
Towards Similarity-based Topological Query
Languages

Alberto Belussi1, Omar Boucelma2, Barbara Catania3, Yassine Lassoued2, and
Paola Podestà3

1 DI, University of Verona, Italy
2 LSIS-CNRS, Université Paul Cézanne Aix-Marseille III, France

3 DISI, University of Genova, Italy

Abstract. In recent times, the proliferation of spatial data on the Inter-
net is beginning to allow a much larger audience to access and share data
currently available in various Geographic Information Systems (GISs).
Unfortunately, even if the user can potentially access a huge amount of
data, often, she has not enough knowledge about the spatial domain she
wants to query, resulting in a reduction of the quality of the query results.
This aspect is even more relevant in integration architectures, where the
user often specifies a global query over a global schema, without having
knowledge about the specific local schemas over which the query has to
be executed. In order to overcome such problem, a possible solution is to
introduce some mechanism of query relaxation, by which approximated
answers are returned to the user. In this paper, we consider the relax-
ation problem for spatial topological queries. In particular, we present
some relaxed topological predicates and we show in which application
contexts they can be significantly used. In order to make such predicates
effectively usable, we discuss how GQuery, an XML-based spatial query
language, can be extended to support similarity-based queries through
the proposed operators.

1 Introduction

The proliferation of spatial data on the Internet is beginning to allow a much
larger audience to access and share data currently available in various Geographic
Information Systems (GISs). As spatial data increase in importance, many public
and private organizations need to disseminate and have access to the latest data
at a minimum (right) cost and as fast as possible. One of the main problems
in making this objective feasible is due to the gap existing between the data
made available on the Web and the user’s knowledge of such data during query
specification. Indeed, the user may not exactly know the spatial domain she
wants to query, in terms of properties, available features, and geometric types
used to represent such features. This aspect is even more relevant in integration
architectures, where a global query is expressed over a global schema, without
having knowledge about the specific local schemas over which the query has to
be executed. Differences in data sources may depend on how each single data

source models spatial objects in terms of their descriptive attributes (length of
a river, population in a town), their type (region, line, point), their geometric
type, and their topology. For example, one dataset M1 may represent roads
and bridges as regions, another dataset M2 may represent roads as regions and
bridges as lines, a third dataset M3 may represent both as lines.

The gap between stored data and user knowledge may impact the quality of
the results obtained by a query execution, reducing user satisfaction in using a
given application. The main cause of this unsatisfaction relies on the usage of
equality-based queries, by which the user specifies in an exact way the constraints
that data to be retrieved must satisfy. In order to overcome such problems,
similarly to what has been done in the multimedia context, a possible solution
is to introduce some mechanism of query relaxation, by which approximated
answers are returned to the user, possibly introducing some false hits, but at the
same time making query answers more satisfactory from the user point of view.

In this paper, we consider a specific sub-problem of the one cited above,
concerning the relaxation problem for spatial topological queries, representing
one of the most important classes of queries in spatial applications. In particular:
(i) we present some relaxed topological predicates, that we call weak; (ii) we show
in which application contexts they can be significantly used; (iii) we extend
an existing spatial query language to cope with weak topological operations,
discussing implementation issues.

Weak topological predicates are obtained from the usual one, that we call
strong, by specifying an error threshold. Such threshold is used by the query pro-
cessor to relax the topological predicate into a set of predicates, whose semantic
distance from the given one is lower than or equal to the specified threshold.
The definition of weak topological predicates thus relies on the usage of a simi-
larity function between topological predicates. To this purpose, in this paper we
consider the function presented in [1]. Such function extends other previously
defined functions by considering pairs of topological predicates applied over pairs
of objects with possibly different dimension. We then show how weak topologi-
cal predicates can be used in the Web and other integration contexts and, since
XML is becoming the de-facto standard for data representation and processing
in such environments, we discuss how weak topological predicates can be repre-
sented using XML-like standards. In the GIS context, the OpenGIS consortium
(OGC) has adopted GML (Geography Markup Language) for the XML repre-
sentation and transport of geographic data [14]. GML data can be manipulated
through Web Feature Services (WFSs), by which it is possible to describe or get
features from a spatial data source on the Web. However, WFS is not a real query
language and cannot be used to join data from different sources or to perform
spatial analysis. Based on these limitations and the large diffusion of XQuery as
query language for XML data, GQuery has been recently defined to overcome
some of these limitations, by extending XQuery with the ability of using GML
geometric types and specifying functions manipulating such types [7]. Due to its
characteristics, in this paper we show how GQuery can be extended to deal with
weak topological predicates, from a syntax and implementation point of view.

We remark that, even if several similarity functions for topological predi-
cates have been defined (see for example [4, 8, 10]), the only work we are aware
of dealing with similarity-based processing for spatial data is presented in [11],
addressing spatial similarity for queries with multiple constraints. A methodol-
ogy is proposed for spatial similarity retrieval in response to complex queries
formed by combinations of logical or relational operators, in presence of null
values. Spatial similarity is however considered from a conceptual rather than
implementation point of view. On the other hand, here we consider a specific
sub-problem of what considered in [11] and we provide concrete and easily imple-
mentable solutions. The approximation concept we consider in this paper is also
different from that presented in [5], where uncertainty on object representation,
due to broad boundaries, leads to the definition of approximated topological
relationships.

The remainder of the paper is organized as follows. The reference model
and topological distance are introduced in Section 2. Section 3 presents some
scenarios of possible usage of weak topological predicates and formally introduce
them. The proposed similarity-based language is then presented in Section 4,
together with the discussion of some implementation issues. Finally, Section 5
presents some conclusions and outlines future work.

2 The Reference Spatial Data Model

The spatial model. We define a map schema as a set of feature types, object
classes representing real word entities (such as lakes, rivers, etc.). Each feature
type has some descriptive attributes, including a feature identifier and a spa-
tial attribute, having a given dimension. We assume that values for the spatial
attribute are modeled according to the OGC (Open GeoSpatial Consortium)
simple feature geometric model [13]. In such a model, the geometry of an object
can be of type: point, describing a single location in the coordinate space (di-
mension 0, also denoted with P); line, representing a linear interpolation of an
ordered sequence of points (dimension 1, also denoted with L); polygon - more
generally called region -, defined as an ordered sequence of closed lines defining
the exterior and interior boundaries (holes) of an area(dimension 2, also denoted
by R); recursively, a collection of disjoint geometries. We assume that the same
feature type may belong to one or more map schemas, possibly with different
dimensions. The instance of a map schema is called map and is a set of features,
instances of the feature types belonging to the map schema. The same feature
may belong to one or more maps, associated with possibly different geometries
and dimensions according to the map schemas.
Topological relationships. Features inside a map are related by topological
relationships. Topological relationships can be formally defined by using the
9-intersection model [9]. In the 9-intersection model, each spatial object A is
represented by 3 point-sets: its interior A◦, its exterior A−, and its boundary ∂A.
A topological relation can be represented as a 3x3-matrix, called 9-intersection
matrix, defined as follows:

Name Definition Object type

Disjoint (d) f1 ∩ f2 = ∅ All

Touch (t) (f◦
1 ∩ f◦

2 = ∅) ∧ (f1 ∩ f2) �= ∅) R/R, R/L, R/P,
L/L, L/P

In (i) (f1 ∩ f2 = f1) ∧ (f◦
1 ∩ f◦

2) �= ∅) R/R, L/L, L/R,
P/R, P/L

Contains (c) (f1 ∩ f2 = f2) ∧ (f◦
1 ∩ f◦

2) �= ∅) R/R, R/L, R/P,
L/L, L/P

Equal (e) f1 = f2 R/R, L/L, P/P

Cross (r) dim(f◦
1 ∩ f◦

2) = (max(dim(f◦
1), dim(f◦

2)) − 1) ∧ L/R
(f1 ∩ f2) �= f1 ∧ (f1 ∩ f2) �= f2 L/L

Overlap (o) dim(f◦
1) = dim(f◦

2) = dim(f◦
1 ∩ f◦

2) ∧ R/R
(f1 ∩ f2) �= f1 ∧ (f1 ∩ f2) �= f2 L/L

Covers (v) (f2∩f1 = f2)∧(f◦
2 ∩f◦

1) �= ∅)∧(f1−f◦
1)∩(f2−f◦

2) �= ∅ R/R, R/L, R/P,
L/L, L/P

CoveredBy
(vb)

(f1∩f2 = f1)∧(f◦
1 ∩f◦

2) �= ∅)∧(f1−f◦
1)∩(f2−f◦

2) �= ∅ R/R, L/L, L/R,
P/R, P/L

Table 1. Definition of the reference set of topological relationships

R(A, B) =

0
@

A◦ ∩ B◦ A◦ ∩ ∂B A◦ ∩ B−

∂A ∩ B◦ ∂A ∩ ∂B ∂A ∩ B−

A− ∩ B◦ A− ∩ ∂B A− ∩ B−

1
A

The obtained relations are mutually exclusive and represent a complete cov-
erage. In [6], this model has been extended by considering for each 9 intersection
its dimension, obtaining the extended 9-intersection model. Since the number
of such relationships is quite high, a partition of extended 9-intersection ma-
trices has been proposed, grouping together similar matrices and assigning a
name to each group. The result is the definition of the following set of bi-
nary, mutually exclusive topological relationships, refining those presented in
[6]: TREL = {Disjoint, Touch, In, Contains, Equal, Cross, Overlap, Covers,
CoveredBy}.1 The semantics of such topological relationships is presented in Ta-
ble 1. It is easy to show that not all relationships can be defined for any pair
of dimensions. In the following, we use the notation θd1,d2 to denote the topo-
logical relation θ applied to pairs of objects having dimension d1 and d2 and
REL(d1, d2) to denote the set of topological relationships defined over pairs of
objects having dimension d1 and d2.
Topological distance. In this paper, we consider the topological distance pre-
sented in [1], defined over topological relationships represented according to the
9-intersection model. Since each topological relationship in TREL corresponds
to a set of 9-intersection matrices, topological distance is a total function de-
fined in two steps: first a distance function between two 9-intersection matrices
is defined, then such function is used in computing the final result.
1 Covers and CoveredBy have been defined as refinements of relations Contains and

In and are not considered in [6].

Fig. 1. Distance values (times 9) for the OverlapR,R topological relationship

The distance between two 9-intersection matrices ψ1 and ψ2 has been first
defined in [8] as the number of different cells in the two matrices. Two cells are
considered different if one corresponds to a non-empty intersection (whatever is
its dimension) and the other to an empty intersection. Here, we normalize such
distance by dividing it by the total number of cells (9).

Since each relationship in TREL corresponds to a set of 9-intersection ma-
trices, we can then compute the distance between two topological relationships
θ1

d1,d2
and θ2

d3,d4
as the minimum distance between any 9-intersection matrix

defining θ1
d1,d2

and any 9-intersection matrix defining θ2
d3,d4

. We denote this dis-
tance by d(θ1

d1,d2
, θ2

d3,d4
).

Based on the topological distance, given a topological relationship θ1
d1,d2

, all
topological relationships θ2

d3,d4
can be ordered with respect to θ1

d1,d2
depending

on the distance value. All values for d(θ1
d1,d2

, θ2
d3,d4

) can be found in [1]. Figure
1 just presents distances d(OverlapR,R, θ

2
d3,d4

).

3 Weak Topological Predicates

In the following, we present two contexts in which similarity-based topological
predicates can be useful. The first scenario concerns query specification in a
Web context, the second scenario concerns query execution under a mediator
architecture. Then, we formally introduce weak topological predicates.2

In the following scenarios, we use three distinct maps M1, M2, and M3,
sketched in Figure 2. They represent roads (identified by ri) and bridges (iden-
tified by bi) with different dimensions: (2, 2) in M1, (2, 1) in M2, and (1, 1)
in M3. We also assume that the following topological relationships holds:3 (i)
Overlap(r1, b1), Overlap(r2, b2), Cover(r6, b6) in M1; (ii) Cross(r1, b1),
Cross(r2, b2), Cross(r3, b3), Cover(r6, b6) in M2; (iii) Overlap(r1, b1),
Cross(r2, b2), Cross(r7, b7), Overlap(r5, b5) in M3.

2 In the following, the term ‘topological predicate’ is used to denote the predicate
induced by a topological relation and both notations aθb and θ(a, b) θ ∈ TREL are
used.

3 For the sake of simplicity, we do not list relationships based on Disjoint.

r1 r2

b2

r6
b6

r4

b1 r1 r2

b2

r6
b6

r3

b1

b3

r1

r2

b2

r5

b1

b5

r7
b7

Fig. 2. Sketch of the content of the map examples

3.1 Scenario 1

Consider a user that wants to query some spatial data available on the Web,
without having a detailed knowledge about such data. When the user specifies
the query, she may not know the resolution of the underlying database, there-
fore she may not be able to specify the query in an exact way since topological
predicates are not always defined when changing object dimensions. As a conse-
quence, the quality of the obtained result may be reduced since interesting pairs
may not be returned.

For example, suppose she wants to determine which pairs of roads and bridges
Overlap, i.e., intersect and the intersection has the same type of the input ob-
jects. This query can be specified as follows: GQ = {(r, b)| r is a road, b is a
bridge, r Overlap b}. If roads and bridges are represented as regions, as in map
M1, the correct predicate would be Overlap. However, if roads and bridges are
represented as lines, as in map M3, besides Overlap, also predicate Cross, check-
ing for intersections having dimension lower than those of input spatial objects,
could be relevant for the user. If roads are represented as regions and bridges
as lines, as in map M2, Overlap is not defined and, based on the topological
distance, Cross, which is the most similar predicate to Overlap, could be used.

In this context, a similarity-based approach could be very useful. The user
could specify the query by: (i) assuming data have the maximal dimension, i.e.,
all polygons (in order to made available to the user the larger set of available
topological predicates); (ii) providing a threshold value. Such value can be used
to increase the quality of the generated result, e.g., to return more information
even if not necessarily significant for the user.

For example, suppose the user wants to execute query GQ up to an error ε.
Actually, this error depends on the user’s application and needs. Let us suppose,
for instance, that ε = 22%. If the dimension of roads and bridges in the map
where the query has to be executed are d3 and d4, the query processor can
use the topological distance introduced in Section 2 to rewrite the topological
predicate Overlap into a set of topological predicates θ1

d3,d4
, ..., θn

d3,d4
such that

d(OverlapR,R, θ
i
d3,d4

) ≤ 0.22, i = 1, ..., n. The union of the result sets is then
returned to the user. According to Figure 1, we have that:

d(OverlapR,R, θR,R) ≤ 0.22 for θ ∈ {Overlap}
d(OverlapR,R, θR,L) ≤ 0.22 for θ ∈ {Cross, Cover, Touch}
d(OverlapR,R, θL,L) ≤ 0.22 for θ ∈ {Overlap, Cross, Touch}

Thus, the query processor rewrites GQ as follows:

– M1: GQ1 = {(r, b)| r is a road, b is a bridge, r Overlap b }
– M2: GQ2 = {(r, b)| r is a road, b is a bridge, rθb, θ ∈ {Cross, Cover, Touch}}
– M3:GQ3 = {(r, b)| r is a road, b is a bridge, rθb, θ ∈ {Overlap, Cross, Touch}}

We notice that the user may initially not know what is the right threshold
to be used in the query. However, as usual in similarity-based approaches, she
may refine the threshold value, depending on the results obtained in previously
executed queries, in the context of the same querying session.

3.2 Scenario 2

The second scenario deals with mediation systems. Mediation systems provide
users with a uniform access to a multitude of data sources, without duplicating
such data, via a common model. The user poses her query against a virtual
global schema and the query is in turn rewritten into queries against the real
local sources, taking into account differences in the models and query languages.
The basic architecture of a mediation system is based on two main components:
the mediator and the wrappers. The mediator allows “semantic translations” by
rewriting the user’s query into queries over data sources expressed in a common
query language, which is specific to the mediator. Each data source is accessed
through a wrapper. When a query is posed against a data source, the corre-
sponding wrapper translates it according to the data source query language.

In the context of GIS data, VirGIS is a mediation system based on OpenGIS
standards that addresses the issue of integrating GIS data and tools [2, 3]. In the
VirGIS system, adding a new data source is easy thanks to two main things: (i)
wrappers are replaced by WFS servers and there is no need to define new ones
when adding a new source; (ii) VirGIS uses a mediation approach in which adding
a new data source consists only in declaring its capabilities to the mediator and
describing its schema (mappings) according to the global one. VirGIS supports
topological operators, which are executed at the mediator level.

In general, mediator systems, including VirGIS, take into account differences
concerning feature representation in local sources. However, mediators usually
do not usually consider the impact of topological information on query rewriting.
The problem here is that different topological predicates should be considered
for execution at the local level, in order to return results that are consistent with
the global request.

As an example, assume that the maps in Figure 2 represent three local sources
to be integrated. Suppose that at the global level features are represented with
the maximum dimension by which they appear in the local sources, in order to
made available to the user the larger set of available topological predicates. In
our example, this means that at the global level, road and bridges will be both
represented as regions. Actually, in more general cases, the features represen-
tation, in terms of dimensions, depend on users and their applications. Specific
interfaces to the users’ applications can be used and may impose their own fea-
tures representations. That is, for each application, we can assume that such an
interface generates queries according to predefined features dimensions that are

suitable for the application. Assume now that the user, at the global level, wants
to execute the query GQ = {(r, b)| r is a road, b is a bridge, r Overlap b}.

Under this scenario, a reasonable approach for query execution at the local
level would be that of rewriting the global predicate into the most similar ones
(i.e., into those having the minimum distance from the global predicate) in each
local source. According to Figure 1, GQ will be rewritten in the following three
queries and the obtained results integrated using ad hoc merge operators:

– M1: GQ1 = {(r, b)| r is a road, b is a bridge, r Overlap b}.
– M2: GQ2 = {(r, b)| r is a road, b is a bridge, r Cross b}.
– M3: GQ3 = {(r, b)| r is a road, b is a bridge, r θ b, θ ∈ {Overlap, Cross}}

We notice that in M3 two predicates are considered since, according to the
distance function, they have the same (minimum) distance with respect to the
global predicate.

3.3 Weak Topological Predicates

In order to formally support the queries introduced above, spatial query lan-
guages should be extended with the ability of specifying similarity-based topo-
logical predicates. Such predicates relax the usual ones by allowing a certain
distance between the specified predicate and those really executed. For this rea-
son, we call them weak topological predicates, to distinguish them from the usual
predicates, that we call strong. Strong predicates correspond to partial functions,
on the other hand weak predicates are always defined. Given a topological rela-
tion θd3,d4 , we also define its Nearest Neighbor relations in REL(d1, d2) as the
topological relations in REL(d1, d2) at the minimum distance from θd3,d4 .

Definition 1 (Strong and Weak topological predicates). Let SO be the
set of spatial objects. Let dim be a function that, given an object o ∈ SO, returns
its dimension (i.e., R, L, or P). Let d1, d2, d3, d4 ∈ {R,L, P}. Let θ ∈ TREL.

– The strong topological predicate for θ is defined as θ : SO×SO → Bool and
θ(o1, o2) = true if and only if θ ∈ REL(dim(o1), dim(o2)) and the conditions
pointed out in Table 1 are true for o1 and o2. If θ �∈ REL(dim(o1), dim(o2)),
θ(o1, o2) is undefined.

– The weak topological predicate for θ with respect to d3 and d4 is defined
as θw:d3,d4 : SO × SO × [0...1] → Bool and θw:d3,d4(o1, o2, ρ) = true if
there exists θ ∈ {ψ|ψ ∈ REL(dim(o1), dim(o2)), d(ψ, θd3,d4) ≤ ρ} such that
θ(o1, o2) is true.

– A Nearest Neighbor topological relation in REL(d1, d2) for θd3,d4 is a topolog-
ical relation θ ∈ REL(d1, d2) such that d(θ, θd3,d4) = min{d(ψ, θd3,d4)|ψ ∈
REL(d1, d2)}. This set of relations is denoted by NNd3,d4

d1,d2
(θ). �

Example 1. Consider Scenario 1. If the user queries are specified over objects
with the maximum resolution, GQ can be specified as follows: GQ = {(r, b)| r is
a road, b is a bridge, Overlapw:R,R(r, b, 0.22)}. In Scenario 2, the global query
GQ = {(r, b)| r is a road, b is a bridge, Overlap(r, b)} can be locally re-written
as follows:

– M1: GQ1 = {(r, b)| r is a road, b is a bridge, θ ∈ NNR,R
R,R (Overlap), r θ b}.

In this case, NNR,R
R,R (Overlap) = {Overlap}.

– M2: GQ2 = {(r, b)| r is a road, b is a bridge, θ ∈ NNR,R
R,L (Overlap), r θ b}.

In this case, NNR,R
R,L (Overlap) = {Cross}.

– M3: GQ3 = {(r, b)| r is a road, b is a bridge, θ ∈ NNR,R
L,L (Overlap), r θ b}.

In this case, NNR,R
L,L (Overlap) = {Overlap, Cross}. �

4 GQuerys: a Similarity-Based Spatial Query Language

Weak topological predicates can be used to extend existing spatial query lan-
guages, in order to directly support similarity-based computations. Since moti-
vations for the usage of weak topological predicates come from distributed archi-
tectures where XML is becoming the de-facto standard for data representation
and processing, we discuss how weak topological predicates can be represented
using XML-like standards. To this purpose, we consider GQuery [7, 2], an XML-
like spatial data query language based on XQuery, for query specification, and
GML, for data representation.

GML is an XML-like language for representing spatial data, proposed by
the OpenGIS consortium. The basic concept is the Feature, i.e., an (object) ab-
straction of the real world phenomena, with spatial and non-spatial attributes.
Spatial attributes may be points, lines, or polygons, as defined in Section 2. Fig-
ure 3 reports an example of GML representation for a road feature, represented
as a polygon, and a bridge feature, represented as a line. Note that a polygon
is defined as a (set of) LineRing, i.e., lines where the first and the last point
coincide. In the following, we first present the proposed extension of GQuery,
called GQuerys, and then we discuss a possible approach for its implementation.

4.1 GQuerys: the Syntax

A GQuery query is composed of expressions. Each expression is made up of built-
in or user-defined functions. An expression is either a function call, a value, or
generates an error. The result of an expression can be the input of a new one.
A value is an ordered sequence of items. An item is a node or an atomic value.
There is no distinction between an item and a sequence containing one value.
Nodes are those defined for XQuery: document, element, attribute, text, com-
ment, processing-instruction and namespace nodes. Writing a query consists in
combining simple expression (like atomic values), path expressions (from XPath
[18]), FLOWER expression (For-Let-Where-Return), test expressions (if-then-
return-else-return), or (pre- or user defined) functions. Non spatial operators
are arithmetic operators (+,-,×,/,mod), operators over sequences (concatena-
tion, union, difference), comparison operators (between atomic values, nodes,
and sequences), and boolean operators.

Spatial operators are applied to sequences. We have three types of spatial
operators. The first two categories perform spatial analysis, the third implements

<Road name = ’A12’>

<geometry>

<gml:Polygon gid=’98217’

srsName=’http://www.opengis.net/gml/srs/epsg.xml#4326’>

<gml:LinearRing>

<gml:coordinates> ... </gml:coordinates>

</gml:LinearRing>

</gml:Polygon>

</geometry>

</Road>

<Bridge name = ’main_bridge’>

<geometry>

<gml:LineString gid=’45234’

srsName=’http://www.opengis.net/gml/srs/epsg.xml#4326’>

<gml:coordinates>....</gml:coordinates>

</gml:LineString>

</geometry>

</Bridge>

Fig. 3. An example of GML data representation

strong topological predicates (in the following node is a GML data node having
a geometric type):

– operators which perform spatial analysis and return numeric values:
area, length : (node) → numeric value
distance : (node, node) → numeric value

– operators which perform spatial analysis and return GML values:
convexhull, centroid : (node) → node

– strong topological operators:
θ : (node, node) → boolean where θ ∈ TREL.

GQuerys is obtained from GQuery by introducing weak topological operators
and a Nearest Neighbor operator is NN , checking the Nearest Neighbor relation
between two topological predicates, according to Definition 1:

– Weak topological operators are defined as follows:
θw : (node, node, dim, dim, numeric value) → boolean
where θ ∈ TREL, dim ∈ {R,L, P}, numeric value = [0, 1].
θw(n1, n2, d3, d4, ε) returns true if and only if θw:d3,d4(o1, o2, ε) = true and
oi is the spatial object corresponding to ni.

– The is NN operator is defined as follows:
is NN : (TREL, dim, dim, TREL, dim, dim) → boolean
where dim ∈ {R,L, P}.
is NN(r1, d1, d2, r2, d3, d4) returns true if and only if r1 ∈ NNd3,d4

d1,d2
(r2).

The result of a GQuery expression is another GML document, thus GQuery
is closed. Errors are raised when input parameters have not the right geometric

Determine all roads overlapping some bridge.
for $x in document(bridge.xml), $y in document(road.xml)

where overlap($x/geometry, $y/geometry) = true

return $x

Determine all roads overlapping some bridge, up to a 22% error.
for $x in document(bridge.xml), $y in document(road.xml)

where overlapw($x/geometry, $y/geometry,R,L,0.22) = true

return $x

Fig. 4. GQuerys examples

type. For example, the function call overlap(node1, node2) returns a boolean
value if and only if node1 and node2 are both polygons or lines, otherwise it
raises an error. Figure 4 presents some examples of GQuerys queries.

4.2 GQuerys Query Processing

The GQuerys model extends the XQuery model to deal with spatial and topo-
logical operators. This means that the GQuerys implementation must rely on
the usage of external functions. The main steps to process a query that requires
a spatial processing are the following:

1. translate GML documents representing the input of the GQuery query into
the right format of the input of external functions involved in the spatial
computation;

2. use external spatial functions to perform the spatial computation;
3. translate the result into GML format.

GQuerys uses as external functions the Java Topology Suite (JTS) [12], an
Open Source API providing spatial object model and fundamental geometry
function and strong topological relations. However, such API does not support
weak topological and Nearest Neighbor operators and do not provide methods
for converting JTS results into GML format. As a first step, JTS has therefore
been extended in two ways, obtaining the JTSs API:

– a new method ConvertToGML is added to JTS, converting JTS Geometry
Objects into GML;

– one new method is added for any weak topological predicates and one for
computing the is NN predicate. Such methods rely on Definition 1 and on
the JTS implementation of strong topological predicates.

5 Conclusions and Future Work

In this paper we have presented an approach for similarity-based specification
and execution of topological queries. The proposed solution relies on the def-
inition of weak topological predicates, relaxing the traditional ones with the

specification of the maximal error allowed in executing such predicates. Topo-
logical distance between topological predicates is computed according to the
function defined in [1]. In order to show the usability of the proposed concepts,
we have also presented some reference application scenarios. We have finally dis-
cussed how such operators can be implemented in the context of GQuery, an
XQuery-based spatial query language that can be effectively used in the iden-
tified applications. We are currently extending the VirGIS architecture [3] to
deal with weak topological predicates. Future works include the extension of
the proposed approach to other spatial relations, such as directional ones, the
definition of a weak algebra and the analysis of its properties, the definition of
query processing strategies for weak topological predicates, and an exhaustive
experimentation, based on real and synthetic data.

References

1. A. Belussi, B. Catania, and P. Podestà. Towards Topological Consistency and
Similarity of Multiresolution Geographical Maps. In Proc. of ACM GIS, pages
220–229, 2005.

2. O. Boucelma, M. Essid, and Z. Lacroix. A WFS-based Mediation System for GIS
interoperability. In Proc. of ACM GIS, pages 23–28, 2002.

3. O. Boucelma, M. Essid, Z. Lacroix, J. Vinel, J-Y. Garinet, and A. Betari. VirGIS:
Mediation for Geographical Information Systems. In Proc. of ICDE, pages 855–
856, 2004.

4. H.T. Burns and M. J. Egenhofer. Similarity of Spatial Scenes. In Proc. of SDH,
pages 31–42, 1996.

5. E. Clementini and P. Di Felice. A Spatial Model for Complex Objects with a
Broad Boundary Supporting Queries on Uncertain Data. Data & Knowledge En-
gineering, 37(3): 285-305, 2001.

6. E. Clementini, P. Di Felice, and P. van Oosterom. A Small Set of Formal Topo-
logical Relationships Suitable for End-User Interaction. In LNCS 692: Proc. of
SSD, pages 277–295, 1993.

7. F-M. Colonna and O. Boucelma. Querying GML Data. In Proc. of CopSTIC,
pages 11–13, 2003.

8. M. J. Egenhofer and K. Al-Taha. Reasoning about Gradual Changes of Topo-
logical Relationships. In LNCS 639: Theory and Methods of Spatio-Temporal
Reasoning in Geographic Space, pages 196–219, 1992.

9. M. J. Egenhofer and J. Herring. Categorizing Binary Topological Relations Be-
tween Regions, Lines, and Points in Geographic Databases. Tech. Rep., Dep. of
Surveying Engineering, University of Maine, 1990.

10. M. J. Egenhofer and D. Mark. Modeling Conceptual Neighborhoods of Topo-
logical Line-Region Relations. Int. Journal of Geographical Information Systems,
9(5):555–565, 1995.

11. K. Nedas and M. Egenhofer. Spatial Similarity Queries with Logical Operators.
In LNCS 2750: Proc. of SSTD, pages 430-448, 2003.

12. JTS Topology Suite. http://www.vividsolutions.com/jts/jtshome.htm
13. OpenGeoSpatial Consortium. OpenGIS Simple Features Specification for SQL.

Tec. Rep., OGC 99-049, 1999.
14. OpenGIS. Geography Markup Language (GML) 3.0.

http://www.opengeospatial.org.

