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Abstract. For several reasons a database may not satisfy a given set
of integrity constraints (ICs), but most likely most of the information in
it is still consistent with those ICs; and could be retrieved when queries
are answered. Consistent answers to queries wrt a set of ICs have been
characterized as answers that can be obtained from every possible mini-
mally repaired consistent version of the original database. In this paper
we consider databases that contain null values and are also repaired, if
necessary, using null values. For this purpose, we propose first a pre-
cise semantics for IC satisfaction in a database with null values that is
compatible with the way null values are treated in commercial database
management systems. Next, a precise notion of repair is introduced that
privileges the introduction of null values when repairing foreign key con-
straints, in such a way that these new values do not create an infinite
cycle of new inconsistencies. Finally, we analyze how to specify this kind
of repairs of a database that contains null values using disjunctive logic
programs with stable model semantics.

1 Introduction

In databases, integrity constraints (ICs) capture the semantics of the application
domain, and help maintain the correspondence between this domain and the
database when updates are performed. However, there are several reasons for a
database to be or become inconsistent wrt a given set of ICs [6]; and sometimes
it could be difficult, impossible or undesirable to repair the database in order to
restore consistency [6]. This process might be too expensive; useful data might
be lost; it may not be clear how to restore the consistency, and sometimes even
impossible, e.g. in virtual data integration, where the access to the autonomous
data sources may be restricted [9].

In those situations, possibly most of the data is still consistent and can be
retrieved when queries are posed to the database. In [2], consistent data is char-
acterized as the data that is invariant under certain minimal forms of restoration
of consistency, i.e. as the data that is present in all minimally repaired and con-
sistent versions of the original instance, the so-called repairs. In particular, an
answer to a query is defined as consistent when it can be obtained as a standard
answer to the query from every possible repair.

More precisely, a repair of a database instanceD, as introduced in [2], is a new
instance of the same schema asD that satisfies the given ICs, and makes minimal
under set inclusion the symmetric set difference with the original instance, taken
both instances as sets of ground database atoms.

In [2, 13, 14, 17] algorithms and implementations for consistent query an-
swering (CQA) have been presented, i.e. for retrieving consistent answers from
inconsistent databases. All of them work only with the original, inconsistent



database, without restoring its consistency. That is, inconsistencies are solved at
query time. This is in correspondence with the idea that the above mentioned re-
pairs provide an auxiliary concept for defining the right semantics for consistent
query answers. However, those algorithms apply to restricted classes of queries
and constraints, basically those for which the intrinsic complexity of CQA is still
manageable [15].

In [3, 20, 5, 6] a different approach is taken: database repairs are specified
as the stable models of disjunctive logic programs, and in consequence consis-
tent query answering amounts to doing cautious or certain reasoning from logic
programs under the stable model semantics. In this way, it is possible to handle
any set of universal ICs and any first-order query, and even beyond that, e.g.
queries expressed in extensions of Datalog. It is important to realize that the
data complexity of query evaluation in disjunctive logic programs with stable
model semantics [16] matches the intrinsic data complexity of CQA [15], namely
both of them are ΠP

2 -complete.
All the previous work cited before did not consider the possible presence

of null values in the database, and even less their peculiar semantics. Using
null values to repair ICs was only slightly considered in [3, 5, 6]. This strategy
to deal with referential ICs seemed to be the right way to proceed given the
results presented in [11] that show that repairing cyclic sets of referential ICs by
introducing arbitrary values from the underlying database domain leads to the
undecidability of CQA.

In [10] the methodology presented in [5, 6], based on specifying repairs using
logic programs withe extra annotation constants, was systematically extended
in order to handle both; (a) databases containing null values, and (b) referential
integrity constraints (RICs) whose satisfaction is restored via introduction of
null values. According to the notion of IC satisfaction implicit in [10], those
introduced null values do not generate any new inconsistencies.

Here, we extend the approach and results in [10] in several ways. First, we
give a precise semantics for integrity constraint satisfaction in the presence of
null values that is both sensitive to the relevance of the occurrence of a null
value in a relation, and also compatible with the way null values are usually
treated in commercial database management systems (the one given in [10] was
much more restrictive). The introduced null values do not generate infinite repair
cycles through the same or other ICs, which requires a semantics for integrity
constraint satisfaction under null values that sanctions that tuples with null
values in attributes relevant for checking the IC do not generate any new in-
consistencies. A new notion of repair is given accordingly. With the new repair
semantics CQA becomes decidable for a quite general class of ICs that includes
universal constraints, referential ICs, NOT NULL-constraints, and foreign key
constraints, even the cyclic cases.

The logic programs that specify the repairs are modified wrt those given in
[10], in such a way that the expected one-to-one correspondence between the
stable models and repairs is recovered for acyclic sets of RICs. Finally, we study
classes of ICs for which the specification can be optimized and a lower complexity
for CQA can be obtained.

2 Preliminaries

We concentrate on relational databases, and we assume we have a fixed relational
schema Σ = (U ,R,B), where U is the possibly infinite database domain such
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that null ∈ U , R is a fixed set of database predicates, each of them with a
finite, ordered set of attributes, and B is a fixed set of built-in predicates, like
comparison predicates. R[i] denotes the attribute in position i of predicate R ∈
R. The schema determines a language L(Σ) of first-order predicate logic. A
database instance D compatible with Σ can be seen as a finite collection of
ground atoms of the form R(c1, ..., cn),1 where R is a predicate in R and c1, ..., cn
are constants in U . Built-in predicates have a fixed extension in every database
instance, not subject to changes. We need to define ICs because their syntax is
fundamental for what follows.

An integrity constraint is a sentence ψ ∈ L(Σ) of the form:

∀x̄(
m∧

i=1

Pi(x̄i) −→ ∃z̄(
n∨

j=1

Qj(ȳj , z̄j) ∨ ϕ)), (1)

where Pi, Qj ∈ R, x̄ =
⋃m
i=1 x̄i, z̄ =

⋃n
j=1 z̄j , ȳj ⊆ x̄, x̄ ∩ z̄ = ∅, z̄i ∩ z̄j = ∅

for i 	= j, and m ≥ 1. Formula ϕ is a disjunction of built-in atoms from B,
whose variables appear in the antecedent of the implication. We will assume
that there is a propositional atom false ∈ B that is always false in a database.
Domain constants other than null may appear instead of some of the variables
in a constraint of the form (1). When writing ICs, we will usually leave the prefix
of universal quantifiers implicit. A wide class of ICs can be accommodated in
this general syntactic class by appropriate renaming of variables if necessary.

A universal integrity constraint (UIC) has the form (1), but with z̄ = ∅, i.e.
without existentially quantified variables:

∀̄x̄(
m∧

i=1

Pi(x̄i) −→
n∨

j=1

Qj(ȳj) ∨ ϕ). (2)

A referential integrity constraint (RIC) is of the form (1), but with m = n = 1
and ϕ = ∅, i.e. of the form2: (here x̄′ ⊆ x̄ and P,Q ∈ R)

∀x̄ (P (x̄) −→ ∃ȳ Q(x̄′, ȳ)). (3)

Class (1) includes most ICs commonly found in database practice, e.g. a denial
constraint can be expressed as ∀̄x̄(∧m

i=1 Pi(x̄i) −→ false). Functional dependen-
cies can be expressed by several implications of the form (1), each of them with
a single equality in the consequent. Partial inclusion dependencies are RICs, and
full inclusion dependencies are universal constraints. We can also specify (single
row) check constraints that allow to express conditions on each row in a table,
so they can be formulated with one predicate in the antecedent of (1) and only
a formula ϕ in the consequent. For example, ∀xy(P (x, y) → y > 0) is a check
constraint.

In the following we will assume that we have a fixed finite set IC of ICs of
the form (1). Notice that sets of constraints of this form are always consistent
in the classical sense, because empty database always satisfy them.

Example 1. For R = {P,R, S} and B = {>,=, false}, the following are ICs: (a)
∀xyzw (P (x, y)∧R(y, z, w) → S(x)∨(z 	= 2∨w ≤ y)) (universal). (b)∀xy(P (x,
y) → ∃z R(x, y, z)) (referential). (c)∀x(S(x) → ∃yz(R(x, y) ∨R(x, y, z))). �

1 Also called database tuples. Finite sequences of constants in U are simply called
tuples.

2 To simplify the presentation, we are assuming the existential variables appear in the
last attributes of Q, but they may appear anywhere else in Q.
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Notice that defining ϕ in (1) as a disjunction of built-in atoms is not an im-
portant restriction, because an IC that has ϕ as a more complex formula can
be transformed into a set of constraints of the form (1). For example, the for-
mula ∀xy (P (x, y) → (x > y ∨ (x = 3 ∧ y = 8))) can be transformed into:
∀xy (P (x, y)→ (x > y ∨ x = 3)) and ∀xy (P (x, y)→ (x > y ∨ y = 8)).

The dependency graph G(IC ) [12] for a set of ICs IC of the form (1) is defined
as follows: Each database predicate P inR appearing in IC is a vertex, and there
is a directed edge (Pi, Pj) from Pi to Pj iff there exists a constraint ic ∈ IC such
that Pi appears in the antecedent of ic and Pj appears in the consequent of ic.

Example 2. For the set IC containing the UICs ic1 : S(x) → Q(x) and ic2 :
Q(x) → R(x), and the RIC ic3 : Q(x) → ∃yT (x, y), the following is the depen-
dency graph G(IC ):

S� Q�

R�

T�1� 3�

2�

the edges are labelled just for reference. Edges 1 and 2 correspond to the con-
straints ic1 and ic2, resp., and edge 3 to ic3. �

A connected component in a graph is a maximal subgraph such that for every
pair (A, B) of its vertices, there is a path from A to B or from B to A. For a
graph G, C(G) := {c | c is a connected component in G}; and V(G) is the set of
vertices of G.
Definition 1. Given a set IC of UICs and RICs, ICU denotes the set of UICs
in IC . The contracted dependency graph, GC(IC ), of IC is obtained from G(IC )
by replacing, for every c ∈ C(G(ICU )),3 the vertices in V(c) by a single vertex
and deleting all the edges associated to the elements of ICU . Finally, IC is said
to be RIC-acyclic if GC(IC ) has no cycles. �

Example 3. (example 2 cont.) The contracted dependency graph GC(IC ) is ob-
tained by replacing in G(IC ) the edges 1 and 2 and their end vertices by a vertex
labelled with {Q,R, S}.

Q�,R,S� T�3�

Since there are no loops in GC(IC ), IC is RIC-acylic. If we add a new UIC:
T (x, y)→ R(y) to IC , all the vertices belong to the same connected component.
G(IC ) and GC(IC ) are, respectively:

S� Q�

R�

T�1�

2�

3�

4� Q�,R,S�
T�

3�

Since there is a self-loop in GC(IC ), the new IC is not RIC-acylic. �

As expected, a set of UICs is always RIC-acyclic.
3 Notice that for every c ∈ C(G(ICU )), it holds c ∈ C(G(IC )).
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3 IC Satisfaction in Databases with Null Values

We deal with incomplete databases in the classic sense that some information
is represented using null values [21] (cf. also [19]). More recently, the notion of
incomplete database has been used in the context of virtual data integration
[23, 9], referring to data sources that contain a subset of the data of its kind in
the global system; and in inconsistent databases [11, 15], referring to the fact
that inconsistencies may have occurred due to missing information and then,
repairs are obtained through insertion of new tuples.

There is no agreement in the literature on the semantics of null values in
relational databases. There are several different proposals in the research litera-
ture [29, 4, 25, 28], in the SQL standard [31, 22], but also implicit semantics in
the different ways null values are handled in commercial database management
systems (DBMSs).

Not even within the SQL standard there is a homogenous and global se-
mantics of integrity constraint satisfaction in databases with null values; rather,
different definitions of satisfaction are given for each type of constraint. Actu-
ally, in the case of foreign key constraints, three different semantics are sug-
gested (simple-, partial- and full-match). Commercial DBMSs implement only
the simple-match semantics for foreign key constraints. Some criticisms to the
treatment of nulls in the SQL standard have been expressed by the database
community, c.f. [32].

One of the reasons why it is difficult to agree on a semantics is that a null
value can be interpreted as an unknown, inapplicable or even withheld value.
Different null constants can be used for each of these different interpretations
[27]. Also the use of more than one null value (of the same kind), i.e. labelled
nulls, has been suggested [30], but in this case every new null value uses a new
fresh constant; for which the unique names assumption does not apply. The
latter alternative allows to keep a relationship between null values in different
attributes or relations. However commercial DBMSs consider only one null value,
represented by a single constant, that can be given any of the interpretations
mentioned above.

In [10] a semantics for null values was adopted, according to which a tuple
with a null value in any of its attributes would not be the cause for any inconsis-
tencies. In other words, it would not be necessary to check tuples with null values
wrt possible violations of ICs (except for NOT NULL- constraints, of course).
This assumption is consistent in some cases with the practice of DBMSs, e.g.
in IBM DB2 UDB. Here we will propose a semantics that is less liberal in rela-
tion to the participation of null values in inconsistencies; a sort of compromise
solution considering the different alternatives available.
Example 4. For IC containing only ψ1 : P (x, y, z)→ R(y, z), the database D =
{P (a, b, null)} would be: (a) Consistent wrt the semantics in [10] because there
is a null value in the tuple (b) Consistent wrt the simple-match semantics of
SQL:2003 [22], because there is a null value in one of the attributes in the set
{P [2], P [3], R[1], R[2]} of attributes that are relevant to check the constraint. (c)
Inconsistent wrt the partial-match semantics in SQL:2003, because there is no
tuple in R with a value b in its first attribute. (d) Inconsistent wrt the full-match
semantics in SQL:2003, because there cannot be a null in an attribute that is
referencing a different table.

If we consider, instead of ψ1, the constraint ψ2 : P (x, y, z) → R(x, y), the
same database would be consistent only for the semantics in [10], because the
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other semantics consider only the null value in the attributes that are relevant
to check the constraint, and in this case there is no null value there. �

Even though there are different possible semantics, we would like to define and
concentrate in a null-value semantics that would allow us to integrate our re-
sults with commercial databases. This is why we would like to generalize in a
declarative and homogenous way the semantics defined in SQL:2003 [22] that
is implemented in commercial DBMSs like IBM DB2 UDB. For this reason we
consider only one kind of null value. We also want our null-value semantics to
be uniform for a wide class of ICs that goes beyond the type of constraints
supported by commercial DBMS.

Example 5. Consider a database with a table that stores courses with the pro-
fessor that taught it and the term, and a table that stores the experience of
each professor in each course with the number of times (s)he has taught the
course. We have a foreign key constraint based on the RIC ∀xyz(Course(x, y, z)
→ ∃w Exp(y, x, w)) together with the constraint expressing that table Exp
has {ID ,Code} as a key. We can be sure there are no null values in those two
attributes. Now consider the instance D:

Course Code ID Term
CS27 21 W04
CS18 34 null
CS50 null W05

Exp ID Code Times
21 CS27 3
34 CS18 null
45 CS32 2

In IBM DB2, this database is accepted as consistent. The null values in columns
Term and Times are not relevant to check the satisfaction of the constraints. In
order to check the constraint the only attributes that we need to pay attention
to are ID and Code. If null is in the one of these attributes in table Course, the
tuple is considered to be consistent, without checking table Exp. For example
Course(CS50,null,W05) has a null value in ID, therefore DB2 does not check if
there is a tuple in Exp that satisfies the constraint. It does not even check that
there exists a tuple in Exp with attribute Code=CS50.

This behavior for foreign key constraints is called simple-match in the SQL
standard, and is the one implemented in all commercial DBMS. The partial- and
full-match would not accept the database as consistent, because partial-match
would require Exp to have a tuple (any non-null value,CS50, any value); and
full-match would not allow a tuple with null in attributes ID or Code in table
Course.

If we try to insert tuple (CS41,18, null) into table Course, it would be rejected
by DB2. This is because the attributes ID and Code are relevant to check the
constraint and are different from null, but there is no tuple in Exp with ID=18
and Code=CS41. �

Example 6. Consider the single-row check constraint ∀ID ∀Name ∀Salary (Emp
(ID , Name, Salary) → Salary > 100) and the database D below. DB2 accepts

Emp ID Name Salary
32 null 1000
41 Paul null

this database instance as consistent.
Here, in order to check the satisfaction
of the constraint, we only need to verify

that the attribute Salary is bigger than 100; therefore the only attribute that
is relevant to check the constraint is Salary. DBMSs will accept as consistent
any state where the condition (the consequent) evaluates to true or unknown.
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The latter is the case here. Tuple ( 32, null, 50) could not be inserted because
Salary > 100 evaluates to false. Notice that the null values in attributes other
that Salary are not even considered in the verification of the satisfaction. �

When dealing with primary keys, DBMSs use a bag semantics instead of the set
semantics, that is, a table can have two copies of the same tuple. The following
example illustrates the issue.

Example 7. Since the SQL standard allows duplicate rows, i.e. uses the bag
semantics, it is possible to have the database D below. If this database had P [1]

P A B
a b
a b

as the primary key, then D would not
have been accepted as a consistent
state, i.e. the insertion of the second
tuple P (a, b) would have been rejected.

This is one of the cases in which the SQL standard deviates from the relational
model, where duplicates of a row are not considered. In a commercial DBMS a
primary key is checked by adding an index to the primary key and then ensuring
that there are no duplicates. Therefore if we try to check the primary key by
using the associated functional dependency P (x, y), P (x, z) → y = z we would
not have the same semantics since D satisfies the functional dependency in this
classical, first-order representation. �

With the type of first-order constraints that we are considering, we cannot en-
force a bag semantics, therefore we will assume that D is consistent.

In order to develop a null-value semantics that goes beyond the ICs supported
by DBMSs, we analyze other examples.

Example 8. Consider the UIC ∀xyzstuw(Person(x, y, z, w) ∧ Person(z, s, t, u)
→ u > w+15), and the database D below. This constraint can be considered

Person Name Dad Mom Age
Lee Rod Mary 27
Rod Joe Tess 55
Mary Adam Ann null

as a multi-row check constraint. If we
want to naturally extend the seman-
tics for single-row check constraints, D
would be consistent iff the condition

evaluates to true or unknown. In this case, D would be consistent because the
condition evaluates to unknown for u = null and w = 27. Here the relevant
attributes to check the IC are Name, Mom, Age. �

Example 9. Consider the UIC ∀xyz(Course(x, y, z)→ Employee(y, z)) and the
database D: Course Code Term ID

CS18 W04 34
Employee Term ID

W04 null
Since Term, ID is not a primary key of Employee, the constraint is not a foreign
key constraint, and therefore it is not supported by commercial DBMS. In con-
trast to foreign key constraints, now we can have a null value in the referenced
attributes. In order to extend the semantics used in commercial DBMS. to this
case, we refer to the literature. For example, in [25] the satisfaction of this type
of constraints is defined as follows: An IC ∀x̄ȳP (x̄)→ ∃z̄Q(ȳ, z̄) is satisfied if,
for every tuple t1 ∈ P , there exists a tuple t2 ∈ Q, such that t1 provides less or
equal information than t2, i.e. for every attribute, the value in t1 is the same as
in t2 or the value in t1 is null . In this example we have the opposite situation:
(W04,34) does not provide less or equal information than (W04,null). Therefore,
we consider the database to be inconsistent wrt the constraint. Note that the
only attributes that are relevant to check the constraint are Term and ID. �
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Examples 6, 5, 8 and 9 show that there are some attributes that are “relevant”
when the satisfaction of a constraint is checked against a database.

Definition 2. For t a term, i.e. a variable or a domain constant, let posR(ψ, t)
be the set of positions in predicate R ∈ R where t appears in ψ. The set A of
relevant attributes for an IC ψ of the form (1) is
A(ψ) = {R[i] | x is variable present at least twice in ψ, and i ∈ posR(ψ, x)} ∪

{R[i] | c is a constant in ψ and i ∈ posR(ψ, c)}. �

Remember that R[i] denotes a position (or the correspondent attribute) in re-
lation R. In short, the relevant attributes for a constraint are those involved in
joins, those appearing both in the antecedent and consequent of (1), and those
in ϕ.

Definition 3. For a set of attributes A and a predicate P ∈ R, we denote by
PA the predicate P restricted to the attributes in A. DA denotes the database
D with all its database atoms projected onto the attributes in A, i.e. DA =
{PA(ΠA(t̄)) | P (t̄) ∈ D}, where ΠA(t̄) is the projection on A of tuple t̄. DA
has the same underlying domain U as D. �

Example 10. Consider a UIC ψ : ∀xyz(P (x, y, z)→ R(x, y)) and D below.
P A B C

a b a
b c a

R A B
a 5
a 2

Since x and y appear twice in ψ, A(ψ)
= {P [1], R[1], P [2], R[2]}. The value in
z should not be relevant to check the

satisfaction of the constraint, because we only want to make sure that the values
in the first two attributes in P also appear in R. Then, checking this is equivalent
to checking if ∀xy(PA(ψ)(x, y)→ RA(ψ)(x, y)) is satisfied by DA(ψ). For a more
complex constraint, such as γ : ∀xyzw(P (x, y, z)∧R(z, w) → ∃vR(x, v)∨w > 3),
variable x is relevant to check the implication, z is needed to do the join, and w
is needed to check the comparison, therefore A(γ) = {P [1], R[1], P [3], R[2]}.
DA(ψ) : DA(γ) :

PA(ψ) A B
a b
b c

RA(ψ) A B
a 5
a 2

PA(γ) A C
a a
b a

RA(γ) A B
a 5
a 2

�

An important observation we can make from Examples 6, 5, 8 and 9 is that,
roughly speaking, a constraint is satisfied if any of the relevant attributes has
a null or the constraint is satisfied in the traditional way (i.e. first-order satis-
faction and null values treated as any other constant). We introduce a special
predicate IsNull(·), with IsNull(c) true iff c is null , instead of using the built-in
comparison atom c = null , because in traditional DBMS this equality would be
always evaluated as unknown (as observed in [29], the unique names assumption
does not apply to null values).
Definition 4. A constraint ψ as in (1) is satisfied in the database instance D,
denoted D |=N ψ iff DA(ψ) |= ψN , where ψN is

∀x̄(
m∧

i=1

P
A(ψ)
i (x̄i) → (

∨

vj∈A(ψ)∩x̄
IsNull(vj) ∨ ∃z̄(

n∨

j=1

Q
A(ψ)
j (ȳj , z̄j) ∨ ϕ))), (4)

where x̄ = ∪mi=1x̄i and z̄ = ∪nj=1z̄j . D
A(ψ) |= ψN refers to classical first-order

satisfaction where null is treated as any other constant in U . �
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We can see from Definition 4 that there are basically two cases for constraint
satisfaction: (a) If there is a null in any of the relevant attributes in the an-
tecedent, then the constraint is satisfied. (b) If no null values appear in them,
then the second disjunct in the consequent of formula (4) has to be checked, i.e,
the consequent of the original IC restricted to the relevant attributes. This can
be done as usual, treating nulls as any other constant.

Formula (4) is a direct translation of formula (1) that keeps the relevant
attributes. In particular, if the original constraint is universal, so is the trans-
formed version. Notice that the transformed constraint is domain independent,
and then its satisfaction can be checked by restriction to the active domain.

As mentioned before, the semantics for IC satisfaction introduced in [10]
considered that tuples with null never generated any inconsistencies, even when
the null value was not in a relevant attribute. For example, under the semantics
in [10], the instance {P (b,null)} would be consistent wrt the IC ∀xy(P (x, y)→
R(x)), but it is intuitively clear that there should be a tuple R(b). The new
semantics corrects this, and adjusts to the semantics implemented in commercial
DBMS.

Notice that in a database without null values, Definition 4 (so as the definition
in [10]) coincides with the traditional, first-order definition of IC satisfaction.

Example 11. Given the ICs: (a) ∀xyz(P (x, y, z) → R(x, y)), (b) ∀x(T (x) →
∃yzP (x, y, z)), the database instance D below is consistent.

P A B C
a d e
b null g

R D E
a d

T F
b

For (a), the variables x and y are relevant to check the constraint, therefore
A1 = {P [1], R[1], P [2], R[2]}; and for (b), the variable x is relevant to check the
constraint; therefore A2 = {P [1], T [1]}.
DA1 : DA2 :

PA1 A B
a d
b null

RA1 D E
a d

PA2 A
a
b

TA2 F
b

To check if D |=
N
∀xyz(P (x, y, z) → R(x, y)), we need to check if DA1 |=

∀xy(PA1(x, y) → (IsNull(x) ∨ IsNull(y) ∨ RA1(x, y))) For x = a and y = d,
DA1 |= PA1(a, d), but none of them is a null value, i.e. IsNull(a) and IsNull(d)
are both false, therefore we need to check if DA1 |= RA1(a, d). For x = b and
y = null , DA1 |= PA1(b,null), and since DA1 |= IsNull(null), the constraint is
satisfied. The same analysis can be done to prove that D satisfies constraint (b),
this is by checking DA2 |= ∀x(TA2(x)→ (IsNull(x) ∨PA2(x)))

If we add tuple P (f, d,null) toD, it would become inconsistent wrt constraint
(a), because DA1 	|= (PA1(f, d)→ (IsNull(f) ∨ IsNull(d) ∨RA1(f, d))). �

Example 12. Consider the IC ψ: ∀xywz ((P1(x, y, w)∧P2(y, z))→ ∃u Q(x, z, u))
and the database D:

P1 A B C
a b c
d null c
b e null

null b b

P2 D E
b a
e c
d null

null b

Q F G H
a a c
b null c
b c d

null c a
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Variables x, y and z are relevant to check the constraint, therefore the set of rele-
vant attributes is A(ψ) = {P1[1], P1[2], P2[1], P2[2], Q[1], Q[2]}. Then we need to
check if DA(ψ) |= ∀xyz ((PA(ψ)

1 (x, y) ∧ PA(ψ)
2 (y, z)) → (IsNull(x)∨ IsNull(y)∨

IsNull(z) ∨QA(ψ)(x, z)), where DA(ψ) is

P
A(ψ)
1 A B

a b
d null
b e

null b

P
A(ψ)
2 D E

b a
e c
d null

null b

QA(ψ) F G
a a
b null
b c

null c

When checking the satisfaction of DA(ψ) |= ψN , null is treated as any other
constant. For example for x = d, y = null and z = b, the antecedent of the rule
is satisfied since PA(ψ)

1 (d,null) ∈ DA and PA(ψ)
2 (null , b) ∈ DA. If null had been

treated as a special constant, with no unique names assumption applied to it,
the antecedent would have been false. For these values the consequence is also
satisfied, because IsNull(null) is true. In this example, DA(ψ) |= ψN , and the
database satisfies the constraint. �

Notice that in order for formula (4) to have z̄ 	= ∅, i.e. existential quantifiers,
there must exist an atom Qj(ȳj , z̄j) in the corresponding IC of the form (1), such
that z̄j has a repeated variable. This is because that is the only case in which a
constraint can have (A(ψ) � x̄) 	= ∅.
Example 13. Given ψ : ∀x(P (x, y)→ ∃zQ(x, z, z)) and D = {P (a, b), P (null , c),
Q(a,null ,null)}, A(ψ) = {P [1], Q[1], Q[2], Q[3]}. D satisfies ψ iff DA |= ψN ,
with DA(ψ) = {PA(a), PA(null), QA(a,null ,null)} and ψN : ∀x(PA(ψ)(x) →
(IsNull(x) ∨ ∃zQA(ψ)(x, z, z))). The constraint is satisfied, because for x = a it
is satisfied given that there exists the satisfying value null for z; and for x = null
the constraint is satisfied given that IsNull(null) is true. �

The predicate IsNull also allows us to specify NOT NULL-constraints, which
are common in commercial DBMS, and prevent certain attributes from taking a
null value. As discussed before, this constraint is different from having x 	= null.

Definition 5. A NOT NULL-constraint (NNC) is a denial constraint of the
form ∀̄x̄(P (x̄) ∧ IsNull(xi)→ false), (5)

where xi ∈ x̄ is in the position of the attribute that cannot take null values. For
a NNC ψ, we define D |=

N
ψ iff D |= ψ in the classical sense, treating null as

any other constant. �

Notice that a NNC is not of the form (1), because it contains the constant null .
This is why we give a separate definitions for them. By adding NNCs we are able
to represent all the constraints of commercial DBMS, i.e. primary keys, foreign
key constraints, check constraints and NOT NULL-constraints.

Our semantics is a natural extension of the semantics used in commercial
DBMSs. Note that: (a) In a DBMS there will never be a join between a null
and another value (null or not). (b) Any check constraint with comparison,
e.g <,>,=, will never create an inconsistency when comparing a null value with
any other value. These two features justify our decision in Definition 4 to include
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the attributes in the joins and the elements in ϕ among the attributes that are
checked to be null with IsNull, because if there is a null in them an inconsistency
will never arise.

Our semantics of IC satisfaction with null values allows us to integrate our
results in a compatible way with current commercial implementations; in the
sense that the database repairs we will introduce later on would be accepted as
consistent by current commercial implementations (for the classes of constraints
that can be defined and maintained by them).

4 Repairs of Incomplete Databases

Given a database instance D, possibly with null values, that is inconsistent, i.e.
D does not satisfy a given set IC of ICs of the kind defined in Section 3 or
NNCs. A repair of D will be a new instance with the same schema as D that
satisfies IC and minimally differs from D.

More formally, for database instances D,D′ over the same schema, the dis-
tance between them was defined in [2] by means of the symmetric difference
∆(D,D′) = (D � D′) ∪ (D′

� D). Correspondingly, a repair of D wrt IC was
defined as an instance D′ that satisfies IC and minimizes ∆(D,D′) under set
inclusion. Finally, a tuple t̄ was defined as a consistent answer to a query Q(x̄)
in D wrt IC if t̄ is an answer to Q(x̄) from every repair of D wrt IC . The defini-
tion of repair given in [2] implicitly ignored the possible presence of null values.
Similarly, in [3, 5, 11], that followed the repair semantics in [2], no null values
were used in repairs.

Example 14. Consider the database D below and the RIC: Course(ID ,Code)→
Course ID Code

21 C15
34 C18

Student ID Name
21 Ann
45 Paul

∃Name Student(ID ,Name). D is in-
consistent, because there is no tuple in
Student for tuple Course(34,C18) in

Course. The database can be minimally repaired by deleting the inconsistent
tuple or by inserting a new tuple into table Student. In the latter case, since the
value for attribute Name is unknown, we should consider repairs with all the
possible values in the domain. Therefore, for the repair semantics introduced in
[2], the repairs are of the two following forms

Course ID Code
21 C15

Student ID Name
21 Ann
45 Paul

Course ID Code
21 C15
34 C18

Student ID Name
21 Ann
45 Paul
34 µ

for all the possible values of µ in the domain, obtaining a possibly infinite number
of repairs. �

The problem of deciding if a tuple is a consistent answer to a query wrt to a set
of universal and referential ICs is undecidable for this repair semantics [11].

An alternative approach is to consider that, in a way, the value µ in Example
14 is an unknown value, and therefore, instead of making it take all the values in
the domain, we could use it as a null value. We will pursue this idea, which re-
quires to modify the notion of repair accordingly. It will turn out that consistent
query answering will become decidable for universal and referential constraints.

Example 15. (example 14 cont.) By using null values, there will be two repairs:

11



Repair 1: Repair 2:
Course ID Code

21 C15
Student ID Name

21 Ann
45 Paul

Course ID Code
21 C15
34 C18

Student ID Name
21 Ann
45 Paul
34 null

Here null tells us that there is a tuple with 34 in the first attribute, but unknown
value in the second. �

Now we define in precise terms the notion of repair of a database with null values.

Definition 6. [6] LetD,D′, D′′ be database instances over the same schema and
domain U . It holdsD′ ≤D D′′ iff: (a) For every database atom P (ā) ∈ ∆(D,D′),
with ā ∈ (U � {null}),4 it holds P (ā) ∈ ∆(D,D′′); and (b) For every atom
Q(ā,null)5 ∈ ∆(D,D′), with ā ∈ (U � {null}), there exists a b̄ ∈ U such that
Q(ā, b̄) ∈ ∆(D,D′′) and Q(ā, b̄) 	∈ ∆(D,D′). �

Definition 7. Given a database instance D and a set IC of ICs of the form (1)
and NNCs, a repair of D wrt IC is a database instance D′ over the same schema,
such that D′ |=N IC and D′ is ≤D-minimal in the class of database instances
that satisfy IC wrt |=

N
, and share the schema with D, i.e. there is no database

D′′ in this class with D′′ <D D′, where D′′ <D D′ means D′′ ≤D D′ but not
D′ ≤D D′′. The set of repairs of D wrt IC is denoted with Rep(D, IC ). �

In the absence of null , this definition of repair coincides with the one in [2].

Example 16. The database instance D = {Q(a, b), P (a, c)} is inconsistent wrt
the ICs ψ1 : (P (x, y) → ∃zQ(x, z)) and ψ2 : (Q(x, y) → y 	= b).6 because
D 	|=

N
ψ2. The database has two repairs wrt {ψ1, ψ2}, namely D1 = {}, with

∆(D,D1) = {Q(a, b), P (a, c)}, andD2 = {P (a, b), Q(a,null))}, with∆(D,D2) =
{Q(a, b), Q(a,null)}. Notice that D2 	≤D D1 because Q(a,null) ∈ ∆(D,D2) and
there is no constant d ∈ U such thatQ(a, d) ∈ ∆(D,D1) andQ(a, d) 	∈ ∆(D,D2).
Similarly, D1 	≤D D2, because P (a, c) ∈ ∆(D,D1) and P (a, c) 	∈ ∆(D,D1). �

Example 17. If the database instance is {P (a,null), P (b, c), R(a, b)} and IC con-
sists only of (P (x, y)→ ∃z R(x, z)), then there are two repairs:D1 = {P (a,null),
P (b, c), R(a, b), R(b,null)}, with∆(D,D1) = {R(b,null)}, andD2 = {P (a,null),
R(a, b)}, with∆(D,D2) = {P (b, c)}. Notice, for example, thatD3 = {P (a,null),
P (b, c), R(a, b), R(b, d)}, for any d ∈ U different from null , is not a repair: Since
∆(D,D3) = {R(b, d)}, we have D2 <D D3 and, therefore D3 is not ≤D-minimal.
�

Example 18. Consider the UIC ∀xy(P (x, y) → T (x)) and the RIC ∀x(T (x) →
∃yP (y, x)), and the inconsistent database D = {P (a, b), P (null , a), T (c)}. In this
case, we have a RIC-cyclic set of ICs. The four repairs are
4 That ā ∈ (U � {null}) means that each of the elements in tuple ā belongs to (U �

{null}).
5 null is a tuple of null values, that, to simplify the presentation, are placed in the

last attributes of Q, but could be anywhere else in Q.
6 The second IC is non-generic [7] in the sense that it implies some ground database

literals. Non generic ICs have in general been left aside in the literature on CQA.
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i Di ∆(D,Di)
1 {P (a, b), P (null , a), T (c), P (null , c), T (a)} {T (a), P (null , c)}
2 {P (a, b), P (null , a), T (a)} {T (a), T (c)}
3 {P (null , a), T (c), P (null , c)} {P (a, b), P (null , c)}
4 {P (null , a)} {P (a, b), T (c)}

Notice that, for example, the additional instance D5 = {P (a, b), P (null , a), T (c),
P (c, a), T (c)}, with ∆(D,D5) = {T (a), P (c, a)}, satisfies IC , but is not a repair
because D1 <D D5. �

The previous example shows that we obtain a finite number of repairs (with
finite extension). If we repaired the database by using the non-null constants
in the infinite domain with the repair semantics of [2], we would obtain an
infinite number of repairs and infinitely many of them with infinite extension,
as considered in [11].

Example 19. Consider a schema with relations R(X,Y ), with primary key R[1],
and a table S(U, V ), with S[2] a foreign key to table R. The ICs are ∀xyz (R(x, y)
∧R(x, z)→ y = z) and ∀uv (S(u, v)→ ∃y R(v, y)), plus the NNC ∀xy(R(x, y)∧
IsNull(x)→ false). Since the original database satisfies the NNC and there is no
constraint with an existential quantifier over R[1], the NNC will not be violated
while trying to solve other inconsistencies. We would have a non-conflicting in-
teraction of RICs and NNCs. Here D = {R(a, b), R(a, c), S(e, f), S(null , a)} is
inconsistent and its repairs are D1 = {R(a, b), S(e, f), S(null , a), R(f,null)},
D2 = {R(a, c), S(e, f), S(null , a), R(f,null)}, D3 = {R(a, b), S(null , a)} and
D4 = {R(a, c), S(null , a)}. �

If a given database D is consistent wrt a set of ICs, then there is only one repair,
that coincides with D. The following example shows what can happen if we
have a conflicting interaction of a RIC containing an existential quantifier over
a variable with an additional NNC that prevents that variable from taking null
values.

Example 20. Consider the database D = {P (a), P (b), Q(b, c)}, the RIC ∀x (P (x)
→ ∃y Q(x, y)), and the NNC ∀xy(Q(x, y) ∧ IsNull(y) → false) over an exis-
tentially quantified attribute in the RIC. We cannot repair as expected using
null values. Actually, the repairs are {P (b), Q(b, c)}, corresponding to a tuple
deletion, but also those of the form {P (a), P (b), Q(b, c), Q(a, µ)}, for every
µ ∈ (U � {null}), that are obtained by tuple insertions. We thus recover the
repair semantics of [2]. �

With an appropriate conflicting interaction of RICs and NNCs we could recover
in our setting the situation where infinitely many repairs and infinitely many
with finite extension appear (c.f. remark after Example 18). Our repair semantics
above could be modified in order to repair only through tuple deletions in this
case, when null values cannot be used due to the presence of conflicting NNCs.
This could be done as follows: If Rep(D, IC ) is the class of repairs according to
Definitions 6 and 7, the alternative class of repairs, Repd(D, IC ), that prefers
tuple deletions over insertions with arbitrary non-null elements of the domain
due to the presence of conflicting NNCs, can be defined by Repd(D, IC ) :=
{D ′ | D′ ∈ Rep(D, IC ) and there is no D′′ ∈ Rep(D, IC ′) with D′′ <D D′},
where IC ′ is IC without the (conflicting) NNCs.
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Since the semantics introduced Definitions 6 and 7 is easier to deal with, and
in order to avoid repairs like those in Example 20, we will make the following

Assumption: Our sets IC , consisting of ICs of the form (1) and NNCs, are non-
conflicting, in the sense that there is no NNC on an attribute that is existentially
quantified in an IC of the form (1).

In this way, we will always be able to repair RICs by tuple deletions or tuple
insertions with null values. Notice that every set of ICs consisting of primary key
constraints (with the keys set to be non-null), foreign key constraints, and check
constraints satisfies this condition. Also note that if there are non conflicting
NNCs, the original semantics and the one based on Repd-repairs coincide. The
repair programs introduced in Section 5 compute specify the Repd-repairs, so
our assumption is also relevant from the computational point of view.

It is possible to prove that under our repair semantics there will always exists
a repair for a database D wrt a set of non-conflicting ICs. This follows from the
fact that a database instance with no tuples always satisfies the ICs. Further-
more, the set of repairs is finite and each of them is finite in extension (i.e. each
database relation is finite). This can be proved establishing first by contradiction
that the repairs are restricted to have constants in adom(D)∪const(IC )∪{null},
where adom(D) is the active domain of the original instance D and const(IC ) is
the set of constants that appear in the ICs. Since the constants that can appear
in the repairs are finite there is a finite set of candidates to repairs, and each of
them is finite.

Proposition 1. Given a database D and a set IC of non-conflicting ICs: (a)
For every repair D′ ∈ Rep(D , IC ), adom(D′) ⊆ adom(D)∪const(IC )∪{null}.
(b) The set Rep(D , IC ) of repairs is non-empty and finite; and every D ′ ∈
Rep(D, IC ) is finite.7 �

Theorem 1. The problem of determining if a database D′ is a repair of D wrt
a set IC consisting of ICs of the form (1) and NNCs8 is coNP-complete. �

Definition 8. [2] Given a database D , a set of ICs IC , and a query Q(x̄), a
ground tuple t̄ is a consistent answer to Q wrt IC in D iff for every D ′ ∈
Rep(D , IC ), D′ |= Q[t̄]. If Q is a sentence (boolean query), then yes is a con-
sistent answer iff D ′ |= Q for every D ′ ∈ Rep(D, IC ). Otherwise, the consistent
answer is no. �

In this formulation of CQA we are using a notion D′ |= Q[t̄] of satisfaction of
queries in a database with null values. At this stage, we are not committing to
any particular semantics for query answering in this kind of databases. In the
rest of the paper, we will assume that we have such a notion, say |=q

N , that can
be applied to queries in databases with null values. Some proposals can be found
in the literature [22, 26, 34]. In principle, |=q

N may be orthogonal to the notion
|=N for satisfaction of ICs. However, in the extended version of this paper we will
present a semantics for query answering that is compatible with the one for IC
satisfaction. For the moment we are going to assume that |=q

N can be computed
in polynomial time in data for safe first-order queries, and that it coincides
7 For proofs of all results go to www.scs.carleton.ca/∼lbravo/IIDBdemos.pdf
8 In this case we do not need the assumption of non-conflicting ICs
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with the classical first-order semantics for queries and databases without null
values. We will also assume in the following that queries are safe [33], a sufficient
syntactic condition for domain independence.
The decision problem of consistent query answering is

CQA(Q, IC ) = {(D, t̄) | t̄ is a consistent answer to Q(x̄) wrt IC in D}.
Since we have Q and IC as parameters of the problem, we are interested in the
data complexity of this problem, i.e. in terms of the size of the database [1]. It
turns out that CQA for FOL queries is decidable, in contrast to what happens
with the classic repair semantics [2], as established in [11].

Theorem 2. Consistent query answering for first-order queries wrt to non-
conflicting sets of ICs of the form (1) and NNCs is decidable. �

The ideas behind the proof are as follows: (a) There is a finite number of database
instances that are candidates to be repair given that the use only the active
domain of the original instance, null and the constants in the ICs. (b) The
satisfaction of ICs in the candidates can de decided by restriction to the active
domain given that the ICs are domain independent. (c) Checking if D1 ≤D D2

can be effectively decided. (d) The answers to safe first-order queries can be
effectively computed.

The following proposition can be obtained by using a similar result [15] and
the fact that our tuple deletion based repairs are exactly those considered in
[15], and every repair in our sense that is not one of those contains at least one
tuple insertion.
Theorem 3. Consistent query answering for first-order queries and non-conflict-
ing sets of ICs of the form (1) or NNCs is Πp

2 -complete. �

In the proof of this theorem NNCs are not needed for hardness. Actually, hard-
ness can be obtained with boolean queries.

5 Repair Logic Programs
The stable models semantics was introduced in [18] to give a semantics to dis-
junctive logic programs that are non-stratified, i.e. that contain recursive defini-
tions that contain weak negation. By now it is the standard semantics for such
programs. Under this semantics, a program may have several stable models; and
what is true of the program is what is true in all its stable models (a cautious
semantics).

Repairs of relational databases can be specified as stable models of disjunctive
logic programs. In [6, 10, 12] such programs were presented, but they were based
on classic IC satisfaction, that differs from the one introduced in Section 3.

The repair programs we will present now implement the repair semantics
introduced in Section 3 for a set of RIC-acyclic constraints. The repair programs
use annotation constants with the intended, informal semantics shown in the
table below. The annotations are used in an extra attribute introduced in each
database predicate; so for a predicate P ∈ R, the new version of it, P , contains
an extra attribute.

Annotation Atom The tuple P (ā) is...
ta P (ā, ta) advised to be made true
fa P (ā, fa) advised to be made false
t� P (ā, t�) true or becomes true
t�� P (ā, t��) it is true in the repair
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In the repair program, null is treated as any other constant in U , and therefore
the IsNull(x) atom can be replaced by x = null .

Definition 9. Given a database instance D , a set IC of UICs, RICs and NNCs,
the repair program Π(D , IC ) contains the following rules:
1. Facts: P (ā) for each atom P (ā) ∈ D .
2. For every UIC ψ of form (2), the rules:Wn

i=1 Pi (x̄i, fa) ∨Wm
j=1 Qj (ȳj , ta) ← Vn

i=1 Pi (x̄i, t
�),

V
Qj ∈Q′ Qj (ȳj , fa),

V
Qk∈Q′′ not Qk(ȳk),

V
xl∈A(ψ)∩x̄ xl �= null , ϕ̄.

for every setQ′ andQ′′ of atoms appearing in formula (2) such thatQ′∪Q′′ =⋃m
j=1Qj(ȳj) and Q′ ∩ Q′′ = ∅.9 Here A(ψ) is the set of relevant attributes

for ψ, x̄ =
⋃n
i=1 xi and ϕ̄ is a conjunction of built-ins that is equivalent to

the negation of ϕ.
3. For every RIC of form (3), the rules:

P (x̄, fa) ∨Q (x̄′,null , ta)← P (x̄, t�), not aux (x̄′), x̄′ �= null .
And for every yi ∈ ȳ:
aux (x̄′)← Q (x̄′, ȳ, t�), not Q (x̄′, ȳ, fa), x̄′ �= null , yi �= null .

4. For every NNC of the form (5), the rule:
P (x̄, fa)← P (x̄, t�), xi = null .

5. For each predicate P ∈ R, the annotation rules:
P (x̄, t�)← P (x̄). P (x̄, t�)← P (x̄, ta).

6. For every predicate P ∈ R, the interpretation rule:
P (x̄, t��) ← P (x̄, t�), not P (x̄, fa).

7. For every predicate P ∈ R, the program denial constraint:
← P (x̄, ta), P (x̄, fa). �

Facts in 1. are the elements of the database. Rules 2., 3. and 4. capture, in the
right-hand side, the violation of ICs of the forms (2), (3), and (5), resp., and,
with the left-hand side, the intended way of restoring consistency. The set of
predicates Q′ and Q′′ are used to check that in all the possible combinations,
the consequent of a UIC is not being satisfied. Since the satisfaction of UICs and
RICs needs to be checked only if none of the relevant attributes of the antecedent
are null , we use x 	= null in rule 2. and in the first two rules in 3. (as usual,
x̄′ 	= null means the conjunction of the atoms xj 	= null for xj ∈ x̄′). Notice that
rules 3. are implicitly based on the fact that the relevant attributes for a RIC
of the form (3) are A = {x | x ∈ x̄′}. Rules 5. capture the atoms that are part
of the inconsistent database or that become true in the repair process; and rules
6. those that become true in the repairs. Rule 7. enforces, by discarding models,
that no atom can be made both true and false in a repair.

Example 21. (example 19 cont.) The repair program Π(D , IC ) is the following:
1. R(a, b). R(a, c). S(e, f). S(null , a).
2. R (x, y, fa) ∨R (x, z, fa) ← R (x, y, t�), R (x, z, t�), y �= z, x �= null .
3. S (u, x, fa) ∨R (x,null , ta)← S (u, x, t�),not aux(x), x �= null .

aux(x)← R (x, y, t�), not R (x, y, fa), x �= null , y �= null .
5. R (x, y, t�)← R (x, y, ta). R (x, y, t�)← R(x, y). (similarly for S)
6. R (x, y, t��)← R (x, y, ta).

9 We are assuming in this definition that the rules are a direct translation of the
original ICs introduced in Section 2; in particular, the same variables are used and
the standardization conditions about their occurrences are respected in the program.
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R (x, y, t��)← R(x, y), not R (x, y, fa). (similarly for S)
7. ← R (x, y, ta), R (x, y, fa). ← S (x̄, ta), S (x̄, fa).

Only rules 2. and 3. depend on the ICs: rules 2. for the UIC, and 3. for the RIC.
They say how to repair the inconsistencies. In rule 2., Q′ = Q′′ = ∅, because
there is no database predicate in the consequent of the UIC. There is no rule 4.,
because there is no NNC. �

Example 22. Consider D = {P (a, b), P (c,null)} and the non-conflicting set of
ICs: {∀P (x, y)→ R(x) ∨ S(y),P (x, y) ∧ IsNull(y)→ false}. Then Π(D , IC ) :
1. P (a, b). P (c, null).
2. P (x, y, fa)∨R (x, ta)∨S (y, ta)← P (x, y, t�), R (x, fa), S (y, fa), x �= null , y �= null .

P (x, y, fa)∨R (x, ta)∨S (y, ta)← P (x, y, t�), R (x, fa), not S(y), x �= null , y �= null .
P (x, y, fa)∨R (x, ta)∨S (y, ta)← P (x, y, t�), not R(y), S (x, fa), x �= null , y �= null .
P(x, y, fa)∨R (x, ta)∨S(y, ta)← P(x, y, t�), not R(y), not S(y), x �= null , y �= null .

4. P (x, y, fa)← P (x, y, t�), y = null .
5. P (x, y, t�)← P (x, y, ta). P (x, y, t�)← P (x, y). (similarly for R and S)
6. P (x, y, t��)← P (x, y, ta).

P (x, y, t��)← P (x, y), not P (x, y, fa). (similarly for R and S)
7. ← P (x, y, ta), P (x, y, fa). (similarly for R and S)
The rules in 2. are constructed by choosing all the possible sets Q′ and Q′′ such
that Q′∪Q′′ = {R(x), S(y)} and Q′∩Q′′ = ∅. The first rule in 2. corresponds to
Q′ = {R(x), S(y)} and Q′′ = ∅, the second for Q′ = {R(x)} and Q′′ = {S(y)},
the third for Q′ = {S(y)} and Q′′ = {R(x)}, and the fourth for Q′ = ∅ and
Q′′ = {R(x), S(y)} �

The repair program can be run by a logic programming system that computes
the stable models semantics, e.g. DLV system [24]. The repairs can be obtained
by collecting the atoms annotated with t�� in the stable models of the program.
Definition 10. Let M be a stable model of program Π(D , IC ). The database
instance associated withM is DM = {P (ā) | P ∈ R and P (ā, t��) ∈M}. �

Example 23. (example 21 continued) The program has four stable models (the
facts of the program are omitted for simplicity):
M1 = {R (a, b, t�), R (a, c, t�), S (e, f, t�), S (null , a, t�), aux(a), S (e, f, t��),

S (null , a, t��), R (f,null , ta), R (a, b, t��), R (a, c, fa), R (f,null , t�),

R (f,null , t��) },
M2 = {R (a, b, t�), R (a, c, t�), S (e, f, t�), S (null , a, t�), aux(a), S (e, f, t��),

S (null , a, t��), R (f,null , ta), R (a, b, fa), R (a, c, t��), R (f,null , t�),

R (f,null , t��) },
M3 = {R (a, b, t�), R (a, c, t�), S (e, f, t�), S (null , a, t�), aux(a), S (e, f, fa),

S (null , a, t��), R (a, b, t��), R (a, c, fa)},
M4 = {R (a, b, t�), R (a, c, t�), S (e, f, t�), S (null , a, t�), aux(a), S (e, f, fa),

S (null , a, t��), R (a, b, fa), R (a, c, t��)}.
The databases associated to the models select the underlined atoms: D1 =
{S(e, f), S(null , a), R(a, b), R(f,null)}, D2 = {S(e, f), S(null , a), R(a, c), R(f,
null)} D3 = {S(null , a), R(a, b)} and D4 = {S(null , a), R(a, c)}. As expected
these are the repairs obtained in Example 19. �

Theorem 4. Let IC be a RIC-acylic set of UICs, RICs and NNCs. If M is
a stable model of Π(D , IC ), then DM is a repair of D with respect to IC .
Furthermore, the repairs obtained in this way are all the repairs of D. �
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6 Head-Cycle-Free Programs

In some cases, the repair programs introduced in Section 5 can be transformed
into equivalent non-disjunctive programs. This is the case when they become
head-cycle-free [8]. Query evaluation from such programs has lower computa-
tional complexity than general disjunctive programs, actually the data complex-
ity is reduced from ΠP

2 -complete to coNP -complete [8, 16]. We briefly recall
their definition.

The dependency graph of a ground disjunctive program Π is the directed
graph that has ground atoms as vertices, and an edge from atom A to atom B
iff there is a rule with A (positive) in the body and B (positive) in the head. Π
is head-cycle free (HCF) iff its dependency graph does not contain any directed
cycles passing through two atoms in the head of the same rule. A disjunctive
program Π is HCF if its ground version is HCF.

A HCF program Π can be transformed into a non-disjunctive normal pro-
gram sh(Π) that has the same stable models. It is obtained by replacing every
disjunctive rule of the form

∨n
i=1 Pi(x̄i) ←

∧m
j=1Qj(ȳj), ϕ. by the n rules

Pi(x̄i)←
∧m
j=1Qj(ȳj), ϕ,

∧
k �=i not Pk(x̄k)., for i = 1, ..., n.

For certain classes of queries and ICs, consistent query answering has a data
complexity lower than ΠP

2 , a sharp lower bound as seen in Theorem 3 (c.f. also
[15]). In those cases, it is natural to consider this kind of transformations of the
disjunctive repair program. In the rest of this section we will consider sets IC of
integrity constraints formed by UICs, RICs and NNCs.
Definition 11. A predicate P is bilateral with respect to IC if it belongs to
the antecedent of a constraint ic1 ∈ IC and to the consequent of a constraint
ic2 ∈ IC , where ic1 and ic2 are not necessarily different. �

Example 24. If IC = {∀x (T (x)→ ∃ y R(x, y), ∀xy (S(x, y)→ T (x))}, the only
bilateral predicate is T . �

Theorem 5. For a set IC of UICs, RICs and NNCs, if for every ic ∈ IC , it holds
that (a) ic has no bilateral predicates; or (b) ic has exactly one occurrence of a
bilateral predicate (without repetitions), then the program Π(D , IC ) is HCF. �

For example, if in IC we have the constraint P (x, y) → P (y, x), then P is a
bilateral predicate, and the condition in the theorem is not satisfied. Actually, the
programΠ(D, IC ) is not HCF. If we have instead P (x, a)→ P (x, b), even though
the condition is not satisfied, the program is HCF. Therefore, the condition is
sufficient, but not necessary for the program to be HCF.

This theorem can be immediately applied to useful classes of ICs, like denial
constraints, because they do not have any bilateral literals, and in consequence,
the repair program is HCF.
Corollary 1. If IC contains only constraints of the form ∀̄(∧n

i=1Pi(t̄i) → ϕ),
where Pi(t̄i) is a database atom and ϕ is a formula containing built-in predicates
only, then Π(D, IC) is HCF. �

As a consequence of this corollary we obtain, for first-order queries and this
class of ICs, that CQA belongs to coNP , because a query program (that is non-
disjunctive) together with the repair program is still HCF. For this class of con-
straints, with the classical tuple-deletion based semantics, this problem becomes
coNP -complete [15]. Actually, CQA for this class with our tuple-deletion/null-
value based semantics is still coNP -complete, because the same reduction found
in [15] can be used in our case.
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7 Conclusions

We have introduced a new repair semantics that considers, systematically and
for the first time, the possible occurrence of null values in a database in the
form we find them present and treated in current commercial implementations.
Null values of the same kind are also used to restore the consistency of the
database. The new semantics applies to a wide class of ICs, including cyclic sets
of referential ICs.

We established the decidability of CQA under this semantics, and a tight
lower and upper bound was presented. The repairs under this semantics can be
specified as stable models of a disjunctive logic program with a stable model
semantics for acyclic foreign key constraints, universal ICs and NOT NULL-
constraints, covering all the usual ICs found in database practice.

In an extended version of this paper we will provide: (a) An extension of
our semantics of IC satisfaction in databases with null values that can also be
applied to query answering in the same kind of databases. (b) A more detailed
analysis of the way null-values are propagated in a controlled manner, in such
a way that no infinite loops are created. (c) Construction of repairs based on a
sequence of “local” repairs for the individual ICs.
Acknowledgments: Research supported by NSERC, CITO/IBM-CAS Stu-
dent Internship Program. L. Bertossi is Faculty Fellow of IBM Center for Ad-
vanced Studies (Toronto Lab.).
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