Configuring Intelligent Mediators using
Ontologies

Gennaro Bruno, Christine Collet, and Genoveva Vargas-Solar

LSR-IMAG Laboratory
681, rue de la passerelle
38402, St. Martin d’Heres
France
{Gennaro.Bruno, Christine.Collet, Genoveva.Vargas-Solar}@imag.fr
http://www-1lsr.imag.fr/

Abstract. This paper presents a new intelligent mediators configuration
approach which exploits high expressive description logics to represent
metadata, and reasoning tasks in order to build more flexible mediation
systems. A user specifies a needs expression in terms of (i) an interesting
view over a given application domain, (ii) sources preferences and (iii)
architectural requirements. A well-adapted mediator, is automatically
configured according to these needs through a reasoning-based configu-
ration process. A configured mediator can therefore be adapted in order
to build knowledge-based mediation systems with an arbitrary architec-
ture.

1 Context and Motivations

Mediation systems [1] were introduced to provide an integrated view over dis-
tributed and heterogeneous data sources for accessing them in a transparent
way. During these last years, their role has constantly evolved. Several media-
tion approaches, providing different modeling and implementing solutions, have
been proposed.

In order to provide query expression and metadata management with more
semantics, a particular kind of data integration approach, commonly called
knowledge-based mediation system, has been proposed. Differently from clas-
sical mediation systems, they use high expressive knowledge representation for-
malisms, i.e., description logics, as basis for data integration. This allows to have
a more precise semantic representation of application domains, and to improve
classical mediation tasks with inference capabilities.

This work focuses on knowledge-based mediation systems. For this reason,
we analyzed many existing approaches according to several aspects such as the
integration approach, data model and associated query language, and more par-
ticularly the mediation system architecture. According to this latter aspect,
knowledge-based mediation systems can be mainly divided into two main cate-
gories (cf. Figure 1):

— centralized mediation systems [2,3,5,7,8,6] are based on a domain ontology
acting as an integrated view over a set of distributed and heterogeneous
data sources. A user formulates a query over the domain ontology. Then the
query is rewritten into a set of local expressions over local sources, which
are consequently accessed in a transparent way. The mediator represents the
single access point to the system, and local sources are directly accessible
from it.

— distributed mediation systems [4,9] aim to integrate a very large number
of distributed data sources. This makes the construction of an integrated
view over them a very difficult task to achieve. Therefore, query processing
becomes a distributed task and the centralized mediator is replaced by a net
of cooperative components commonly called peers. Each peer provides a local
ontology modeling one or more underlying local sources. A user formulates a
query over a peer. If locally retrieved data does not fulfill user expectatives,
the query is forwarded to some neighbors peers' for execution in order to
retrieve mode data.

To our knowledge, no mediation system, being able to adapt to both applicative
contexts, exists today.

User: Q User: Q

Mediator Peer » Peer

== & - | crmms
Yy o
Wrapper ‘Wrapper‘ ...‘Wrapper‘

Fig. 1. Existing approaches.

This paper focuses on the intelligent mediator configuration process of
ADEMS? and on the role of mediators within a knowledge-based mediation sys-
tem. The architecture of ADEMS has been previously presented in [10], therefore,
the paper gives no details on the mediator internal architecture and on query
expression and processing.

ADEMS exploits the high expressive description logic SHZQ(D) [12] to rep-
resent metadata, and exploits reasoning tasks in order to automatically configure
well-adapted mediators. A user specifies a needs expression in terms of (i) the
interesting view over a given application domain, (ii) sources preferences and,
(iii) architectural requirements. ADEMS configures a well-adapted mediator ac-
cording to these needs, being able to adapt centralized as well as distributed

! Neighbor peers are those ones that a peer can directly access. Differently from cen-
tralized approach, not all resources are directly accessible from a peer (mediator).
2 ADEMS, an ADaptable and Extensible Mediation Service.

architectures. A configured mediator manages metadata as knowledge within a
set of ontologies, and exploits inference in order to semantically improve the
query processing task. Nevertheless, for a lack of space, this paper mainly fo-
cuses on the mediator configuration process, and on the role of mediators within
a knowledge-based mediation system. No details on the mediator internal archi-
tecture and functions are given.

The remainder of this document is organized as follows. Section 2 presents the
ADEMS approach. It describes the general architecture of a mediation system, its
components, i.e. a set of mediators and sources, and the way they interact. Then
it introduces the mediator configuration process. Section 3 illustrates the needs
expression structure and shows how its ontological representation allows to better
represent the semantics of metadata. Section 4 shows how a needs expression is
analyzed and a mediator is configured accordingly, by exploiting reasoning tasks.
Metadata involved in such a process is also illustrated. Section 5 discusses on
implementation issues and experimental validations. Finally, Section 6 concludes
the paper.

2 Approach

In our approach, a mediation system consists of a net of interconnected medi-
ators giving access to a set of heterogeneous and distributed local sources (cf.
Figure 2). Each mediator corresponds to a user access point to the mediation sys-
tem. No assumptions about the system topology are done. The system architec-
ture is not fixed a priori and it is adaptable to different applicative contexts/user
requirements.

User 1: Q Mediator 1

s G~ o
ig ‘ Ontologies ‘

Ontologies |

User X: Q \5 / User 2: Q
___________ " ¢

Mediator X

Mediator 2

 Ontologies

1

1

1
* Mediation ‘ Metadata 1\
‘ Onlologles ‘I\>

1

" Mediation ‘ Metadata
Onmloglss Ontologies ‘
o] [

Fig. 2. ADEMS mediation system.

For doing so, a mediator is modeled a general-purpose reusable mediation
component. It becomes a specific ad-hoc component through a configuration pro-
cess, whose goal is to adapt a mediator to a particular user needs definition. The

mediator configuration process consists of building a set of ontologies describing
the behavior of a mediator: a (i) mediation ontology represents a user-defined
view over a domain description and acts as a global schema (integrated or not)
over a set of underlying local resources (sources as well as other mediators),
and (ii) a set of metadata ontologies representing all necessary metadata about
available resources, the data they manage and the way to access them. There-
fore, from a user X point of view (cf. dashed box in the Figure 2), a mediation
system consists of a mediator X accessing a set of resources. A user formulates
a query over its mediation ontology and the query is evaluated over the media-
tor resources in a transparent way. The user perception of the whole mediation
system is limited to his/her own configured mediator, representing his/her ac-
cess point to data. We will show later in this paper how, according to the way
a mediator is configured, our approach allows to emulate both centralized and
distributed knowledge-based mediation systems, and to enable more complex
architectures.

Configuring a mediator in such a way is a difficult and tedious task for a hu-
man operator. For this reason, in order to help users with this task, we propose
the ADEMS mediator configuration service (cf. Figure 3). The service manages

|

|

1) instantiat . | .

) instantiation B y Service i 4 Q o contguraton Service

Metadata I ! Metadata
Mediator 2 == ﬂ wwugw | Mediator 2 / [B Reni
Ontologies | ; Ontologies.

! Mediatior MelRs |
| oma-"- W"J
|
| —

Mediator 1 | Mediator 1
|

Medaton | Wetadaa ! Modaton | Metadata

m) 1 :l::l;u omh:::ﬂ
|
|
VAR
|

‘ Wrapper 1 H Wrapper 2 ‘*{ Wrapper 3 }‘ ************ | { Wrapper 1 H Wrapper 2 }»7{ Wrapper 3 ‘ —————————————
|
|
|
a) b)

Fig. 3. The ADEMS approach.

all necessary metadata as knowledge within a set of ontologies. For each appli-
cation domain, the service manages (i) a domain ontology, modeling its entities
and acting as a shared vocabulary, e.g., bioinformatics, and (ii) a set of meta-
data ontologies representing all necessary metainformation to access available
local sources for a domain, e.g., mappings and sources capabilities. A user spec-
ifies a needs expression (cf. Fig 3-a) in terms of an interesting domain, and a
view over it, architectural and source requirements. The service analyzes the
user-defined needs expression and exploits reasoning tasks to extract pertinent
metadata to configure the mediator (cf. Fig 3-b): the mediation ontology is built
as a view over the selected domain ontology, and metadata ontologies as a subset
of metadata ontologies within the service.

3 Needs expression

A needs expression is modeled as a complex concept definition within the needs
expression ontology. This is the most important metadata ontology of the service
as it plays a key role during the whole mediator configuration process. This on-
tology is built around a main central concept Need, representing a whole needs
expression. The goal of this ontology is to exploit reasoning tasks to classify
needs expressions in order to deduce containment relations, and to exploit this
knowledge to discover when a mediator can exploit another mediator as a pos-
sible resource. For this reason, metadata in this ontology is manipulated at the
intensional level, i.e., classes. Each new needs expression is represented in this
ontology as a new subclass of Need. The satisfiability and subsumption verifica-
tions can then be exploited, to verify all needs expressions consistency and to
classify them.

A needs expression is composed of three main parts, that we call metadata
categories. Each category represents a set of metadata aspects. The concept Need
is defined as follows:

Need = JhasConceptSet.ConceptSet A
JhasArchitecture.Architecture A

JhasSourcePreference.SourcePreference

where the three main categories are: ConceptSet, representing the interesting
view the domain; SourcePreference and Architecture, specifying source preferences
and architectural requirements respectively.

Given a new needs expression, a new class, representing it, is defined as
follows:

Need_i = JhasConceptSet.ConceptSet_i A (1)
JhasArchitecture.Architecture_i A

JhasSourcePreference.SourcePreference_i

where, Need_i is deduced to be subclass of Need, and classes ConceptSet.i,
Architecture_i and SourcePreference_i represent values for each category. In the
remainder of this section, we present details on the three needs expression cate-
gories: ConceptSet, Architecture and SourcePreference.

3.1 ConceptSet

A user defines an interesting view over a domain by selecting a set of concepts
from the corresponding domain ontology. An algorithm (not shown here) ana-
lyzes selected concepts and generates a mediation ontology accordingly. In order
to classify needs, in our approach, a whole view over an application domain is
represented by a single concept definition called concept set. A concept set is
defined as follows:

ConceptSet.i=C; V... V C,
ConceptSet_i C ConceptSet

Clearly, this concept must be explicitely defined as a subclass of ConceptSet in
order to exploit reasoning capabilities. Given two concept sets ConceptSet_i and
ConceptSet_j defined as follows:

ConceptSet.i=C; V... VCyh_1 VCy
ConceptSet_j =C; V ... V Cpq

the subsumption relation ConceptSet_j = ConceptSet.i is interpreted as a con-
tainment relation between their corresponding views. This motivates the use of
a union of concepts to represent this aspect.

By default, when a domain concept, e.g., Person, is added to a concept set,
it is considered with all its associated attributes. However, it is possible to ex-
plicitely specify a view over a class in order to consider interesting attributes
only. For this purpose, our model provides a special property definition _without
to specify a restriction over an atomic concept. In order to conserve a meaning-
ful subsumption relation between concept sets, this property restriction models
attributes that are not taken into account in the view. Here is an example:

ConceptSet_i = C;
ConceptSet_j = C; A I_without.ATT1 A
... N\ _without. ATT,,

Subsumption verification allows to infer that ConceptSet_j is subclass of
ConceptSet._i. Clearly, the subsumption relation between concept sets reflects the
containment relation between their respective mediation ontologies.

More complex views may so be defined. Here is an example:

ConceptSet_1 = Person V Car V Job

ConceptSet_2 = Person Vv Car

ConceptSet_3 = (Person A J_without.Age) V Car

ConceptSet_4 = (Person A J_without.Age A
3_without.Gender) Vv Car

Reasoning tasks allow to deduce the following subsumption relation between
views:

ConceptSet_4 C ConceptSet_3 C ConceptSet_2 C ConceptSet_1

3.2 Architecture

Architectural aspects are modeled as follows:

Architecture = JhasImportDegree.ImportDegree A
JhasExportDegree.ExportDegree A
JhasMatDegree.MatDegree A
JhasIntDegree.IntDegree

where Architecture represents a category containing the four aspects ImportDegree,
ExportDegree, MatDegree and IntDegree.

ImportDegree : this dimension defines the possible strategies to adopt when ex-
ploiting other running mediators as resources. We refer to this feature as resource
import. Each strategy is enabled by one of the following values:

— ImportAll: the mediator may import any pertinent resource, independently
of its ownership. This value is modeled as an atomic class.

— ImportGroup: specifies the group of trusted users/owners from which me-
diators can be imported. Any specified group is modeled as a subclass of
ImportGroup.

— ImportNone: specifies that no mediator is imported. This value corresponds
to an atomic class definition.

According to the semantic of this aspect, in order to guarantee the contain-
ment relation between two needs, the following subsumption relations must be
stated:

ImportNone C ImportGroup C ImportAll (2)

In order for a mediator M; to be potentially imported by Ms, the group of
users specified by the M’s import degree must be contained by the one of M.
In other words, My cannot import M if M;’s import degree contains at least a
user which is not considered in Ms’s import degree, as this will violate the Mg
strategy.

These considerations motivate the use of union of classes to model a group
of trusted users in the import degree. Here is an example:

User_1 V User_2 C ImportGroup (3)
ImportNone T User_1 Vv User_2 (4)

Statement (3) specifies a new group composed by User_1 and User_2. This is done
by stating the union of classes as a subclass of ImportGroup class. Statement (4)
guarantees the containment relation between any group and the empty one.
Figure 4-a shows an example of import groups classification. In this example,
eight groups have been specified, and each of them corresponds to a different

a)

Fig. 4. Import and export degrees classification.

independently defined needs expression. Let us suppose that a user wants to
retrieve all resources which may be imported by a mediator configured according
the need Need_1. As Need_1 imports resources from users Jim, Jack and John, only
needs Need_3, Need_5, Need_6 and Need_7 can be normally be imported. Modeling
import groups as union of classes allows to retrieve importable resources for a
mediator by asking for synonyms and descendants of the class representing its
import degree value.

ExportDegree : this dimension specifies the reusability degree of a new defined
mediator in the context of future user needs expressions. We refer to this feature
as resource ezport. Three strategies are allowed and represented by the following
values:

— ExportNone: specifies that no further defined mediator can reuse this medi-
ator in the future. Its values correspond to an atomic class.

— ExportGroup: specifies the group of users that can reuse the mediator in future
configurations. Any specified group is modeled as subclass of ExportGroup.

— ExportAll: specifies that any further defined mediator can reuse this mediator
in the future. No user restriction are given.

In order to respect the needs containment according to this aspect, the fol-
lowing subsumption relations must be respected:

ExportAll £ ExportGroup C ExportNone (5)

In order for a mediator M; to be importable by Ms, the set of users specified
by the M;’s export degree must contain the one of My. In other words, Ms
cannot import M; and, at the same time, export itself to other user than the
ones allowed for My, because this will violate the M; strategy. Consequently,
M;’s export degree must be subclass of the Ms’s one, what justifies the use of a

conjuction of classes to represent the export degree value. A group is defined as
the conjuction of classes representing user names. Here is an example:

User_1 A User_2 C ExportGroup (6)
ExportAll C User_1 A User_2 (7)

Statement (6) specifies a new group composed by User_1l and User_2. This is
done by stating the conjunction of classes as a subclass of ExportGroup class.
Statement (7) guarantees the containment relation between any group and the
whole set of users.

Figure 4-b shows an example of export groups classification. In this example,
eight groups have been specified, and each of them corresponds to a different
independently defined needs expression. Let us suppose that a user wants to re-
trieve all resources which may be imported by a mediator configured according
the need Need_3. As Need_3 exports to users Jim and Jack, only needs Need_1
and Need 2 can be normally be imported. Similarly to the import degree as-
pect, modeling an export group as a conjunction of classes allows to retrieve
importable resources for a mediator by asking for synonyms and descendants of
the class representing its export degree value.

Notice that, differently from the ImportDegree, the ExportDegree must neces-
sarily contain the name of the user defining the need. This is motivated by the
fact that a user always exports to himself his own resources. However, a user
does not necessary import resources from himself.

MatDegree : this dimension specifies the materialization strategy to adopt within
a mediation system. This dimension may take the following two values, modeled
as atomic classes:

— Materialized: specifies that the materialization is allowed in all mediators
composing the mediation system. Retrieved data can be materialized at the
mediator level as well as into its imported resources. When data freshness is
not a priority, this allows for a faster data retrieval.

— NoMaterialized: specifies that no materialization is allowed. This corresponds
to a fully virtual approach and only non-materializing resources will be im-
ported.

In order to respect the needs containment, the following subsumption relation
is stated:
NoMaterialized C Materialized

stating that a materialized mediator can import materialized as well as non-
materialized resources, but not viceversa.

IntDegree : this dimension specifies the integration degree for the mediator,
which may essentially take two possible values:

— Integrated: specifies that the mediator provides the user with an integrated
global representation over underlying resources. This latter corresponds to
the mediation ontology which is built as a subgraph of the domain ontol-
ogy. A mediator configured in such a way can import integrated as well
as non-integrated resources. This strategy is typical adopted in approaches
providing a transparent access to underlying local sources, e.g. centralized
mediation systems.

— Non-integrated: specifies that the mediator provides the user with a non-
integrated global representation. The mediation ontology consists of a set
of local ontologies. This feature can be interesting for expert users, which
prefer to deal with local sources, or in highly distributed mediation systems,
where no integrated global representation is required. In this approach, only
non-integrated resources can be imported. This feature enables peer-to-peer
mediation systems.

In order to respect the need containment, the following subsumption relation is
stated:

Non-integrated C Integrated

stating that an integrated mediator can import non-integrated as well as inte-
grated resources, but not viceversa.

Given a new needs expression definition Need.i, a new class Architecture.i is
defined. Here is an example:

Architecture_i = JhasImportDegree.(Jim V Jack) A
JhasExportDegree.Jim N
JhasMatDegree . Materialized A
JhasIntDegree .Integrated

stating that the corresponding mediator imports previously defined mediators
from users Jim and Jack, but can be reused only by Jim. Materialization is
allowed and the mediator provides an integrated view over underlying resources.

3.3 Source Preference

Source preferences are modeled in the needs expression ontology as follows:

SourcePreference = JhasQuality.Quality A
JhasAvailability . Availability A
JhasCost.Cost

where Quality, Availability and Cost represent three metadata sub-categories.Notice
that these aspects are given for explanation purpose. We do not propose in this
paper a source annotation model. Our goal is to show how to apply ontologies
and reasoning tasks to model such kind of metadata and deduce knowledge about
it. Consequently, other pertinent aspects and categories could be used instead,
e.g. local source capabilities. In our approach this can be easily done by simply
modifying the needs ontology.

Quality : this metadata category specifies the required quality level for local
sources. The class Quality is defined as follows:

Quality = dsourceQuality.z N JdataQuality.z N

ddataFreshness.z

where sourceQuality, dataQuality and dataFreshness are integer attributes
modeling some possible quality criteria.

Availability : it describes the required availability level for pertinent local sources.
The class Availability is defined as follows:

AlwaysAvailable T Availability
TemporarilyAvailable = Availability A
dbegin_d.z A Jend_d.z N
Jbegin_h.z N Jend_h.z

A selected source may be always available or in a period only. In our example,

the period is specified by four integer attributes. begin_d and end_d represent
respectively the first day and the last day of the period. begin_h and end_h
represent the initial and final hour of service in the day. This simple source
availability model could be easily improved by specifying more complex class
definitions and/or constraints.

Cost : this class is used to represent the cost of accessing a data source. It is
defined as follows:

Cost = JfizedCost.z N JvariableCost.z N

JeconnectionSpeed. z

where the three attributes represent respectively fixed access cost, variable ac-
cess cost, e.g., euros per hour, and the connection speed for accessing the data
source.

When a new needs expression Need_i is defined, a new class SourcePreference_i
representing source preferences is specified. Here is an example:

SourcePreference_i = JhasQuality.(IsourceQuality. ming A

JdataQuality. ming A
ddataFreshness.maxs) A

JhasAvailability.(3begin_d.maxy A
Jdend_d.ming; A
Jbegin_h.maxg A
Jend_h.minzz) A

JhasCost.(IfixredCost.equalg A
JvariableCost.equalg A

JconnectionSpeed.min1g)

where the user requires the source quality to be at least 3, data quality to be

at least 1 and data freshness no more than 5 days. Sources must be available 24
hours a day, during the month of January. They must be accessible for free and
provide a connection speed which corresponds at least to 10Mbps.

4 Mediator configuration

Given a valid needs expression, represented within the needs ontology, a mediator
can be configured accordingly. Therefore, a needs expression is first analyzed in
order to identify pertinent metadata by exploiting reasoning tasks. Then the
corresponding set of ontologies, i.e., mediator configuration, is generated and
made available in a web repository for download. This allows a mediator to
access the repository in order to download its configuration at runtime. Thanks
to this approach, no mediator recompilation is needed, and the configuration
can be updated at any time.

The remainder of this section focuses on the three main configuration steps
which are: architecture identification, mediators importation, candidate source
selection. For a lack of space, no details on the mediator ontologies generation
are given.

4.1 Architecture identification

The first step of the mediator configuration consists of identifying the archi-
tecture of a mediation system. For doing so, firstly, the integration degree is
analyzed. According to its value, two main mediation system categories may be
identified:

— integrated mediation systems: the mediation ontology is built as a view over
the domain ontology. The domain ontology acts as a shared domain vocab-
ulary. Centralized knowledge-based mediation systems are included in this
category.

— non-integrated mediation systems: are characterized by a mediation ontology
consisting of a non-integrated view over a set of local sources ontologies.
It gives access to underlying sources by applying their local vocabulary.
Distributed knowledge-based mediation systems are in this category.

integrated

non-integrated

no import

@

User: Q

Mediator

==

Wrapper Wrapper | ... | Wrapper

@

User: Q

Mediator

| onns

‘Wrapper‘ ‘Wrapper‘ ‘Wrapper‘

import

@ User: O\‘ Meﬂd'\ator
o

P

@ uSir: Q

Peer Peer

A

Local

A

Mediator

=

N

Ontology

|

‘ Wrapper ‘ ‘ Wrapper ‘

‘ Wrapper ‘

~a
Wrapper

Wrapper | ... | Wrapper

Fig. 5. Integration and import degrees.

Secondly, the import degree aspect is analyzed. According to its value, com-
bined with the integration degree aspect, four main mediation systems architec-
tures can be identified (cf. Figure 5). If mediators importation is not enabled
(ImportNone), mediation systems are composed of only one mediator accessing
underlying local sources. When an integrated mediation ontology is defined (cf.
configuration 1 in the Figure), the resulting mediation system allows to emulate
a centralized architecture.If the mediation ontology consists of a non-integrated
view over local sources (cf. configuration 2), the mediation system represents a
kind of multidatabase system [13].

If mediators importation is enabled, the mediation system may be composed
of more than one mediator. When a configured mediator provides an integrated
mediation ontology (cf. configuration 3), it may import both integrated and
non-integrated mediators as resources. This allows to build more complex archi-
tecture such as hierachical mediation in [11]. However, when a non-integrated
mediation ontology is adopted, imported mediators act as neighbour peers into
a distributed mediation system (cf. configuration 4). This allows to emulate ex-
isting knowledge-based distributed mediation systems.

Thirdly, after having identified all resources of the new configured mediator,
the way the mediator accesses them is analyzed. Two possible methods may be
applied to access imported resources 3:

3 Remember that resources are local sources and imported mediators.

— rewriting is needed when a mediation ontology X and a resource ontology
Y (mediator or wrapper) adopt two different vocabularies. In this case a
query expressed over the mediation ontology X (or a part of it) is rewritten
according to the target vocabulary Y by exploiting inter-ontology semantic
correspondences.

— dispatching is applied when a mediation ontology X and a resource ontology
Y adopt the same vocabulary. In this case no rewriting is needed and a query
(or a part of it) can be dispatched to the underlying resource for execution.

Independently of the mediation system architecture, a configured mediator
is always characterized by:

— a mediation ontology (integrated or not), acting as a global schema, and
— a set of resources accessible by rewriting and/or dispatching.

Therefore, a mediator can easily be adapted to several mediation system archi-
tectures. Figure 6 gives some architecture examples (rewriting is represented by
a continous arrow, while dispatching by a dashed one). For instance, in a central-
ized mediation system, a mediator X is configured so that all of its resources (i)
correspond to wrapped sources and (ii) are accessed by rewriting. This is due to
the fact that local sources are described by their own ontologies, independently
of the mediator vocabulary. On the other hand, building a distributed mediation
system means to cope with both mediators and wrappers as resources. The medi-
ator (or peer) X accesses its underlying local sources by dispatching queries. This
is due to the fact that each mediator in the distributed mediation system applies
the local vocabulary to describe underlying data. Therefore, accessing other me-
diators requires a rewriting task through inter-ontology correspondences. More
complex architecture can be configured, e.g. hierachical architecture allows to
exploit previously defined mediators as resources by dispatching (partial) queries
to them.

Userx:Q ! H
Mediator 1 B Wrapper2 \L Mediator X !
|- !
Medaton Motadata 1
______________ ; Mediaon | Metadata | 1
x:q 1 H Oniologies omho-l I \ i
UserX:Q | NediatorX 1 | | =
' [Bpmpupyey !
H e L i
Modiajon | Metadata | 1 T 3 .
1 X
1| ontlogies ‘@ | Use'\OL Mediator X ! '/
'
---------- ' ' 1 Mediator 2 Mediator 1
ST G .
! ! Mediation Mediation
m——— 71- ------ Ontologies Ontologies Ontologies | Ontologies
/ \
, \ /\
» h]
‘ Wrapper 1 ‘ Wrapper 2 ‘ ‘ Wrapper 3 ‘ ‘ Wrapper 1 ‘ Wrapper 3 ‘ ‘ Wrapper 1 ‘ Wrapper 2 ‘ ‘ Wrapper 3 ‘
Centralized Distributed ...more, e.g., hierarchical

Fig. 6. Mediation system architectures.

4.2 Mediators importation

This task consists of identifying which running mediators can be imported as
resources by a new configured mediator. This task is performed by exploiting

the concepts classification in the needs ontology. Let the need N; be composed of
n aspects, whose values are represented by classes {D;1, ..., D;, }. Let a mediator
M; be configured according to the needs expression N;. Given two needs N; and
Ng, if:

— Vj—{1.n} D1; = Dgj, then it is deduced that Ny = Nj. This means that M
and My have equivalent characteristics and consequently M; can be reused
by M5 as a resource and viceversa.

— Vj={1.4n} Di; & Dgyj, then it is deduced that Ny T No. ADEMS interprets
such a relation as a needs containment, which means that a mediator My can
be reused by a mediator My as a pertinent resource.

In all other cases, N; and N5 cannot be classified, and therefore, nothing can be
stated.

Given a set of independently defined needs expressions, they are automat-
ically classified by exploiting reasoning tasks. Let us suppose that two needs
expression are defined as follows:

Need_1 = JhasConceptSet.ConceptSet_1 Need_2 = JhasConceptSet.ConceptSet_2
A JhasArchitecture.Architecture_1 A ThasArchitecture.Architecture_2
A JhasSourcePreference.SourcePref_1 A JhasSourcePreference.SourcePref_2
ConceptSet_1 = Person v Car VvV Job ConceptSet_2 = Person V Car
Architecture_1 = Architecture 2 =
JhaslmportDegree.(Jim V Jack) 3hasimportDegree.(Jim Vv Jack)
A JhasExportDegree.Jim A FhasExportDegree.Jim
A JhasMatDegree.FullMaterialized A JhasMatDegree.FullMaterialized
A ThasIntDegree.Centralized A FhasIntDegree.Centralized
SourcePref_1 = SourcePref 2 =
JhasQuality .(IsourceQuality . ming JhasQuality .(IsourceQuality. ming
A FdataQuality. ming A FdataQuality. ming
A JdataFreshness.maxs) A JdataFreshness.maxz)
A FhasAvailability . AlwaysAvailable A ThasAvailability . AlwaysAvailable
A JhasCost.(IfizedCost.maxio A JhasCost.(IfizedCost.equalg
A Jvariable Cost.equalg A JvariableCost.equalg
A JconnectionSpeed. mingg) A JconnectionSpeed. minyg)

Subsumption allows to deduce the following relations:

ConceptSet_2 C ConceptSet_1 (8)
Architecture_2 = Architecture_1 9)
SourcePref_2 C SourcePref_1 (10)

The subsumption relation (8) is evident and does not require more explana-
tion. Identical architectural choices (9) give as result an equivalence relation

between classes Architecture_2 and Architecture_1. This equivalence has no im-
pact on the needs classification. In (10) SourcePref 2 is deduced to be subclass
of SourcePref_1. This is due to the fact that all of its role restrictions are more
restrictive or as much as the ones of SourcePref 2. For instance, the data fresh-
ness for Need_2, i.e., data must not be older than 2 days, is more restrictive than
the Need_1 one, i.e. days must not be older than 5 years. Therefore the following
subsumption relation is deduced:

Need_2 C Need_1

Now, let us suppose that architectural requirements for both needs were
defined differently:

Architecture_1= Architecture 2 =
JhasimportDegree.(Jim) JhaslmportDegree.(Jim V Jack)
A JhasExportDegree.Jim A JhasExportDegree.Jim
A JhasMatDegree.FullMaterialized A JhasMatDegree.FullMaterialized
A FhasintDegree.Centralized A JhasIntDegree.Centralized

Given the fact that the mediator M; can import resources from Jim, but not
from Jack, the following subsumption relations are deduced:

ConceptSet_2 C ConceptSet_1
Architecture_2 T Architecture_1
SourcePref_2 C SourcePref_1

therefore, Need_2 and Need_1 cannot be classified and the mediator My will not
be deduced to be a potential resource for M.

A similar effect can be obtained if a disjointness relation between the two
needs can be inferred for at least one aspect. Let us suppose that source prefer-
ences for both needs were defined as follows:

SourcePref_1 = SourcePref 2 =
FhasQuality .(IsourceQuality. ming JhasQuality .(IsourceQuality. ming
A ddataQuality. ming A ddataQuality. ming
A JdataFreshness.maxs) A dataFreshness.maxz)
AJhasAvailability . AlwaysAvailable AJhasAvailability . AlwaysAvailable
AJhasCost.(3fizedCost.equals ATJhasCost.(IfizedCost.equalg
A JvariableCost.equalg A JvariableCost.equalg
A JconnectionSpeed. minio) A JconnectionSpeed. minio)

Due to their incompatible values for the aspect fizedcost, SourcePref 2 and
SourcePref_1 are deduced to be disjoint classes. Consequently Need_2 and Need_1
cannot be classified.

4.3 Candidate sources selection

A candidate source is a source that respects user-defined source preferences in
the needs expression, i.e., availability, quality and cost requirements, but it does
not necessarily fulfil the view definition, i.e. concept set. We refer as a pertinent
source, a candidate source which also respects the user-defined view definition.

Metadata about sources is modeled within the source metadata ontology,
whose structure is quite similar to the source preference category in the needs
expression ontology. Let us imagine that the source metadata ontology contains
the following two definitions:

Source_1 = Source 2 =
JhasQuality .(IsourceQuality.equals JhasQuality .(IsourceQuality.equaly
A JdataQuality.equalig A JdataQuality.equaly
A JdataFreshness.equaly) A JdataFreshness.equals)
AJhasAvailability . AlwaysAvailable AJdhasAvailability. AlwaysAvailable
NJhasCost.(FfizedCost.equals ATJhasCost.(Ifized Cost.equalg
A JvariableCost.equalg A JvariableCost.equalg
A JconnectionSpeed.equalys) A JconnectionSpeed.equalyo)
AJhasKeyword.Person AJhasKeyword.Car
AJhasKeyword.Car AJhasKeyword.Motorbike

The set of candidate sources, is retrieved by executing a reasoning-based
query over the source metadata ontology. This query is built by using knowledge
about user-defined source preferences in the needs expression.

In integrated mediation systems, candidate sources are firstly retrieved by
comparing the source preferences with metadata contained within the source
metadata ontology. This is done by defining a new class based on the user-
defined source preferences. Here is an example:

SourcePref_1 = JhasQuality.(FsourceQuality.ming A
ddataQuality.mini A
IdataFreshness.maxs) A

JhasAvailability.AlwaysAvailable A
JhasCost.(3fizedCost. maxs A
JvariableCost.equaly N

JeonnectionSpeed.mino)

The candidate sources are retrieved by asking for synonyms and descendants
of this class definition over the source metadata ontology. In our example, a
query based on the class SourcePref_1, retrieves the source Source_1 only. Once
candidate sources are discovered, pertinent ones are identified by exploiting the
concept set information and semantic correspondences. This task is performed
during the generation of the mediator configuration ontologies.

In non-integrated mediation systems, the pertinence of sources can be verified
during the candidate sources retrieval. This is made possible by the presence of

source annotations as a set of keywords. Let us illustrate this aspect with an
example:

SourcePref_1 = JhasQuality.(Isource Quality.ming A
JdataQuality. mini A
IdataFreshness.maxs) A

JhasAvailability . AlwaysAvailable A

JhasCost.(3fizedCost. maxys A
Jvariable Cost.equaly N
JeonnectionSpeed.mino)

JhasKeyword.(Person Vv House)

In this example, source preferences establish that the fixed cost must not ex-
ceed 15. This would make both sources Source_1 and Source 2 two valid candi-
date sources. In order to identify pertinent sources, the concept set information
is exploited to filter pertinent sources thanks to their keywords annotation. For
example, let us suppose that the specified concept set in the needs expression
corresponds to (Person v House). The query SourcePref_1 is modified in order
to take into account the concept set information as shown above. This allows to
deduce that the only pertinent source is Source_1 (Person C Person V House).
Clearly this requires a source annotation effort in terms of the domain ontol-
ogy vocabulary. Anyway, if the keywords information is not available for each
source description, or deduced sources do not satisfy the user expectatives, a
non-integrated mediation system requires the user to manually select pertinent
sources among candidate ones.

5 Implementation and validation

We have implemented prototypes of the service and of the general purpose medi-
ator. They have been implemented by using the Java platform and by exploiting
the RACER [14] inference engine. RACER allows for an efficient SHZQ(D) on-
tologies management, and permits importing their description in several emerg-
ing standard languages such as OWL* and DAML+OIL’. RACER allows us to
guarantee sound and complete reasoning tasks and provides highly optimized al-
gorithms for terminology classification and reasoning on concrete datatypes [15].

Our approach has been validated in the context of computer assisted instruc-
tion (CAI) through the configuration of an integrated mediation system named
SKIMA [16]. A graphical application, built on top of a configured mediator gives
a transparent access to distributed material, e.g. documents. The domain ontol-
ogy represents concepts and relations regarding the PI (programmed instruction)
context, e.g. course, learner, section, document, exercise. Sources are modeled via

4 W3C-OWL - http://www.w3.org/2004/OWL/
> DAML+OIL - http://www.daml.org/

a SHZQ(D) representation and integrate, via semantic correspondences, data
about students and teachers, available courses with associated material and ex-
ercises. Students work through the programmed material by themselves at their
own speed and after each step test their comprehension by answering questions.
We are currently conducting a validation experience in bioinformatics in the
context of the Mediagrid project[17]. Mediagrid provides an infrastructure for
giving a transparent access to biological sources. Using such an infrastructure,
biologists can correlate expression levels of a gene and observe their evolution
using data stored in a set of distributed data sources. Our goal is to exploit the
ADEMS service in order to configure knowledge-based mediators being:

— able to exploit the current Mediagrid query evaluation capabilities, and
— adaptable to biologists needs in terms of view of interests over a biological
domain ontology, architectural requirements and sources preferences.

6 Conclusions

This paper shows how to use ontologies for describing metadata and config-
uring mediators in an intelligent way. Given a user needs expression, ADEMS
configures a mediator by generating a set of ontologies describing its necessary
metadata. Reasoning tasks are also fully exploited for processing queries ex-
pressed in terms of the mediation ontology entities. Satisfiability and subsump-
tion checking allow for query consistency verification and containment. Moreover,
the knowlege-based query processing allows to enable approximative as well as
partial query plans generation.

Being our approach strongly based on reasoning tasks, performances of the
mediator configuration process are tightly related to the efficiency of the ex-
ploited reasoner. Currently, our approach allows fast metadata classification and
mediator configuration, thanks to our metadata model and the use of RACER
that provides efficient reasoning algorithms. More tests still have to be done in
the presence of a very large amount of metadata. Recent research works, aiming
to provide efficient reasoning algorithms on large ontologies, let us believe that
future advances of inference engines will enable large-scale knowledge manage-
ment. Future improvements in this research domain will validate our approach
on huge number of data sources providing important volumes of distributed data.

Acknowledgements

We thank Eng. Hector Manuel Perez Urbina for his careful reading. Eng. Perez
is the implementor of the SKIMA prototype, and he strongly participated in the
implementation of the first ADEMS service prototype.

References

1. Wiederhold, G.: Mediators in the architecture of future information systems. Com-
puter (1992) 25(3):38-49

2. Collet, C., Huhns, M., Shen, W.-M.: Resource integration using a large knowledge
base in carnot. Computer (1991) 24(12):55-62

3. Arens, Y., Knoblock, C.-A., Shen, W.-M.: Query reformulation for dynamic infor-
mation integration. Journal of Intelligent Information Systems - Special Issue on
Intelligent Information Integration, (1996) 6(2/3): 99-130

4. Mena, E., Kashyap, V., Sheth, A.-P., Illarramendi, A.: OBSERVER: An approach
for query processing in global information systems based on interoperation across
pre-existing ontologies. Conference on Cooperative Information Systems, (1996),
14-25

5. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Schema and
data integration methodology for DWQ. Technical Report DWQ-UNIROMA-004,
Dipartimento di Informatica Sistemistica, Universita‘ di Roma La Sapienza, (1998)

6. Goasdoué, F., Lattes, V., Rousset, M.-C.: The use of CARIN language and algo-
rithms for information integration: The PICSEL system. International Journal of
Cooperative Information Systems, (2000), 9(4):383 — 401

7. Baker, P.-G., Brass, A., Bechhofer, S., Goble, C., Paton, N., Stevens, R.: TAMBIS:
Transparent access to multiple bioinformatics information sources. Int. Conf. on
Intelligent Systems for Molecular Biology, (1998), 25-34

8. Peim, M., Franconi, E., Paton, N., Goble, C.: Query processing with description
logic ontologies over object-wrapped databases. In SSDBM ’02: Proceedings of the
14th International Conference on Scientific and Statistical Database Management,
(2002), 27-36

9. Adjiman, P., Chatalic, P., Goasdoue, F., Rousset, M.-C., Simon, L.: Somewhere in
the semantic web. Technical report, LRI, (2004)

10. Bruno, G., Vargas-Solar, G., Collet, C.: ADEMS, an adaptable and extensible
mediation framework: application to biological sources. Electronic Journal e-Gnosis
(2004)

11. Li, C., Yerneni, R., Vassalos, V., Garcia-Molina, H., Papakonstantinou, Y., Ullman,
J., Valiveti, M.: Capability based mediation in TSIMMIS, (1998), 564-566

12. Horrocks, 1., Sattler, U., Tobies, S.: Reasoning with individuals for the descrip-
tion logic shig. In CADE-17: Proceedings of the 17th International Conference on
Automated Deduction, (2000), 482-496

13. Litwin, W., Mark, L., Roussopoulos, N.: Interoperability of multiple autonomous
databases, (1990), 22(3):267-293

14. Haarslev, V., Méller, R.: Practical reasoning in racer with a concrete domain for
linear inequations. In Proceedings of the International Workshop on Description
Logics, (2002), 91-98

15. Haarslev, V., Mdller, R.: Description logic systems with concrete domains: Appli-
cations for the semantic web. In KRDB, (2003)

16. Perez-Urbina, H., Bruno, G., Vargas-Solar, G.: SKIMA: Semantic Knowledge and
Information Management. In Proceedings of the Encuentro Internacional de Com-
putacion, (2005)

17. Collet, C., et al.: Towards a mediation system framework for transparent access
to largely distributed sources. In Proceedings of the International Conference on
Semantics of a Networked World (sematics for Grid databases), (2004)

