposed. Among them,
we recall: the composition relationship - between a pattern and those used to
define its structure - and the refinement relationship - between a pattern and
those belonging to its data source. PSYCHO supports the definition of complex
patterns based on refinement and composition hierarchy notions.

Based on the considered pattern model, PSYCHO provides three languages
for the management of both a-priori and a-posteriori patterns: (i) the Pattern
Definition Language (PSY-PDL), used for defining new pattern types, classes,
and mining functions, used for pattern generation; (ii) the Pattern Manipulation
Language (PSY-PML), used to perform operations such as insertion, extraction,
deletion, update, synchronization of patterns, as well as insertion or removal of
patterns into or from a class defined for the proper pattern type; (iii) the Pattern
Query Language (PSY-PQL), used to retrieve patterns and correlate them with
data they represent (cross-over queries). For all these languages, an SQL-like
syntax has been provided.

- Import/ Export

. A PML/PDL/PQL Requests ; _ External Layer

Y
PBMS Engine

Formula
Handler
PDL
Interpreter

Pattern Types,
Classes,
Mining Functions

Query Processor]

PML Middle Layer

Interpreter

4 Mining Functions;
Pattern Types,
Patterns,
Classes

P_WSicaI_Layer__
attern Data Source

80

Classes

PBMS

Fig. 1. The 3 layers architecture of PSYCHO

3 PSYCHO: the architecture

The PSYCHO [4] architecture relies on Oracle and Java technologies and it is
composed of three distinct layers as depicted in Fig.1: (i) the physical layer,
containing both patterns and data (possibly residing at different sites); (ii) the
middle layer, coinciding with the kernel of the system and supporting all func-
tionalities for pattern manipulation and retrieval; (iii) the external layer, corre-
sponding to a set of user interfaces from which the user can send requests to the
engine and import/export data in other formats. Due to design and implemen-
tation choices, the current version of PSYCHO is tightly coupled with Oracle
technology and, when possible, it allows the user to exploit the Oracle Data
Mining (ODM) server functionalities [9].

In the following, we describe each one of the PSYCHO layer (Sections 3.1,3.2,
and 3.3); then, in Section 3.4, we discuss the technology adopted for the com-
munication between layers.

3.1 Physical Layer

The Physical Layer contains both the Pattern Base and the Data Source.

The Pattern Base component contains pattern types, a-priori and a-posteriori
patterns, and classes. PSYCHO relies on the object-relational model of Oracle
10g [9] for pattern storage. Concerning the pattern formula, we consider two
distinct representations: an operational one, by which the formula is indeed a
predicate over data source elements implemented as an Oracle PL/SQL stored
function; a declarative one, by which the formula is just a representation of a
linear constraint formula (see the Formula Handler). Since the provided imple-
mentation of the Pattern Base exploits the Oracle logical model, the PSY-PML

and PSY-PQL interfaces are realized using PL/SQL functions and procedures
which are invoked by the Java application implementing the PBMS Engine.

The Data Source is a distributed repository containing raw data from which
patterns have been extracted (in case of a-posteriori patterns). Various tech-
nology can be used to store the source datasets: relational or object-relational
DBMSs, XML dataset, streams, etc. In the current PSYCHO version, raw data
are stored in Oracle 10g DBMS.

3.2 Middle Layer

The Middle Layer consists of the PBMS FEngine component, which supports
all functionalities for pattern manipulation and retrieval, by adequately using
the Pattern Base and Data Sources when required. The PBMS Engine and the
Pattern Base represent the core of the PSYCHO prototype. The PBMS Engine
has been implemented in Java and is logically divided into three main sub-
modules, each of which is dedicated to parse, interpret, and execute PSY-PQL,
PSY-PML, and PSY-PDL requests, respectively, that are sent to the physical
layer components. There is also a dedicated component to handle intensional
pattern-data mapping, i.e. the pattern formula component.

The PDL Interpreter takes as input, from the higher layer, a PSY-PDL re-
quest for a pattern type or class definition and translates it into calls to the right
functions and procedures defined in the Pattern Base.

The PML Interpreter takes as input a PSY-PML request and translates it
into calls to the right functions/procedures of the Pattern Base. Some manipu-
lation operations, such as, for instance, pattern extraction and synchronization,
require an interaction with the Data Source to get the data from which patterns
have to be generated. In the current release, pattern extraction is performed by
using either mining functions provided by ODM server (i.e., a variant of the A-
priori algorithm for association rules or the K-means or the proprietary O-cluster
algorithm for clusters) or other mining functions (possibly defined by the user)
stored in the PBMS. We outline that the Query Processor has to be invoked by
the PML Interpreter in case patterns have to be filtered (e.g. only patterns with
specific measures have to be generated, synchronized, deleted, or inserted in a
given class).

The Query Processor translates an input PSY-PQL query into calls to the
right functions and procedures defined in the Pattern Base. For non cross-over
queries, only the Pattern Base and, eventually, the Formula Handler are involved
in the query process. On the other side, to execute cross-over queries, the Data
Source may also be required. We point out that queries can also use formulas for
pattern comparison and selection. When formulas are used under the operational
semantics, the queries are executed directly by the Query Processor. On the other
hand, when they are used under the declarative semantics, the Formula Handler
module is required to execute the query. As already said, some query requests can
be generated by the PML Interpreter; in this case the Query Processor computes
the answer and sends it directly to the PML Interpreter.

The Formula Handler deals with the declarative management of formulas,
i.e., with constraints. It is used by the PSY-PML and PSY-PQL interpreters
when computations over formula constraints are required. Within PSYCHO,
the Formula Handler is implemented as a Java module, using the Jasper pack-
age [7] for interacting with SICStus Prolog environment [13]. Computations over
formulas concern comparisons (equivalence, containment) between the specific
sets of data from which patterns have been extracted and are implemented by
the Formula Handler through typical logical operations such as equivalence or
subsumption.

3.3 External Layer

The External Layer corresponds to a set of user interfaces from which the user
can send requests to the engine and import/export data in other formats. User
requests can be specified through a GUI, providing a visual environment (in the
current release, it is a simple shell), where the user can specify his/her request
using an SQL-like syntax. The Import/Export module supports the import and
the export in the PBMS of patterns already represented in standard formats
(e.g. PMML models [11]).

3.4 Communication between Layers

As already stated, the Pattern Base is integrated within the Oracle DBMS man-
aging the Data Source. The PBMS Engine is placed immediately above the Pat-
tern Base. It creates and manages the connection with the Oracle DBMS and
the calls to the stored functions and procedures defined in the Pattern Base. The
communication between the Pattern Base and the PBMS Engine is, therefore,
the classical communication between a Java application and a DBMS, through
a JDBC driver. On the other hand, the communication between the PSYCHO
Engine and the external layer is established using the mechanism of sockets.
In this way the whole system is more flexible and a completely distributed ar-
chitecture can be realized, where the different PSYCHO components - i.e., the
pattern base, the data sources, the PBMS engine, and the external modules -
can be placed on different hosts. In details, the PBMS Engine opens a socket on
a fixed port and waits for connections from the outside. Whenever an external
module needs to communicate with the engine, it makes a connection, creates
a serializable object that encapsulate the request, and sends it to the PBMS
Engine.

4 PSYCHO: usage

In the following, PSYCHO usage and its peculiarities in pattern management are
highlighted by considering a typical data mining scenario dealing with market-
basket association rules. Additional examples can be found at [12]. Association
rules are a well-known data mining pattern type, therefore they are managed

pid: 512
n: AssociationRule s: < head={'Boots'},
ss: TUPLE(head: SET(String), body={'Socks’, 'Hat'} >
body: SET(String)) d: 'SELECT SETOF(article) AS transaction
ds: BAG(transaction: SET(String)) FROM sales
ms: TUPLE(confidence: REAL, GROUP BY transactionld’
support: REAL) m: < confidence=0.75, support=0.55 >
f: Vz(z € head V x € body = £: {transaction : Vx(
x € transaction) x € {'Boots’,’Socks’, 'Hat'}
vs: [start : DAY, end : DAY) = x € transaction)}
& v: [1-DEC-2005,31-MAR-2006)

(b)

Fig. 2. Association Rules modeling: (a) the pattern type AssociationRule and (b) one
of its pattern instance.

by any commercial system dealing with data mining [9, 8]. However, PSYCHO
allows one to perform several operations that are not directly supported by other
existing tools.

We assume source data is stored in a table with schema (DSid, Itemy, ...,
Item,,), where each tuple represents a sale transaction identified by DSid; Item;
is either 1 or 0, and Item; = 1 means that the corresponding transaction con-
tains Item;. According to the PANDA model, the pattern type for modeling
association rules and one of its pattern instances are shown in Fig.2(a) and 2(b).

Besides the structure - i.e., head and body in the case of association rules -
and the measures - i.e., support and confidence in the case of association rules -
in PSYCHO each pattern type is associated with three additional components:
the extensional formula, the intensional formula, and the validity period. The
extensional formula is just a PL/SQL function that takes a source dataset and
returns the subset of such dataset (possibly approximatively) represented by the
pattern. The intensional formula has the same meaning, but it is intensionally
represented through a Prolog predicate, defined by a set of linear constraints.
Note that the two formulas used by PSYCHO (i.e., the extensional one and
the intensional one) implement the formula component of the underlying logical
model under an operational and a declarative perspective, respectively. The va-
lidity period is just a temporal interval inside which we assume the information
represented by the pattern is reliable. The PSY-PDL command to create the
pattern type AssociationRule is sketched in Fig.3(a).

In the following, we show a concrete example of PSYCHO usage by describing
typical steps of a data mining process concerning pattern generation and system
population, pattern analysis and querying, and pattern maintenance.

PBMS Population and Class Management In this step, we show how
PSYCHO can be used to: (i) use various mining functions to extract a-posteriori

CREATE PATTERN TYPE AssociationRule
STRUCTURE head CharArray, body CharArray /+ CharArray is an already
defined typex*/

MEASURE support REAL, confidence REAL

FORMULA EXTENSIONAL ON varDS ...

/* retrieve items in the source dataset effectively represented by a
pattern of type AssociationRulex/

FORMULA INTENSIONAL ARFormula_INT; /* ARFormula_INT is an existing
Prolog predicate */

(a)

CREATE PATTERN TYPE ClusterOfAR

STRUCTURE ruleset ARSET

/*ARSET is an already defined type modeling arrays of AssociationRule
references*/

MEASURE Svalidity REAL
FORMULA EXTENSIONAL ON varDS ...

/* retrieve items in the source dataset effectively represented by a
pattern of this typex*/

(b)

Fig. 3. (a) PSY-PDL definition of the pattern type AssociationRules and (b) PSY-
PDL definition of the pattern type ClusterOfAR.

patterns; (ii) directly insert a-priori patterns; (iii) create new patterns by recom-
puting existing ones; (iv) handle pattern classes.

Pattern extraction Given a pattern type, several mining functions can be
used to extract patterns of that type from a given dataset. For example,
to mine association rules, we can use a PSYCHO proprietary Java mining
function apriori implementing the well-known Apriori algorithm. [1]. We
may specify that the support of the extracted rules must be higher than 0.4
and the confidence higher than 0.7; the validity period of the extracted rules
is set from 01-jul-2005 to 10-aug-2005. Before extracting patterns, it may be
useful to create a class, called AR_PSY, where extracted patterns are stored
(if no class is used, patterns are stored in the system but they cannot be used
in queries) (see Fig. 4(a)). Moreover, it is also possible to mine association
rules by using different mining functions. For instance, other association rules
can be extracted by using the mining function Apriori_ODM calling the one
available in ODM [9] within a PSY-PML command similar to the previous
one.

Direct insertion Single association rules can also be directly inserted in PSY-
CHO by using the ‘DIRECT INSERT’ PSY-PML command (see Fig.4(b)).

DIRECT INSERT PATTERN

OF AssociationRule ar

FROM itemsDS_30

STRUCTURE (

chararray (’BREAD’ , ’MILK’),

chararray(’JAM’, >BUTTER’, *WINE’)

)

MEASURE (0.5,0.7)

VALID FROM ’01-aug-2005’
TO ’15-aug-2005’

INTO CLASS AR_PSY;

CREATE CLASS AR_PSY OF
AssociationRule;

EXTRACT PATTERNS OF

AssociationRule ar

FROM itemsDS_30

USING Apriori(0.4,0.7)

VALID FROM ’01-jul-2005’
TO ’10-aug-2005°

INTO CLASS AR_PSY;

(a))

CREATE CLASS AR_high_support

RECOMPUTE PATTERNS OF AssociationRule;
OF AssociationRule ar
ON itemsDS_5 INSERT INTO CLASS
USING AR._mf; AR high_support ar
(c) WHERE ar.m.support >= 0.5;

(d)

Fig. 4. Manipulation operations over AssociationRules: (a) Extraction of association
rules using the apriori mining function; (b) Direct insertion of association rules into
class AR_PSY’; (c) Recomputation of association rules over dataset itemsDS_5 by
using function AR_mf; (d) Definition and population of class AR_high_support.

Recomputation New patterns can also be generated by recomputing measures
of existing ones over a new data source. Various functions recomputing mea-
sure values for instances of a given pattern type, upon a given dataset can
be defined. For association rules, PSYCHO provides a measure function for
computing confidence and support over a given data source, named AR_mf.
Fig. 4(c) reports an example of pattern recomputation using this measure
function.

Class Management Suppose the user wants to define a class containing all as-
sociation rules having support greater than 0.5%. Such class, named
AR_high_support, can be created and association rules satisfying the previ-
ous condition can be inserted in it (see Fig.4(d)). The class can then be used
for query purposes.

Querying PSY-PQL supports the following querying features: (i) simple queries
involving predicates dealing with pattern components; (ii) pattern composition;
(ili) nested queries; (iv) pattern-data reasoning (cross-over queries). In the fol-
lowing, we discuss each class of queries.

Simple queries Simple queries allow one to select patterns from a given class,
according to a variety of predicates. In particular, PSYCHO supports selec-
tion based on two validity notions: temporal validity and semantic validity. A

pattern is temporally valid with respect to a certain date if its validity period
contains the specified date. A pattern is semantically valid with respect to a
certain dataset and a set of thresholds if the pattern measures computed over
the input datasets are better than those provided as input. Several examples
of queries checking temporal and semantic validity are shown in Table 1 (e.g.

Q2,Q4,Q7).

QID

Query

PSY-PQL statement

Retrieve all association rules from
AR_PSY with confidence greater
than or equal to 0.75

SELECT *
FROM AR_PSY ar
WHERE ar.m.confidence >= 0.75;

Retrieve all association rules that are
valid on July 20, 2005

SELECT *
FROM AR_PSY ar
WHERE isTvalid(ar,’20-jul-2005")=1;

Retrieve all association rules valid
during the period August,1 - Au-
gust,10 2005

SELECT *

FROM AR_PSY ar

WHERE during(ar.v,
valPeriod(’01-aug-2005’,’10-aug-2005"))=1;

Retrieve all semantically valid rules
(with respect to their data source),
with support and confidence greater
than or equal to 0.4

SELECT *

FROM AR_PSY ar

WHERE isSvalid(ar,ar.d,”AR_mf’,
AssociationRuleMeasure(null,0.4,0.4))=1;

Q5

Determine all association rules with
confidence greater or equal to 0.75
or which are temporally valid in Au-
gust,15 2005

SELECT *

FROM AR_PSY ar

WHERE ar.m.confidence >= 0.75
OR isTvalid(ar,’15-aug-2005")=1;

Q6

Determine all association rules, ob-
tained as the transitive closure of two
existing association rules, having at
least two items in the body

SELECT *

FROM AR_PSY arl CJOIN AR_PSY ar2
WITH Trans_closure_ar

WHERE ar2.s.body.count >= 2;

Select among rules with at least con-
fidence value equal to 0.7 the ones
which are temporally valid in 15-aug-
2005

SELECT *
FROM (SELECT *

FROM AR_PSY ar

WHERE ar.m.confidence >= 0.7) rule
WHERE isTvalid(rule,’15-aug-2005") = 1;

Qs

Which data are represented by asso-
ciation rules with confidence greater
than 0.757

DRILL THROUGH (
SELECT *
FROM AR_PSY ar
WHERE ar.m.confidence > 0.75) rule;

Q9

Determine whether the association
rule with PID=1001348 is suitable
for representing a certain dataset
itemsDS_30

DATA COVERING (

SELECT *

FROM AR_PSY pr

WHERE pr.PID = 1001348) ar
FOR itemsDS_30;

Q10

Determine which patterns, belong-
ing to class AR_PSY and having a
confidence higher than 0.8, represent
dataset itemsDS_30

PATTERN COVERING itemsDS_30
FOR AR_PSY ar
WHERE ar.m.confidence >= 0.8;

Table 1. Several PSY-PQL queries over class AR_PSY

Pattern composition Within PSYCHO, different types of joins are available.
In the actual release, two types of join are provided: a general one (CJOIN)
and a specific one (INTERSECTIONJOIN). The CJOIN takes two

classes and, for each pair of patterns, the first belonging to the first class, the
second belonging to the second one, it applies a specified composition func-
tion, specifying the structure of the resulting patterns. On the other hand,
the INTERSECTIONJOIN takes two classes and returns new patterns,
whose structure is a combination of the input structures and whose inten-
sional formula is the conjunction of input intensional formulas. For instance,
the user may be interested in calculating an association rule obtained as
the transitive closure of two existing association rules A « B and B «— C
extracted from data sources D, and Ds, respectively. The new association
rule A « C can be obtained by applying function T'rans_closure_ar, which
generates such a new rule by computing also a new data source, which is the
union of Dy and D5, and a new validity period, which is the intersection of
the validity periods of the two input rules. PSY-PDL supports the specifi-
cation of such composition function (see [12] for more details). Query Q6 in
Table 1 is an example of PSY-PQL CJOIN query.

Nested queries PSY-PQL queries can also be nested. In the current version,
nesting is provided in the FROM clause (see Q7 in Table 1).

Cross-over queries PSY-PQL supports pattern-data reasoning, i.e., it allows
the user to specify queries involving both data and patterns. Such kind of
queries are quite important in pattern management, since they allow the
user to discover interesting (possibly new) correlations between patterns and
data. Some examples of such queries are reported in Table 1 (Q8,Q9,Q10).

Advanced manipulation operations Differently from most existing systems
and standards, PSYCHO supports various types of update operations (see Ta-
ble 2): (i) synchronization, (ii) set validity, and (iii) validate.

Synchronization It allows the user to synchronize pattern measures with the
current data source, that may be changed with respect to its status at ex-
traction time, using a specific measure function. In order to perform this
operation a measure function defined for the pattern type of the patterns
you want to synchronize has to be used.

Validate Validating a pattern means synchronizing it, using a certain measure
function, if the new measures are better then the original ones, or recomput-
ing it, if this condition is not satisfied.

Set Validity Since PSYCHO supports a time validity associated with patterns,
a manipulation operation to update the validity period of a pattern is pro-
vided.

Pattern Hierarchies PSYCHO supports hierarchies of patterns, by imple-
menting refinement and composition relationships (see Section 2). Suppose we
are interested in clusters of association rules describing correlations among sold
products based on some grouping criteria (for instance, a simple clustering cri-
teria could just divide a set of association rules into two clusters based on their

semantic validity with respect to a certain dataset). By using PSY-PDL, a new
pattern type ClusterOfAR can be defined exploiting the refinement relation-
ship, i.e., classes of association rules previously created can be considered the
data source (see Fig.3(b)). As in the case of non-hierarchical patterns, PSYCHO
supports the manipulation and querying of hierarchical patterns.

Update Operation PSY-PML statement

UPDATE PATTERNS OF AssociationRule ar
Synchronize all association rules using|SYNCHRONIZE

measure function AR-mf USING AR_mf

WHERE INCLASS(ar,’AR_PSY’)=1;

UPDATE PATTERNS OF AssociationRule ar
VALIDATE USING AR._mf

WHERE inclass(ar, "AR_PSY’)=1

INTO CLASS AR_PSY;

Set the validity period of all association|UPDATE PATTERNS OF AssociationRule ar
rules starting at 10-jun-2005 and ending|SET VALIDITY FROM ’10-jun-2005" TO ’31-aug-2005’
at 31-aug-2005 WHERE INCLASS(ar,AR_PSY’)=1;

Table 2. PSY-PML update operations over class AR_PSY

Validate rules in class AR_PSY

5 Concluding remarks

In this paper, we have presented PSYCHO, a prototype system for pattern man-
agement developed on top of Oracle. After briefly presenting the underlying data
model and architecture, we have presented an example of PSYCHO usage, based
on a common market-basket scenario. The current PSYCHO version can be ex-
tended in several ways. For example, in the current PSYCHO release, the user
interacts with the system through a simple textual shell. As a future work, we
plan to extend PSYCHO with a user-friendly GUI. Another important issue un-
der investigation consists in defining an open-source version of PSYCHO, relying
on open-source technologies. To this purpose, we are currently investigating the
opportunity of using the WEKA library [14], a collection of machine learning
algorithms for data mining tasks written in Java, as part of the PSYCHO back-
end. Finally, we plan to investigate the relationships between our manipulation
operations and adaptive/incremental mining solutions, with the aim of designing
an incremental mining environment based on database solutions.

References

1. R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules in Large
Databases. In Proc. of VLDB’9/, 487-499, 1994.

2. E. Bertino, B. Catania, and A. Maddalena. Towards a Language for Pattern
Manipulation and Querying. In Proc. of PaRMa’04, 2004.

3. B. Catania, A. Maddalena, M. Mazza, E. Bertino, and S. Rizzi. A Framework for
Data Mining Pattern Management. In Proc. of PKDD’04, pp 87-98, 2004.

10.
11.

12.
13.
14.

B. Catania, A. Maddalena, and M. Mazza. PSYCHO: A Prototype System for
Pattern Management. In Proc. of VLDB’05, pp 13461349, 2005.

L.V.S. Lakshmanan S. Johnson and R.T. Ng. The 3W Model and Algebra for
Unified Data Mining. In Proc. of VLDB’01, pp 21-32, 2001.

The CINQ project. http://www.cing-project.org.

Jasper Java Interface. http://www.sics.se/sicstus/docs/latest/html/sicstus/
Jasper.html.

Java Data Mining API. http://www.jcp.org/jsr/detail/73.prt.

Oraclel0g Database. http://wuw.oracle.com/technology/ products/database/
oraclelOg/index.html.

The PANDA Project. http://dke.cti.gr/panda/, 2002.

Predictive Model Markup Language (PMML). http://www.dmg.org/
pmmlspecs_v2/pmml_v2_0.html.

PSYCHO Site. http://wuw.disi.unge.it/person/CataniaB/psycho/.

SICStus Prolog (v.3). http://www.sics.se/isl/sicstuswww/site/index.html.
WEKA site. http://www.cs.waikato.ac.nz/~ml/weka/index.html

