
Efficient Integrity Checking over XML Documents

Daniele Braga1, Alessandro Campi1, and Davide Martinenghi2

1 Politecnico di Milano – Dip. di Elettronica e Informazione
p.zza L. da Vinci 32, 20133 Milano, Italy
{braga,campi}@elet.polimi.it

2 Free University of Bozen/Bolzano – Faculty of Computer Science
p.zza Domenicani, 3, 39100 Bolzano, Italy

martinenghi@inf.unibz.it

Abstract. The need for incremental constraint maintenance within collections of
semi-structured documents has been ever increasing in the last years due to the
widespread diffusion of XML. This problem is addressed here by adapting to the
XML data model some constraint verification techniques known in the context
of deductive databases. Our approach allows the declarative specification of con-
straints as well as their optimization w.r.t. given update patterns. Such optimized
constraints are automatically translated into equivalent XQuery expressions in
order to avoid illegal updates. This automatic process guarantees an efficient in-
tegrity checking that combines the advantages of declarativity with incremental-
ity and early detection of inconsistencies.

1 Introduction

It is well-known that expressing, verifying and automatically enforcing data correctness
is a difficult task as well as a pressing need in any data management context. In this re-
spect, XML is no exception; moreover, there is no standard means of specifying generic
constraints over large XML document collections. XML Schema offers a rich set of pre-
defined constraints, such as structural, domain and cardinality constraints. However, it
lacks full extensibility, as it is not possible to express general integrity requirements in
the same way as SQL assertions, typically used to specify business rules at the applica-
tion level in a declarative way. A large body of research, starting from [21], gave rise
to a number of methods for incremental integrity checking within the framework of de-
ductive databases and w.r.t. the relational data model. Indeed, a brute force approach to
integrity checking, i.e., verifying the whole database each time data are updated, is un-
feasible. This paper addresses this problem in the context of semi-structured data, and
namely XML, in order to tackle the difficulties inherent in its hierarchical data model.
A suitable formalism for the declarative specification of integrity constraints over XML
data is therefore required in order to apply optimization techniques similar to those
developed for the relational world. More specifically, we adopt for this purpose a for-
malism called XPathLog, a logical language inspired by Datalog and defined in [18].
In our approach, the tree structure of XPathLog constraints is mapped to a relational
representation (in Datalog) which lends itself well to the above mentioned optimization
techniques. The optimization only needs to take place once, at schema design time: it

2 D. Braga, et al.

takes as input a set of constraints and an update pattern and, using the hypothesis that
the database is always consistent prior to the update, it produces as output a set of opti-
mized constraints, which are as instantiated as possible. These optimized constraints are
finally translated into XQuery expressions that can be matched against the XML docu-
ment so as to check that the update does not introduce any violation of the constraints.
At runtime, the optimized checks are performed instead of the full ones, whenever the
updates are recognized as matching the patterns used in the simplification.

In particular, the constraint simplification method we adopt generates optimized
constraints that can be tested before the execution of an update (and without simulating
the updated state), so that inconsistent database states are completely avoided.

2 Constraint verification

Semantic information in databases is typically represented in the form of integrity con-
straints, which are properties that must always be satisfied for the data to be considered
consistent. In this respect, database management systems should provide means to auto-
matically verify, in an efficient way, that database updates do not introduce any violation
of integrity. A complete check of generic constraints is too costly in any nontrivial case;
in view of this, verification of integrity constraints can be rendered more efficient by
deriving specialized checks that are easier to execute at each update. Even better per-
formance is achieved if these checks can be tested before illegal updates. Nevertheless,
the common practice is still based on ad hoc techniques: domain experts hand-code
tests in the application program producing the update requests or design triggers within
the database management system that respond to certain update actions. However, both
methods are prone to errors and little flexibility w.r.t. changes in the schema or design
of the database, which motivates the need for automated integrity verification methods.

In order to formalize the notion of consistency, and thus the constraint verifica-
tion problem, we refer to deductive databases, in which a database state is the set of
database facts and rules (tuples and views). As semantics of a database state D we take
its standard model: the truth value of a closed formula F , relative to D, is defined as its
valuation in the standard model and denoted D(F).

Definition 1 (Consistency). A database state D is consistent with a set of integrity
constraints Γ iff D(Γ) = true.

An update U is a mapping U : D �→ D , where D is the space of database states. For
convenience, for any database state D, we indicate the state arising after update U as
DU . The constraint verification problem may be formulated as follows. Given a database
state D, a set of integrity constraints Γ , such that D(Γ) = true, and an update U , does
DU(Γ) = true hold too? As mentioned, evaluating DU(Γ) may be too expensive, so a
suitable reformulation of the problem can be given in the following terms: is there a
set of integrity constraints ΓU such that DU(Γ) = D(ΓU) and ΓU is easier to evaluate
than Γ ? In other words, the looked for condition ΓU should specialize the original
Γ , as specific information coming from U is available, and avoid redundant checks
by exploiting the fact that D(Γ) = true. We observe that reasoning about the future
database state DU with a condition (ΓU) that is tested in the present state D, complies

Efficient Integrity Checking over XML Documents 3

with the semantics of deferred integrity checking (i.e., integrity constraints do not have
to hold in intermediate transaction states).

3 General constraints over semi-structured data

Consistency requirements for XML data are not different from those holding for rela-
tional data, and constraint definition and enforcement are expected to become funda-
mental aspects of XML data management. In current XML specifications, fixed-format
structural integrity constraints can already be defined by using XML Schema defini-
tions; they are concerned with type definitions, occurrence cardinalities, unique con-
straints, and referential integrity. However, a generic constraint definition language for
XML, with expressive power comparable to assertions and checks of SQL, is still not
present in the XML Schema specification. We deem this a crucial issue, as this lack of
expressiveness does not allow one to specify business rules to be directly included in
the schema. Moreover, generic mechanisms for constraint enforcement are also lacking.
In this paper we cover both aspects.

Our approach moves from a recently proposed adaptation of the framework of de-
ductive databases to the world of semi-structured data. More precisely, we refer to
XPathLog [18] as the language for specifying generic XML constraints, which are ex-
pressed in terms of queries that must have an empty result.

Even though, in principle, we could write denials in XQuery, a declarative, first-
order logic language is closer to what is usually done for relational data [14]; a logical
approach leads to cleaner constraint definitions, and the direct mapping from XPathLog
to Datalog helps the optimization process.

3.1 XPathLog

XPathLog [18] is an extension of XPath modeled on Datalog. In particular, the XPath
language is extended with variable bindings and is embedded into first-order logic to
form XPath-Logic; XPathLog is then the Horn fragment of XPath-Logic. Thanks to
its logic-based nature, XPathLog is well-suited to querying XML data and providing
declarative specifications of integrity constraints.

It uses an edge-labeled graph model in which subelements are ordered and attributes
are unordered. Path expressions have the form root/axisStep/. . . /axisStep where root
specifies the starting point of the expressions (such as the root of a document or a vari-
able bound to a node) and every axisStep has the form axis::nodetest[qualifier]∗. An
axis defines a navigation direction in the XML tree: child, attribute, parent, ancestor,
descendant, preceding-sibling and following-sibling. All elements satisfying along
the chosen axis nodetest are selected, then the qualifier(s) are applied to the selec-
tion to further filter it. Axes are abbreviated as usual, e.g. path/nodetest stands for
path/child::nodetest and path/@nodetest for path/attribute::nodetest.

XPath-Logic formulas are built as follows. An infinite set of variables is assumed
along with a signature of element names, attribute names, function names, constant
symbols and predicate names. A reference expression is a path expression that may

4 D. Braga, et al.

be extended to bind selected nodes to variables with the construct “→ Var”. Refer-
ence expressions have the form root/refAxisStep/. . . /refAxisStep, where the syntax
of refAxisStep is as follows:

axis::(nodetest|Var)[qualifier]∗[→Var][qualifier]∗.

XPath-Logic predicates are predicates over reference expressions and atoms and
literals are defined as usual. Formulas are thus obtained by combining atoms with con-
nectives (∧, ∨, ¬) and with quantified (∃, ∀) variables. Clauses are written in the form
Head �Body where the head, if present, is an atom and the body a conjunction of lit-
erals. In particular, a denial is a headless clause; integrity constraints will be written
as denials, which indicates that there must be no variable binding satisfying the condi-
tion in the denial body for the data to be consistent. Unless otherwise indicated, clause
variables (written with capital letters) are implicitly universally quantified.

Aggregates are written with the syntax agg(V [G1, . . . ,Gn]; reference-expression),
where agg is an aggregate (such as Sum, Cnt, etc.), V , if present, is the variable on
which the aggregate operation is performed and G1, . . . ,Gn are the group-by variables.
A D subscript (e.g., CntD) indicates that only distinct values are considered. Note that
V is absent for Cnt and CntD.

3.2 Examples

Consider two documents: pub.xml containing a collection of published articles and
rev.xml containing information on reviewer/paper assignment for all tracks of a given
conference. The DTDs are as follows.

<!-- pub.xml -->
<!ELEMENT dblp (pub)*>
<!ELEMENT pub (title,aut+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT aut (name)>
<!ELEMENT name (#PCDATA)>

<!-- rev.xml -->
<!ELEMENT review (track)+>
<!ELEMENT track (name,rev+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT rev (name,sub+)>
<!ELEMENT sub(title,auts+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT auts (name)>

Example 1. Consider the following integrity constraint, which imposes the absence of
conflict of interests in the submission review process (i.e., no one can review papers
written by a coauthor or by him/herself):

�//rev[name/text()→ R]/sub/auts/name/text()→ A
∧(A = R∨//pub[aut/name/text()→ A∧aut/name/text()→ R])

The text() function refers to the text content of the enclosing element. The condition in
the body of this constraint indicates that there is a reviewer named R who is assigned a
submission whose author has name A and, in turn, either A and R are the same or two
authors of a same publication have names A and R, respectively.

Example 2. Consider a conference policy imposing that a reviewer involved in three or
more tracks cannot review more than 10 papers. This is expressed as follows:

�CntD{[R];//track[/rev/name/text()→ R]} ≥ 3∧
CntD{[R];//rev[/name/text()→ R]/sub} ≥ 10

Efficient Integrity Checking over XML Documents 5

4 Mapping XML constraints to the relational data model

In order to apply our simplification framework to XML constraints, as will be described
in Section 5, schemata, update patterns, and constraints need to be mapped from the
XML domain to the relational model. Note that these mappings take place statically
and thus do not affect runtime performance.

4.1 Mapping of the schema and of update statements

The problem of representing XML data in relations was considered, e.g., in [25]. Our
approach is targeted to deductive databases: each node type is mapped to a correspond-
ing predicate. The first three attributes of all predicates respectively represent, for each
XML item: its (unique) node identifier, its position and the node identifier of its parent
node. It is worth noting that the second attribute is crucial, as the XML data model
is ordered. Whenever a parent-child relationship within a DTD is a one-to-one corre-
spondence (or an optional inclusion), a more compact form is possible, because a new
predicate for the child node is not necessary: the attributes of the child may be equiv-
alently represented within the predicate that corresponds to the parent (allowing null
values in case of optional child nodes). The documents of the previous section map to
the relational schema

pub(Id,Pos,IdParent_{dblp},Title) aut(Id,Pos,IdParent_{pub},Name)
track(Id,Pos,IdParent_{review},Name) rev(Id,Pos,IdParent_{track},Name)
sub(Id,Pos,IdParent_{rev},Title) auts(Id,Pos,IdParent_{sub},Name)

where Id, Pos and IdParenttagname preserve the hierarchy of the documents and where
the PCDATA content of the name and title node types is systematically embedded
into the container nodes, so as to reduce the number of predicates.

As already mentioned, mapping a hierarchical ordered structure to a flat unordered
data model forces the exposition of information that is typically hidden within XML
repositories, such as the order of the sub-nodes of a given node and unique node iden-
tifiers. The root nodes of the documents (dblp and review) are not represented as
predicates, as they have no local attributes but only subelements; however, such nodes
are referenced in the database as values for the IdParentdblp and IdParentreview attributes
respectively, within the representation of their child nodes. Publications map to the pub
predicate, authors in pub.xml map to aut, while authors in rev.xml map to auts,
and so on, with predicates corresponding to tagnames. Last, names and titles map
to attributes within the predicates corresponding to their containers.

Data mapping criteria influence update mapping. We express updates with the XUp-
date language [13], but other formalisms that allows the specification of insertions of
data fragments would also apply. Consider the following statement:

<xupdate:modifications version="1.0" xmlns:xupdate="http://www.xmldb.org/xupdate">
<xupdate:insert-after select="/review/track[2]/rev[5]/sub[6]" >

<xupdate:element name="sub">
<title> Taming Web Services </title> <auts> <name> Jack </name> </auts>

</xupdate:element> </xupdate:insert-after> </xupdate:modifications>

6 D. Braga, et al.

In the corresponding relational model, this update statement corresponds to adding
{ sub(ids, 7, idr, “Taming Web Services”), auts(ida, 2, ids, “Jack”) } where ida and ids

represent the identifiers that are to be associated to the new nodes and idr is the identifier
associated to the target rev element. Their value is immaterial to the semantics of the
update, provided that a mechanism to impose their uniqueness is available. On the other
hand, the actual value of idr depends on the dataset and needs to be retrieved by inter-
preting the select clause of the XUpdate statement. Namely, idr is the identifier for
the fifth (reviewer) child of the second (track) node, in turn contained into the root
(review) node of the document rev.xml. Positions (7 and 2 in the second argument
of both predicates) are also derived by parsing the update statement: 7 is determined
as the successor of 6, according to the insert-after semantics of the update; 2 is
due to the ordering, since the auts comes after the title element. Finally, note that
the same value ids occurs both as the first argument of sub() and the third argument of
auts(), since the latter represents a subelement of the former.

4.2 Mapping of integrity constraints

The last step in the mapping from XML to the framework of deductive databases is
to compile denials into Datalog. We express constraints as Datalog denials: clauses
with an empty head (understood as false), whose body indicates not holding conditions.
Input to this phase are the schemata (XML and relational) and an XPathLog denial in a
normal form without disjunctions 3. All p.e. in XPathLog generate chains of conditions
over the predicates corresponding to the node types traversed by the path expression. to
the traversed node types. Containment in terms of parent-child relationship translates to
correspondences between variables in the first position of the container and in the third
position of the contained item.

Quite straightforwardly, XPathLog denial expressing that the author of the “Duck-
burg tales” cannot be Goofy and its mapping (anonymous variables are indicated with
an underscore):

�//pub[title = “Duckburg tales′′”]/aut/name→ N∧ N = “Goo f y′′

← pub(Ip, , ,“Duckburg tales′′”)∧aut(, , Ip,N)∧ N = “Goo f y′′.
The fact that the XML data model is ordered impacts the translation. Either the

position() function is used in the original denial or a filter is used that contains an
expression returning an integer. In both cases, the second argument in the relational
predicate is associated to a variable that is matched against a suitable comparison ex-
pression (containing the variable associated to the position() function or directly to
the expression that returns the value).

Example 3. The XPathLog constraint of example 1, is translated into the following
couple of Datalog denials (due to the presence of a disjunction).

Γ = {← rev(Ir, , ,R)∧ sub(Is, , Ir,)∧auts(, , Is,R),
← rev(Ir, , ,R)∧ sub(Is, , Ir,)∧auts(, , Is,A)
∧aut(, , Ip,R)∧aut(, , Ip,A)}

3 A default rewriting allows one to reduce to such normal form any denial expressed with dis-
junctions, so that we can restrict to this case without loss of generality.

Efficient Integrity Checking over XML Documents 7

5 Simplification of integrity constraints

Several methods for optimized and incremental constraint checking in deductive databases,
known as simplification methods, were produced since the landmark contribution by
Nicolas [21]. Simplification in this context means to derive specialized versions of
the integrity constraints w.r.t. given update patterns, employing the hypothesis that the
database is initially consistent. In the following, we briefly describe the approach of
[16]. To illustrate the framework, we limit our attention to tuple insertions, consistently
with the fact that XML documents typically grow. An update transaction is expressed
as a set of ground atoms representing the tuples that will be added to the database.
Placeholders for constants, called parameters (written in boldface: a, b, ...), allow one
to indicate update patterns. For example, the notation {p(a),q(a)}, where a is a pa-
rameter, refers to the class of update transactions that add the same tuple to both unary
relation p and unary relation q. The first step in the simplification process is to intro-
duce a syntactic transformation After that translates a set of denials Γ referring to the
updated database state into another set Σ that holds in the present state if and only if Γ
holds after the update.

Definition 2. Let Γ be a set of denials and U an update. The notation AfterU(Γ) refers
to a copy of Γ in which all atoms of the form p(�t) have been simultaneously replaced by
(p(�t)∨�t =�a1∨ ·· · ∨�t =�an), where p(�a1), . . . , p(�an) are all additions on p in U,�t is a
sequence of terms and �a1, . . . ,�an are sequences of constants or parameters (we assume
that the result of this transformation is always given as a set of denials which can be
produced by using, e.g., De Morgan’s laws).

Example 4. Consider a relation p(ISSN,TITLE) and let U = {p(i, t)} be the addition
of a publication with title t and ISSN number i and φ =← p(X ,Y)∧ p(X ,Z)∧Y �= Z
the denial imposing uniqueness of ISSN. AfterU ({φ}) is as follows:

{ ← [p(X ,Y)∨ (X = i∧Y = t)]∧ [p(X ,Z)∨ (X = i∧Z = t)]∧ Y �= Z}
≡ { ← p(X ,Y)∧ p(X ,Z)∧Y �= Z,
← p(X ,Y)∧X = i∧Z = t∧Y �= Z,
← X = i∧Y = t∧ p(X ,Z)∧Y �= Z,
← X = i∧Y = t∧X = i∧Z = t∧Y �= Z}.

Clearly, After’s output is not in any “normalized” form, as it may contain redundant
denials and sub-formulas (such as, e.g., a = a). Moreover, assuming that the original
denials hold in the current database state can be used to achieve further simplification.
For this purpose, a transformation Optimize∆ (Γ) is defined that exploits a given set of
denials ∆ consisting of trusted hypotheses to simplify the input set Γ . The proposed
implementation [17] is described in [16] in terms of sound rewrite rules, whose appli-
cation reduces denials in size and number and instantiates them as much as possible.
For reasons of space, we refrain from giving a complete list of the rewrite rules in the
Optimize operator and we describe its behavior as follows.

Given a set of denials Γ , a denial φ ∈ Γ is removed if it can be proved redundant
from Γ \ {φ}; φ is replaced by a denial ψ that can be proved from Γ if ψ subsumes
φ ; equalities involving variables are eliminated as needed. The resulting procedure is

8 D. Braga, et al.

terminating, as it is based on resolution proofs restricted in size. The operators After
and Optimize can be assembled to define a procedure for simplification of integrity
constraints.

Definition 3. For an update U and two sets of denials Γ and ∆ , we define SimpU
∆ (Γ) =

OptimizeΓ∪∆ (AfterU(Γ)).

Theorem 1 ([16]). Simp terminates on any input and, for any two set of denials Γ ,∆
and update U, SimpU

∆ (Γ) holds in a database state D consistent with ∆ iff Γ holds in
DU.

We use SimpU(Γ) as a shorthand for SimpU
Γ (Γ).

Example 5. [4 cont.] The first denial in AfterU({φ}) is the same as φ and is thus redun-
dant; the last one is a tautology; both the second and third reduce to the same denial;
therefore the resulting simplification is SimpU({φ}) = {← p(i,Y)∧Y �= t}, which in-
dicates that, upon insertion of a new publication, there must not already exist another
publication with the same ISSN and a different title.

5.1 Examples

We now consider some examples based on the relational schema of documents pub.xml
and rev.xml given in section 4.

Example 6. [1 continued] Let us consider constraint Γ from example 3 imposing the
absence of conflict of interests in the submission review process. An update of interest
is, e.g., the insertion of a new submission to the attention of a reviewer.

For instance, a submission with a single author complies with the pattern
U = {sub(is,ps, ir, t),auts(ia,pa, is,n)},
where the parameter (is) is the same in both added tuples. The fact that is and ia are

new node identifiers can be expressed as a set of extra hypotheses to be exploited in the
constraint simplification process:

∆ = { ← sub(is, , ,),← auts(, , is,),← auts(ia, , ,)}.
The simplified integrity check w.r.t. update U and constraint Γ is given by
SimpU

∆ (Γ): {← rev(ir, , ,n),← rev(ir, , ,R)∧aut(, , Ip,n)∧aut(, , Ip,R)}.
The first denial requires that the added author of the submission (n) is not the same

person as the assigned reviewer (ir). The second denial imposes that the assigned re-
viewer is not a coauthor of the added author n. These conditions are clearly much
cheaper to evaluate than the original constraints Γ , as they are instantiated to specific
values and involve fewer relations.

Example 7. Consider the denial φ =← rev(Ir, , ,)∧CntD(sub(, , Ir,)) > 4 impos-
ing a maximum of 4 reviews per reviewer per track. The simplified integrity check of φ
w.r.t. updateU from example 6 is SimpU

∆ ({φ}) = {← rev(ir, , ,)∧CntD(sub(, , ir,)) >
3}, which checks that the specific reviewer ir is not already assigned 3 different reviews
in that track.

Efficient Integrity Checking over XML Documents 9

6 Translation into XQuery

The simplified constraints obtained with the technique described in the previous section
are useful only if they can be checked before the corresponding update, so as to prevent
the execution of statements that would violate integrity. Under the hypothesis that the
dataset is stored into an XML repository capable of executing XQuery statements, the
simplified constraints need to be translated into suitable equivalent XQuery expressions
in order to be checked. This section discusses the translation of Datalog denials into
XQuery. We exemplify the translation process using the (non-simplified) set of con-
straints Γ defined in example 3. For brevity, we only show the translation of the second
denial.

The first step is the expansion of the Datalog denial. It consists in replacing every
constant in a database predicate (or variable already appearing elsewhere in database
predicates) by a new variable and adding the equality between the new variable and
the replaced item. This process is applied to all positions, but the first and the third
one, which refer to element and parent identifiers and thus keeps information on the
parent-child relationship of the XML nodes. In our case, the expansion is:

← rev(Ir,B,C,R)∧ sub(Is,D, Ir,E)∧auts(F,G, Is,A)
∧aut(H, I, Ip,J)∧aut(K,L, Ip,M)∧ J = R∧M = A

The atoms in the denial must be sorted so that, if a variable referring to the parent of
a node also occurs as the id of another node, then the occurrence as an id comes first.
Here, no such rearrangement is needed. Then, for each atom p(Id,Pos,Par,D1, . . . ,Dn)
where D1, . . . , Dn are the values of tags d1, . . . , dn, resp., we do as follows. If the defi-
nition of $Par has not yet been created, then we generate $Id in //p and $Par in $Id/..;
otherwise we just generate $Id in $Par/p. This is followed by $Pos in $Id/position(),
$D1 in $Id/d1/text(), . . . , $Dn in $Id/dn/text().

Then we build an XQuery boolean expression (returning true in case of viola-
tion) by prefixing the definitions with the some keyword and by suffixing them with
the satisfies keyword followed by all the remaining conditions in the denial separated
by and. This is a well-formed XQuery expression. Here we have:

some $Ir in //rev, $C in $Ir/.., $B in $Ir/position(), $R in $Ir/name/text(),
$Is in $Ir/sub, $D in $Is/position(), $E in $Is/title/text(),
$F in $Is/auts, $G in $F/position(), $A in $F/name/text(),
$H in //aut, $Ip in $H/.., $I in $H/position(),
$J in $H/name/text(), $K in $Ip/aut, $L in $K/position(),
$M in $K/name/text()

satisfies $J = $R and $M = $A

Such expression can be optimized by eliminating definitions of variables which are
never used, unless they refer to node identifiers. Such variables are to be retained be-
cause they express an existential condition on the element they are bound to. Variables
referring to the position of an element are to be retained only if used in other parts of
the denial. In the example, we can therefore eliminate the definitions of variables $B,
$C, $D, $E, $G, $I, $L. If a variable is used only once outside its definition, its occurrence
is replaced with its definition. Here, e.g., the definition of $Is is removed and $Is is
replaced by $Ir/sub in the definition of $F, obtaining $F in $Ir/sub/auts.

10 D. Braga, et al.

Variables occurring in the satisfies part are replaced by their definition. Here we
obtain the following query.

some $Ir in //rev, $H in //aut
satisfies $H/name/text()=$Ir/name/text()

and $H/../aut/name/text()=$Ir/sub/auts/name/text()

The translation of the simplified version SimpU
∆ (Γ) is made along the same lines.

Again, we only consider the simplified version of the second constraint (the denial
← rev(ir, , ,R)∧ aut(, , Ip,n)∧ aut(, , Ip,R)). Now, a parameter can occur in the
first or third position of an atom. In such case, the parameter must be replaced by a
suitable representation of the element it refers to. Here we obtain:

some $D in //aut
satisfies $D/name/text()=%n

and $D/../aut/name/text()= /review/track[%i]/rev[%j]/name/text()

where /review/track[%i]/rev[%j] conveniently represents ir. Similarly, \%n
corresponds to n. The placeholders %i, %j and %n will be known at update time and
replaced in the query.

The general strategy described above needs to be modified in the presence of aggre-
gates. Aggregates apply to sequences of nodes; therefore, the most suitable constructs
to define such sequences are let clauses. In particular, there is a let clause for each
aggregate. This does not affect generality, as variables bound in the let clauses corre-
spond to the aggregate’s target path expression possibly defined starting from variables
already bound in the for clauses above. The expression is wrapped inside an exists(...)

construct in order to obtain a boolean result; for this purpose, an empty <idle/> tag is
returned if the condition is verified. Again, integrity is violated if the query returns true.
Constraint ← rev(Ir, , ,)∧CntD(sub(, , Ir,)) > 4, shown in example 7, is mapped
to XQuery as shown below.

exists(for $Ir in //rev let $D := $R/sub where count($D) > 4 return <idle/>)

The other constraints in the examples can be translated according to the same strategy.

7 Evaluation

We now present some experiments conducted on a series of XML datasets matching
the DTD presented in section 2, varying in size from 32 to 256 MB, on the examples
described in order to evaluate the performance of our approach. Figures 1(a), 1(b) refer
to the integrity constraints of examples 1, 2, respectively. The data were generated re-
mapping data from the DBLP repository [15] into the schema of our running examples.
Our tests were run on a machine with a 3.4 GHz processor, 1 GB of RAM and 140
GB of hard disk, using eXist [8] as XQuery engine. Execution times are indicated in
milliseconds and represent the average of the measured times of 200 attempts for each
experiment (plus 50 additional operations that were used as a “warm-up” procedure and
thus not measured). The size of the documents is indicated in MB on the x-axis. Each
figure corresponds to one of the running examples and reports three curves represent-
ing respectively the time needed (i) to verify the original constraint (diamonds), (ii) to

Efficient Integrity Checking over XML Documents 11

verify the optimized constraint (squares), and (iii) to execute an update, verify the orig-
inal constraint, and undo the update (triangles). We observe that we do not have to take
into account the time spent to produce the optimized constraints, nor the cost of map-
ping schemata and constraints to the relational model, as in our framework these are
generated at schema design time and thus do not interfere with run time performance4.
The curves with diamonds and squares are used to compare integrity checking in the
non-simplified and, resp., simplified case, when the update is legal. The execution time
needed to perform the update is not included, as this is identical (and unavoidable) in
both the optimized and un-optimized case. The curve with triangles includes both the
update execution time and the time needed to rollback the update, which is necessary
when the update is illegal; when the update is illegal, we then compare the curve with
triangles to the curve with squares. Rollbacks, needed since constraints are checked
after an update, were simulated by performing a compensating action to re-construct
the state prior to the update. The interpretation of these results is twofold, as we must
consider two possible scenarios.

The update is legal: in the un-optimized framework the update is executed first and
the full constraint is then checked against the updated database (showing that the update
is legal); on the other hand, with the optimized strategy of our approach, the simplified
constraint is checked first and the update is performed afterwards, as it is possible to
check properties of the future database state in the present state (see Section 5).

The update is illegal: in the un-optimized framework execution is as in the previ-
ous case, but this time the check shows that there is some inconsistency and, finally,
a compensative action is performed. On the contrary, with our optimized strategy, the
simplified constraint is checked first, which reports an integrity violation w.r.t. the pro-
posed update; therefore the update statement is not executed.

From the experimental results shown in figures 1(a) and 1(b) we observe two fea-
tures. The comparison between the performance of the optimized and un-optimized
checks shows that the optimized version is always more efficient than the original one.
In some cases, as shown in figure 1(a), the difference is remarkable, since the simplified
version contains specific values coming from the concrete update statement which allow
one to filter the values on which complex computations are applied. Further improve-
ment is due to the elimination of a join condition in the optimized query. In other cases
the improvement is not as evident because introduction of filters does not completely
eliminate the complexity of evaluation of subsequent steps, such as the calculation of

4 The only activity to be performed at runtime is the matching of the actual update with a suitable
known pattern, so as to apply the right optimized constraint. In our framework, we consider
the case in which such recognition is trivially achieved and its cost is negligible, either be-
cause the patterns are very simple or because the user declares which pattern is in use while
performing the update itself, choosing among a set of patterns published at schema design
time. Otherwise, efficient representations of patterns and ad-hoc matching techniques should
be investigated, so as to minimize this cost, which should of course be considered in the run-
time evaluation. Unrecognized updates can either be processed w.r.t. the full integrity check or
undergo a runtime simplification, but this case was not considered in our experiments. Never-
theless, we point out that the cost of the simplification itself is not dramatic: for instance, the
simplified constraints of examples 1 and 6 were generated in less than 50 ms. Further details
on the complexity analysis and the evaluation of the simplification procedure are in [5].

12 D. Braga, et al.

Conflict of interests

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

3500,00

4000,00

4500,00

5000,00

25Mb 50Mb 100Mb 200Mb

size

m
s

original
check

optimized
check

update +
original
check +
recovery

(a)

Conference workload

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

3500,00

25Mb 50Mb 100Mb 200Mb

size

m
s

original
check

optimized
check

update +
original
check +
recovery

(b)

Fig. 1. Conflict of interests (a) and Conference workload (b)

aggregate operations (figure 1(b)). The gain of early detection of inconsistency, which
is a distinctive feature of our approach, is unquestionable in the case of illegal updates.
This is prominently apparent in the cases considered in figures 1(a) and 1(b), since, as
is well-known, the modification of XML documents is an expensive task.

8 Related work

Integrity checking is often regarded as an instance of materialized view maintenance: in-
tegrity constraints are defined as views that must always remain empty for the database
to be consistent. The database literature is rich in methods that deal with relational
view/integrity maintenance; insightful discussions are in [11] and [7].

A large body of research in the field has also been produced by the logic program-
ming and artificial intelligence communities, starting from [21]. Logic-based methods
that produce simplified integrity tests can be classified according to different criteria,
e.g., whether these tests can be checked before or only after the update, whether up-
dates can be compound or only singleton, whether the tests are necessary and sufficient
or only sufficient conditions for consistency, whether the language includes aggregates.
Some of these methods are surveyed in [19]. In this respect, the choice of the simpli-
fication method of [16] seems ideal, as it matches all the above criteria, and is further
motivated by the availability of an implementation.

An attempt to adapt view maintenance techniques to the semi-structured data model
has been made in [26] and in [22]. Incremental approaches have been proposed with re-
spect to validation of structural constraints in [1], as well as to key and foreign key
constraints in [4], where the validating algorithm parses the document with SAX and
constructs an index of standard XML keys in one pass, with the help of suitable au-
tomata which recognize the context, the target, and the paths of such keys. Later, [24]
addressed incremental validation in the context of streaming data under memory limita-
tion. DTDs are considered as grammars and condition are provided on such grammars
for the recognition of their languages to be performed by finite state automata instead
of pushdown automata. Here the focus is again on validation w.r.t. DTD-like structural
constraints only, and constraints upon values or involving aggregates are not addressed.

An attempt to simplification of general integrity constraints for XML has been made
in [2], where, however, constraints are specified in a procedural fashion with an exten-
sion of XML Schema that includes loops with embedded assertions.

Efficient Integrity Checking over XML Documents 13

We are not aware of other works addressing validation w.r.t. general constraints for
XML. However, integrity constraint simplification can be reduced to query containment
if the constraints can be viewed as queries. Relevant works to this end are [23, 20].

There are several proposals and studies of constraint specification languages for
XML by now. In [9] a unified constraint model (UCM) is proposed, which captures in a
single framework the main features of o-o schemata and XML DTDs. UCM builds on
the W3C XML query algebra and focuses on trading expressivity of the constraint lan-
guage with simplicity of reasoning about the properties of the constraints. UCM lever-
ages key/foreign key constraints and the XML type system, for expressing a restricted
class of constraints whose consistency is proved decidable. This work addresses core
algorithms for enforcing a particular class of constraints within a query engine, while
our work relies on the availability of a query engine and addresses the simplification of
constraints of arbitrary complexity (as long as they are expressible in XPathLog).

The XUpdate language, which was used for the experimental evaluation, is de-
scribed in [13]. A discussion on update languages for XML is in [27].

As for XML-relational mappings, there exist several approaches to the problem of
representing semi-structured data in relations [25, 3, 6, 10]. For a survey, see [12].

9 Conclusion and future work

In this paper we presented a technique enabling efficient constraint maintenance for
XML datasets. We described the scenario in which integrity constraints are declaratively
expressed in XPathLog, an intuitive logical language. These constraints are translated
into Datalog denials that apply to an equivalent relational representation of the same
data. Such denials are then simplified w.r.t. given update patterns so as to produce opti-
mized consistency checks that are finally mapped into XQuery expressions that can be
evaluated against the original XML document.

Besides the possibility to declaratively specify constraints, the main benefits of our
approach are as follows. Firstly, the ability to produce optimized constraints typically
allows a much faster integrity checking. Secondly, performance is further improved by
completely avoiding the execution of illegal updates: the optimized check is executed
first and the update is performed only if it does not violate integrity.

In this paper we focused on updates whose contents are specified extensionally, as
in the XUpdate language. More complex updates may be specified with a rule-based
language such as XPathLog, i.e., intensionally in terms of other queries. Yet, introduc-
ing such updates would not increase complexity, as these are already dealt with by the
relational simplification framework of section 5 and can be translated from XPathLog
to Datalog as indicated in section 4.

Several future directions are possible to improve the proposed method. We are
studying the feasibility of a trigger-based view/integrity maintenance approach for XML
that would combine active behavior with constraint simplification. Further lines of in-
vestigation include integrating visual query specification to allow the intuitive specifi-
cation of constraints: domain experts lacking specific competencies in logic would be
provided with the ability to design constraints to be further processed with our approach.

Acknowledgements: D. Martinenghi is supported by EU’s IST project FP6-7603 (“TONES”).

14 D. Braga, et al.

References

1. A. Balmin, Y. Papakonstantinou, and V. Vianu. Incremental validation of XML documents.
ACM Trans. Database Syst., 29(4):710–751, 2004.

2. M. Benedikt, G. Bruns, J. Gibson, R. Kuss, and A. Ng. Automated Update Management for
XML Integrity Constraints. In Inf. Proc. of PLAN-X Workshop, 2002.

3. P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML schema to relations: A cost-based
approach to XML storage. ICDE, 64–75, 2002.

4. Y. Chen, S. B. Davidson, and Y. Zheng. Xkvalidator: a constraint validator for XML. In
CIKM, 446–452, New York, NY, USA, 2002. ACM Press.

5. H. Christiansen and D. Martinenghi. On simplification of database integrity constraints.
Fundamenta Informaticae, 71(4):371–417, 2006.

6. A. Deutsch, M. Fernandez, and D. Suciu. Storing semi-struct-ured data with STORED.
SIGMOD, 431–442, 1999.

7. G. Dong and J. Su. Incremental Maintenance of Recursive Views Using Relational Calcu-
lus/SQL. SIGMOD Record, 29(1):44–51, 2000.

8. eXist. Open source native xml database. http://exist.sourceforge.net.
9. W. Fan, G. M. Kuper, and J. Siméon. A unified constraint model for XML. Computer

Networks, 39(5):489–505, 2002.
10. D. Florescu and D. Kossman. Storing and Querying XML Data using an RDMBS. IEEE

Data Eng. Bull., 22(3):27–34, 1999.
11. A. Gupta and I. S. Mumick (eds.). Materialized views: techniques, implementations, and

applications. MIT Press, 1999.
12. R. Krishnamurthy, R. Kaushik, and J. Naughton. XML-SQL query translation literature: The

state of the art and open problems. XSym, 1–18, 2003.
13. A. Laux and L. Matin. XUpdate working draft. Technical report, http://www.xmldb.

org/xupdate, 2000.
14. A. Levy and Y. Sagiv. Constraints and redundancy in datalog. In PODS, 67–80, New York,

NY, USA, 1992.
15. M. Ley. Digital Bibliography & Library Project. http://dblp.uni-trier.de/.
16. D. Martinenghi. Simplification of integrity constraints with aggregates and arithmetic built-

ins. In Flexible Query-Answering Systems, 348–361, 2004.
17. D. Martinenghi. A simplification procedure for integrity constraints. http://www.ruc.

dk/∼dm/spic, 2004.
18. W. May. XPath-Logic and XPathLog: a logic-programming-style XML data manipulation

language. TPLP, 4(3):239–287, 2004.
19. E. Mayol and E. Teniente. A Survey of Current Methods for Integrity Constraint Mainte-

nance and View Updating. In ER Workshops, 62–73, 1999.
20. F. Neven and T. Schwentick. XPath Containment in the Presence of Disjunction, DTDs, and

Variables. In ICDT, 315–329, 2003.
21. J.-M. Nicolas. Logic for improving integrity checking in relational data bases. Acta Infor-

matica, 18:227–253, 1982.
22. A. Sawires, J. Tatemura, O. Po, D. Agrawal, and K. S. Candan. Incremental maintenance of

path expression views. In SIGMOD, 2005.
23. T. Schwentick. XPath query containment. SIGMOD Record, 33(1):101–109, 2004.
24. L. Segoufin and V. Vianu. Validating Streaming XML Documents. In PODS, 53–64, 2002.
25. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. DeWitt, J. Naughton. Relational

Databases for Querying XML Documents: Limitations and Opportunities. In VLDB, 302–
314, 1999.

26. D. Suciu. Query Decomposition and View Maintenance for Query Languages for Unstruc-
tured Data. In VLDB, 227–238, 1996.

27. I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In SIGMOD, 2001.

