
Querying along XLinks in XPath/XQuery:
Situation, Applications, Perspectives

Erik Behrends Oliver Fritzen Wolfgang May

Institut für Informatik, Universität Göttingen, Germany
{behrends|fritzen|may}@informatik.uni-goettingen.de

Abstract. This paper summarizes the situation about using XLink for
connecting XML instances. We discuss applications where XLink func-
tionality can be useful, and derive requirements how the basic XLink
technology should be supported in these scenarios. We compare several
proposals dealing with interlinked XML data with our dbxlink approach
which is a minimal extension to XLink and XPath, and we show how its
semantics can be added to arbitrary XPath-based query engines.

1 Introduction

We start the presentation with a short introduction to XLink and the current,
unsatisfying state of the art of dealing with XLinks in XQuery. Section 2 then
points out tasks where XLinks can be applied successfully and show what fea-
tures would be nice to be supported. We describe our dbxlink proposal and corre-
late it with existing proposals in Section 3. We give a high-level description here
since the formal details of dbxlink can be found in [BFM06], and then report
our experiences with extending a “common” XML database system with this
functionality in Section 4 before closing with some concluding remarks.

XML and XLink. XML has been designed and accepted as the framework
for semi-structured data. XML data is not required to be self-contained on an
individual server, but may include links to XML data on other servers. Such
references inside XML data can be expressed by the XML Linking Language
(XLink) [XLi01,XLi06]. XLink provides special tags in the xlink namespace that
tell an application that an element is equipped with link semantics. The well-
known HTML construct is a simple XLink element whose href
attribute references a document. XLink defines general functionality of such
references: (i) arbitrary elements can be distinguished as XLink elements, (ii)
the allowed values of the href attribute are enhanced for addressing XML data,
and (iii) the behavior of the link can further be specified.

The essential step in (ii) is to allow to specify the remote resource not
only as usual in HTML by a URL optionally extended with an anchor (e.g.,
http://www.example.org#foo), but, suitable for the XML data model, for
addressing nodes. The extended addressing functionality is provided by the
XPointer Framework [XPt03] and the XPointer addressing scheme [XPt02].

XPointer in turn is based on XPath expressions: An XPointer expression of the
form url#xpointer(xpointer-expr) (where the syntax of xpointer-expr is a slight
extension of XPath) identifies a fragment inside the XML document located at
url . E.g., the following XPointer (see also Figure 1 and Example 1 below)

http://www.foo.de/countries.xml#xpointer(//country[@car code=”D”])

addresses the node that represents Germany in http://www.foo.de/countries.xml.

XLink defines several types of links, i.e., simple links that provide referencing
functionality similar to the HTML <a> element, and extended links that allow
for connecting sources by arcs. In this paper, the focus of our interest is on
simple links, where one XLink element with an XPath expression in place of the
xpointer-expr references one or more nodes from a remote document. A simple
link has the following form:

<qname xlink:type=“simple” xlink:href=“xpointer” further-xlink-attributes>

content
</qname>

Example 1 (Simple XLinks) The document countries.xml in Figure 1 con-
tains basic data about countries, and for each country, cities-XX.xml (where XX
is the country’s car code) contains information about the cities in this country.

Query Support for XLink References. How can the instance be queried –
e.g., for finding out how many inhabitants the capital of Belgium has? Although
the W3C’s XML Query (XQuery) Requirements [XMQ05, Sec. 3.3.4/3.4.12 (Ref-
erences)] explicitly state that

“the XML Query Data Model MUST include support for references,

including both references within an XML document and references from

one XML document to another”,

and XLink is a well-established W3C Recommendation, neither XPath nor XQuery
support navigation along XLink references. While for intra-document references,
the id(...) function does this task, and the doc(...) function allows for accessing re-
mote documents, there is not yet complete support for XPointer in XPath/XQuery:
users can select the pointer with

for $pointer in
doc(”http://.../countries.xml”)//country[@car code=”B”]/capital/@xlink:href

but XQuery cannot be told to resolve it.
The crucial point of handling XLink references is the evaluation of a data item

(i.e., the value of the href attribute) as a query. This is currently not possible in
XPath/XQuery, neither in the base language, nor by the functions and operators
given in XQuery 1.0 and XPath 2.0 Functions and Operators [XPQ05].

<!-- http://www.foo.de/countries.xml -->

<countries>

<country car code=”B” area=”30510”>

<name>Belgium</name>

<population>10170241</population>

<capital xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-B.xml#
xpointer(/cities/city[name=’Brussels’])” />

<neighbor xlink:type=”simple” xlink:href=

”http://www.foo.de/countries.xml#
xpointer(/countries/country[@car code=’D’])”

borderlength=”167”/>

:
<cities xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-B.xml#xpointer(//city)” />

:
</country>

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

<capital xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-D.xml#
xpointer(/cities/city[name=’Berlin’])” />

<neighbor xlink:type=”simple” xlink:href=

”http://www.foo.de/countries.xml#
xpointer(/countries/country[@car code=’B’])”

borderlength=”167”/>

:
<cities xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-D.xml#xpointer(//city)” />

:
</country>

:
</countries>

<!-- http://www.bar.de/cities-B.xml -->

<cities>

<city>

<name>Brussels</name>

<population>951580</population>

:
</city>

<city>

<name>Antwerp</name>

<population>459072</population>

:
</city>

:
</cities>

<!-- http://www.bar.de/cities-D.xml -->

<cities>

<city>

<name>Berlin</name>

<population>3472009</population>

:
</city>

<city>

<name>Hamburg</name>

<population>1705872</population>

:
</city>

:
</cities>

Fig. 1. Excerpt of the Distributed Mondial XML Database [May01b]

Simple XPointers. Simple XPointers actually consisting of an fn:id() function
application of the form url#xpointer(id(string)) (equivalent to the “shorthand
pointers” like http://.../country.xml#D in [XPt03]) can be resolved by combining
the doc() and id() functions. In [LS04, Section 7.4.2], a solution by an XQuery
user-defined function is given which is restricted to such simple XPointers:

declare namespace fu = ”http://www.example.org/functions”;
declare function fu:follow-xlink($href as xs:string) as item()*
{ let $docValue := fn:substring-before($href,”#”)

let $x := fn:substring-after($href,”#xpointer(id(’”)
let $idValue := fn:substring-before($x,”’)”)
return fn:doc($docValue)/fn:id($idValue) };

XPath Expressions in XPointers. In the general case, instead of fn:id($idValue),
any XPointer expression must be allowed:

declare function fu:follow-xlink($href as xs:string) as item()*
{ let $docValue := fn:substring-before($href,”#”)

let $path := fn:substring-before(fn:substring-after($href,”#xpointer(”),”)”)

return fn:doc($docValue)/ $path };

Such functionality must evaluate a dynamically constructed XPath expression.
This is not yet available in XQuery (and can also not be programmed by the
current XQuery 1.0 and XPath 2.0 Functions and Operators [XPQ05]; note that
the function given in [LS04, Section 7.4.2] explicitly returns a message “XPointer
Syntax nicht unterstützt/XPointer syntax not supported” in this case).

The required functionality is available in Saxon [saxon] as an extension func-
tion saxon:evaluate(string) where the above function can be expressed as

declare function fu:follow-xlink($href as xs:string) as item()*
{ let $docValue := fn:substring-before($href,”#”)

let $path := fn:replace($href, “^.*#xpointer.(.*).$”,“$1”)
return fn:doc($docValue)/saxon:evaluate($path) };

[RBHS04] proposes another XQuery extension as “execute at url xquery {xquery}”.
Then, queries use –similar to the id function– an explicit dereferencing, e.g.

doc(”http://.../countries.xml”)//country[@car code=”B”]/

capital/ fu:follow-xlink(@xlink:href) /population .

With respect to the applications where XLink references are used, we argue that
implicit dereferencing is preferable, seeing XLink elements as embedded views,
like doc(”http://.../countries.xml”)//country[@car code=”B”]/capital/population.

2 Applications

Data Integration. An integrated view over distributed, autonomous data can
be defined according to a given target DTD or XML Schema. In this case, the
integration approach is realized by the Global as View (GAV) [Len02] approach,
i.e., queries are answered by view unfolding which in this case amounts to evalu-
ating the XPointer and integrating its result into the surrounding structure. By
this, also calls to Web Services can be integrated via XLink.

Example 2 Consider a similar structure as in Example 1, but instead of the
parts of the distributed Mondial database, not the “own” city data is referenced,
but remote, autonomous city data residing at http://www.geohive.com/. Here,
referencing remote data (e.g., http://www.geohive.com/cy/c de.xml for German
cities) guarantees that in case that this data is updated, subsequent queries always
return the most up-to-date results.

Data Integration Process. Not only the final result of an integrated view can
be expressed by XLink references: we have shown in [May05] how to carry out
the integration process by partial materialization of an integrated XML instance.
Nodes that are only referenced from the so far integrated fragment are integrated
by suitable XLinks. When the integration process proceeds, the materialized
fragment is minimally extended just by the structure that is generated by the
integration, still referencing as much as possible the remote data-carrying nodes.
Queries are actually evaluated against (i) the partially materialized integrated
database, and (ii) remaining parts that reside in the original sources. This has
the advantage that in case that remote data is modified, any query against the
integrated model uses the up-to-date modified data.

Data Reorganization and Splitting. When XML documents grow, it is
sometimes preferable or necessary to split them over several documents or even
servers. In this case, the original schema should be kept, seeing the integrated
document as a GAV view over the –now distributed– data. Then, the same
queries that were stated against the original instance can also be used against
the split-up instance.

Requirements. The above list shows that XLinks can be applied as a ba-
sic mechanism for syntactical representation of references in several scenarios.
This basic mechanism has to be equipped with a semantics that supports the
application and defines how actually to deal with the references:

1. modeling: how to integrate the referenced nodes with the referencing docu-
ment in a logical model,

2. querying: how to express and evaluate queries against this model.

It is preferable that the result of (1) is a standard XML document according to
a given target DTD or XML Schema. Then, the semantics of (2) is obvious since
common XML query concepts (i.e., XPath, XQuery, XSLT) can be immediately
used without the need for explicit dereferencing.

In contrast, the proposals described in Section 1 are directly based on the
original XML structure (the XML Infoset [XML99]) and do not use any logical
model of the XLink elements. All of them require that the query expressions
include explicit dereferencing operations. The use of an explicit navigation op-
erator requires non-semantic navigation steps along the xlink:href attribute. The
above applications for data integration and splitting with obtaining/retaining
an original DTD or XML schema are not possible with them.

Thus, a transparent modeling as an XML-to-XML transformation where the
XLink elements are present only on the syntactical level, but queries navigate in
a logical model along semantic notions is desirable.

3 Proposed Solutions

Several solutions have been proposed up to now that deal with distributed and/or
linked XML documents. We start with our dbxlink approach as described in
detail in [BFM06], which keeps close to XML and XPath, and then discuss other
approaches that cover similar topics and can be used for such issues.

3.1 The DBXLink Approach

In [BFM06], we presented the dbxlink approach for handling distributed XML
data where XLink elements are extended with attributes in the dbxlink name-
space that specify the modeling, evaluation strategies, and caching of remote
query results of the links. Here, links are transparent, i.e., we define a logical,
transparent model for mapping distributed, XLinked XML documents virtually
to an integrated XML instance: The XLink elements are seen as view definitions
that integrate the referenced data within the referencing XML instance where
the XLink element contains the following attributes (see [BFM06] for details):

– specification of the referenced nodes by xlink:href,
– how they are mapped into the surrounding instance by dbxlink:transparent,
– when (at parsing time or at query answering time) the XPointer is actually

evaluated by dbxlink:actuate,
– where (query shipping, data shipping or hybrid shipping) the evaluation

takes place by dbxlink:eval, and
– whether intermediate results are cached by dbxlink:cache.

This virtual instance can then be processed by standard languages like XPath,
XQuery, or XSLT. The variety of modeling variants (e.g., replacing the link
element by the referenced nodes, or keeping the link element and inserting the
contents of the referenced nodes into it, or attaching the referenced nodes as
reference attributes to the element that surrounds the XLink element) is formally
discussed in [BFM06]. There, also implementation aspects and pitfalls (ancestor
axis, cycles) are discussed.
Concerning the above scenarios, this modeling flexibility allows

– to define an integrated view over remote data sources according to a given
target DTD or XML Schema, and

– splitting an existing XML instance at arbitrary edges (i.e., subelement edges
and also reference attributes) while keeping the original DTD or XML Schema.

Since the logical model is an XML instance, XPath, XQuery and XSLT can be
applied to it as usual. dbxlink allows for controlling when, and whether, the vir-
tual instance is actually materialized; usually, it is not materialized, but queries
are just evaluated against the logical model via appropriate algorithms.

XPath vs. XQuery and XSLT. Note that the actual work is only concerned with
extending XPath for smoothly dereferencing of XLinks according to the logical
model: The addressing of nodes is done completely within XPath. Thus, extend-
ing the XPath module of an XQuery and/or XSLT system makes this functional-
ity also available for XQuery and XSLT. The approach has been implemented as
an extension to the eXist [exi] XML database system, an open-source implemen-
tation of the common languages of the XML area, supporting XPath/XQuery
as query languages.

We will discuss the general applicability of this approach in Section 4.

3.2 Comparison with Related Approaches

XLink for Browsing. Up to now, the XLink approach is primarily interpreted for
browsing, as it is mirrored by the W3C XLink Recommendation [XLi01] where
several attributes for link elements are defined that specify the behavior of the
link element during browsing. The show=’embed’ behavior of XLink can be seen
as one special case of the above approach, specified by transparent=“drop-element
insert-nodes” replacing the XLink by the referenced contents. In this case, also a
logical model is defined that is directly materialized and presented as XHTML.

XInclude. A restricted approach for distributed documents is proposed with XIn-
clude [XIn04]: the <xi:include href=“uri” xpointer=“xpointer”> element provides
also a uri and an xpointer . XInclude defines a fixed XML-to-XML transformation
where the xi:include elements are replaced by the corresponding included items.
In fact, this model generalizes XLink’s browsing behavior for show=’embed’,
replacing the XLink by the referenced contents. The specification of XInclude
also corresponds to the dbxlink specification transparent=“drop-element insert-
nodes” and actuate=“parse”, i.e., the target is included when the document is
loaded/parsed, materializing the model completely.

General Investigations on Distributed Semistructured Data. In [Suc02], distri-
buted query evaluation for general semistructured data graphs is investigated.
Queries are split into decomposed queries, then, their parts are evaluated in-
dependently at each site, and the result fragments are reassembled. The logical
modeling of [Suc02] is similar to XInclude. In [BG03], distribution of XML repos-
itories is investigated, focussing on index structures for answering queries.

Other approaches to distributed XML data apply a schema-based distri-
bution. There are no explicit references in the data, but schema components
are associated with databases and identified by their types and key attributes.
During query answering the different databases are queried (here, a database
dictionary is needed which tells where the data to certain schema components
can be found) and the fragments are put together in the answer.

Example 3 (Schema-based Distribution) Consider a similar structure as
in Example 1. For a schema-based distribution, all country data is still in one
database, but also all city data is together in one database.

In contrast, by using XLinks, the city data for each country can reside in an
individual database, or even on different hosts. Explicit references in the data
here allow for full flexibility without need for a central database dictionary.

Active XML. A general approach for integrating intensional data generated by
Web Services into XML documents is proposed by Active XML [ABM+02]. With
this technology, calls to Web Services are embedded into XML documents by
<axml:call> elements.

Active XML on the one hand and XInclude or dbxlink on the other hand
differ significantly wrt. generality (Active XML) and specialization (XInclude
and dbxlink) and in the degree of integration with the database functionality.
While XInclude and dbxlink are incremental extensions to the existing concepts
of XLink and XPointer, targeting to provide a transparent data model and sup-
port XPath/XQuery for them from the database point of view, Active XML is
a generic extension of functionality towards Web Services. Nevertheless, dbxlink
and Active XML can be used to implement each other: on one hand, an Active
XML service that implements the dbxlink modeling and takes a dbxlink-extended
XLink element as input could return the appropriate XML fragment. On the
other hand, XLink elements with dbxlink evaluation that refer to Web Services
can be used for implementing functionality like Active XML, providing higher
modeling flexibility (which is the main focus of the approach), but less opera-
tional alternatives (i.e., no active functionality).

4 Enabling XPath/XQuery Engines for Handling XLinks

Between XInclude on the one side and Active XML on the other side, the dbxlink
approach is specialized to XLink, and provides functionality that we think is
necessary and sufficient for using XLink for references between XML instances,
and for querying these. In this section, we discuss how query engines have to be
modified in order to handle queries on distributed, interlinked XML instances
according to the dbxlink model. Recall that the queries are stated wrt. the DTD of
the integrated GAV view and must be evaluated based on the original documents.

Naive Approach. An intuitive, naive approach to achieve this would consist of
two steps. First, materialize the whole virtual instance induced by all interlinked
XML instances wrt. the contained XLinks and their dbxlink directives. Then, tell
the query engine to evaluate the given XPath expression on this new instance.
This approach is not suitable for two reasons. In case of many distributed docu-
ments, it might be time-consuming to fetch all partaking XML documents and
to compute the virtual instance, and usually, not the whole instance is needed to
answer the given query. Even worse, the materialized view might contain cycles
and thus the straightforward materialization process might not terminate.

4.1 Dynamic Query Evaluation

Given an XPath expression, we assume that it has the following form

doc(url)/step1/step2/. . . /stepn.

In our distributed setting, we require XPath queries to start with the doc()
function for specifying an XML document which shall serve as a starting point
for evaluating the query. The query itself consists of n location steps.

There are several possibilities how XPath query engines evaluate XPath
queries. We discuss different approaches and show how the navigation across
XLinks can be integrated accordingly.

Stepwise Result Set Evaluation. The most common and intuitive method
(which is also induced by the semantics definition by the W3C in [XPa99] or
other sources, e.g., [Wad99]) for evaluating XPath queries is to subsequently
apply all location steps. In every step, the set of nodes selected by the previous
step is called the current context ; in the first step, the document node is the
initial context. Then, for each node of the current context, the current step
is evaluated, selecting a sequence of matching items, i.e. attribute or element
nodes, or atomic values that form the context for recursively applying the next
step. Note that not complete intermediate results are materialized, but only local
contexts on the way to the next step. Most XPath engines like Saxon, Xalan,
and eXist, the native XML database system we chose for an implementation,
use this strategy.

Extension of the Stepwise Evaluation. In order to implicitly replace all
relevant link elements during navigation in an XML tree, thus making the navi-
gation transparent, all subelements of every node belonging to the context have
to be analyzed: any XLink subelement of the current context node can poten-
tially be replaced by one or more nodes that are relevant for the next step. Thus,
a kind of lookahead evaluation in order to make the required nodes available for
the next step has been implemented, temporarily materializing fragments of the
virtual instance on-demand.

4.2 Example Evaluation

In the general case, the navigation across XLinks takes place as follows. Consider
an expression xpath-expr1/xpath-expr2, where a result node of xpath-expr1 con-
tains a simple XLink element with an XPointer url#xpointer(xpath-exprx). For
the most “intuitive” case, assume that the remote server is capable of answering
XPath queries. The query xpath-exprx is thus submitted to the server at url that
transfers the result which is then mapped into the current context. Then, the
local query evaluation continues with (the first step of) xpath-expr2.

Consider again the example “capital” query whose evaluation is illustrated in
Figure 2: /countries/country[@car code=”B”]/id(@capital)/population (note that
we chose the modeling dbxlink:transparent=“make-attribute insert-nodes” which
turns the capital into a reference attribute to adhere to a “given” target DTD). In
the distributed Mondial database (cf. Figure 1), after evaluating xpath-expr1 :=
/countries/country[@car code=”B”], the capital XLink subelement is a child node

of the context element that represents Belgium and it has to be expanded. The
rest of the query is then xpath-expr2 := id(@capital)/population, and
xpath-exprx := “http://dbis05/cities-B.xml#xpointer(//city[name=’Brussels’])” is
the XPointer expression.

As illustrated in Figure 2, xpath-exprx is sent to the remote server which
returns the city node for Brussels. The screenshot in Figure 3 illustrates the
communication between two servers when resolving the XPointer in the cap-
ital XLink subelement of Belgium traced by the Apache Axis TCPMonitor.
On the left hand side, the corresponding GET request for http://dbis05/cities-
B.xml//city[name=“Brussels”] from the country server (ap34) to the city server
(dbis05) can be seen, whose result, i.e., the XML fragment representing Brussels,
is shown on the right hand side.

Fig. 2. Querying the Distributed Mondial Database

Once the local server has received the XML data for Brussels, it maps it into
a reference attribute of its parent element Belgium (as required by the model-
ing dbxlink:transparent=“make-attribute insert-nodes”): The new, local Brussels

node is extended with a (local) ID attribute with value brus-id . Additionally,
an IDREF attribute node capital=“brus-id” is added to the Belgium element
in the currently materialized context. Then, the remaining part of the original
query, xpath-expr2 = id(@capital)/population is evaluated locally (using the new
IDREF/ID attributes to navigate from the Belgium element to Brussels).

Fig. 3. Communication: Answer Shipping

4.3 Extending Alternative Evaluation Strategies

Iterator-based Evaluation. Relational database systems usually do not mate-
rialize intermediate results except when needed for aggregations; instead combi-
nations of iterators are used that implement the algebra tree. Here, the lookahead
evaluation can be covered inside the iterators that smoothly return the actual
sequence of children or attributes in the logical model. Such an evaluation has
been used in first experiments when extending the LoPiX system [May01a].

[GKP05] present an algorithm that reduces the worst-case complexity of
XPath from exponential (in the size of the query) to polynomial time. For this,
the proposed algorithm uses a kind of tabling via dynamic programming where
earlier results are stored for later lookup. These context-value-tables contain
combinations of contexts (given as node, position in the context and size of the
context), expressions and the resulting node set. This approach can easily be
combined with the caching of the results of XPointers in the dbxlink approach.

Non-XPath-based Query Languages. Since the core of the dbxlink approach
is only concerned with defining an XML-to-XML mapping, its usage is not re-
stricted to XPath-based, or navigation-based at all, environments. For example,

the Xcerpt language [BS02] uses positional query terms that are matched against
an underlying XML instance via unification simulation. Since in fact individual
bisimulation paths are again navigational, integrating the expansion of XLinks
into these navigation steps (using the same basic functionality and mappings as
in our eXist reference implementation) would provide the required functionality.

Distributed Query Evaluation. In the above example, the actual evaluation
of the XPointer took place at the referenced host and evaluating the remaining
query locally (hybrid shipping). Other evaluation strategies allow to fetch the
whole referenced document (data shipping) and evaluate the remaining query
locally, or to rewrite the remaining query with the XPointer and evaluate both
remote (query shipping). Intermediate results can be cached. The above func-
tionality has been implemented in the eXist-based system.

Approaches that focus on distributed XML query evaluation in general like
[Suc02,BG03] are orthogonal to ours (where the focus is on the modeling and
handling of the interplay of links seen as views) and could probably be applied
for a more efficient implementation.

5 Conclusion and Perspectives

We discussed the situation of employing the XLink mechanism for express-
ing references between XML instances. We have shown how the support for
querying along XLinks given by the dbxlink approach can be integrated into
XPath/XQuery evaluation algorithms and engines, providing a proof-of-concept
implementation. The more elaborate and efficient handling of distributed queries
poses a lot of questions that call for combinations with results of other work.

Projecting XML Fragments. For reducing the amount of data transmit-
ted from one server to another, the techniques of projecting XML documents
proposed in [MS03] can be applied. Given the remaining part xpath-expr2, the
referenced XML fragment can be reduced significantly to the projection relevant
wrt. the query before transmitting it.

XPointer Containment. When an XML document containing XLinks is parsed
and stored, the static set of links can be detected. XPath query containment al-
gorithms as suggested e.g. in [MS04] can be used for the corresponding XPointer
expressions. Then, assuming hybrid shipping and caching, queries that are sub-
sumed by other links that are already cached, can be answered using the cached
knowledge.

Further relevant work that might be worthwhile to be incorporated into our
framework comprise parallel evaluation of remote queries, refined caching strate-
gies, optimization strategies for local evaluation of XPath queries and stream
processing of the results of XPointers, as well as strategies based on metadata,
schema reasoning, and path indexes for finding out which XLinks will contribute

to the result of a given query. In a global scale, such strategies require a sophis-
ticated P2P-based infrastructure with appropriate communication. Hence more
specialized research results, some of which are mentioned above, can be applied.
Acknowledgements. This work is supported by the German Research Foun-
dation (DFG) under grant no. MA 2539 within the LinXIS project.

References

[ABM+02] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber. Active
XML: Peer-to-Peer Data and Web Services Integration. In VLDB, 2002.

[BFM06] E. Behrends, O. Fritzen, and W. May. Handling Interlinked XML Instances
on the Web. In EDBT, Springer LNCS 3986, pp. 792–810, 2006.

[BG03] J.-M. Bremer and M. Gertz. On Distributing XML Repositories. In WebDB,
pp. 73–78, 2003.

[BS02] F. Bry and S. Schaffert. Towards a declarative query and transformation lan-
guage for XML and semistructured data: Simulation Unification. In ICLP, Springer
LNCS 2401, pp. 255–270, 2002.

[exi] eXist: an Open Source Native XML Database. http://exist-db.org/.
[GKP05] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing

XPath Queries. ACM Transactions on Database Systems (TODS), 30(2), 2005.
[Len02] M. Lenzerini. Data integration: a theoretical perspective. In ACM Intl. Con-

ference on Management of Data (SIGMOD), pp. 233–246, 2002.
[LS04] W. Lehner and H. Schöning. XQuery. dpunkt, 2004.
[May01a] W. May. LoPiX: A System for XML Data Integration and Manipulation. In

Intl. Conf. on Very Large Data Bases (VLDB), 2001.
[May01b] W. May. The Mondial Database, 2001. http://dbis.informatik.

uni-goettingen.de/Mondial/.
[May05] W. May. Logic-based XML data integration: A semi-materializing approach.

Journal of Applied Logic, (3):271–307, 2005.
[MS03] A. Marian and J. Siméon. Projecting XML Documents. In VLDB, 2003.
[MS04] G. Miklau and D. Suciu. Containment and Equivalence for a Fragment of

XPath. Journal of the ACM, 51(1):2–45, 2004.
[RBHS04] C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. Distributed XQuery. In

Workshop on Information Integration on the Web (IIWEB), 2004.
[saxon] M. Kay. SAXON: The XSLT and XQuery processor. http://saxon.sf.net/.
[Suc02] D. Suciu. Distributed Query Evaluation on Semistructured Data. ACM Trans-

actions on Database Systems (TODS), 27(1):1–62, 2002.
[Wad99] P. Wadler. Two semantics for XPath. 1999. http://www.cs.bell-labs.com/

who/wadler/topics/xml.html.
[XIn04] XML Inclusions (XInclude). http://www.w3.org/TR/xinclude/, 2004.
[XLi01] XML Linking Language (XLink). http://www.w3.org/TR/xlink, 2001.
[XLi06] XML Linking Language (XLink) Version 1.1. http://www.w3.org/TR/

xlink11, 2006.
[XML99] XML Information Set. http://www.w3.org/TR/XML-infoset, 1999.
[XMQ05] XML Query Requirements. http://www.w3.org/TR/xmlquery-req, 2005.
[XPa99] XML Path Language (XPath) Version 1.0: 1999. http://www.w3.org/TR/

xpath, 1999.
[XPQ05] XQuery 1.0 and XPath 2.0 Functions and Operators. http://www.w3.org/

TR/xquery-operators, 2005.
[XPt02] XPointer xpointer() Scheme. http://www.w3.org/TR/xptr-xpointer, 2002.
[XPt03] XPointer Framework. http://www.w3.org/TR/xptr-framework, 2003.

