

A Performance-Based Methodology To Improve Grid
Exploitation

A. Clematis1, A. Corana2, D. D'Agostino1, A. Galizia1, A. Quarati1

1 IMATI-CNR, Via De Marini 6, 16149 Genova, Italy,
{clematis, dagostino, galizia, quarati}@ge.imati.cnr.it

2 IEIIT-CNR, Via De Marini 6, 16149 Genova, Italy
corana@ieiit.cnr.it

Abstract Due to their complexity, the exploitation of Grid environments is not
a trivial activity for many users, and a key factor is to enable a simplified and
transparent orchestration of resources and jobs. Particularly critical is the
deployment of matching procedures capable to effectively meet user’s
requirements with resources offer. We introduce GREEN a management tool
primarily devoted to the matchmaking process, based on a performance
characterization of both resources and job requirements. Leveraging on a two-
level benchmarking methodology, GREEN allows users to express performance
preference through an appropriate extension to Grid submission and description
languages such as JSDL and Glue. Operating at intermediate level between
applications and Grid middleware, GREEN reduces the gap between users’
needs and available resources thus enabling a seamless exploitation of the Grid.

Keywords: Grid management, Benchmark-driven matchmaking, Grid language
extensions

1 Introduction

Grid environments are service-oriented infrastructures that facilitate the sharing of
instruments, knowledge, data and computational resources managed by different
organizations in widespread locations and supply their exploitation through the
submission and the execution of users’ jobs. Since their first appearance, Grids
showed great potentialities for the scientific community as they allow the definition of
virtual spaces providing huge computational power and collaboration tools to
scientists [1]. Examples of Grid adoption in the scientific realm are found in projects
such as CaBIG, Worldwide LHC Computing Grid, AstroGrid investigating
respectively bioinformatics, high-energy physics and astronomy issues [2- 4]. The
Grid is also exploited to guide business experiments, for example, the Business
Experiments in Grid project (BEinGrid) is aimed to highlight scenarios, solutions and
results in 25 case studies [5].

To support experiments and investigations, distributed resources and jobs have
to be orchestrated in such a way that user’s objectives are addressed without requiring
a deep and difficult interaction with the resources. Actually, the consumption of the
shared resources in a Grid could be not trivial as they are heterogeneous and generally

belong to different Physical Organizations (POs). POs are subject to a variety of
configuration settings and are usually federated in Virtual Organizations (VOs). VOs
group people with similar interests and aims, thus leading to the identification of sets
of common (i.e. most used) applications, each owning specific requirements and
execution modes [6].

Due to the organizational and technological complexity of these environments,
practices and tools to manage resources and to model and maintain their consistent
description are required. In particular, information about resources properties, their
current state and user’s specific requirements is essential to guarantee that a job
submitted by a user will be forwarded to the most appropriate resource. Indeed, this
supply-demand coupling process is a critical one, since it reflects on the effective
execution of each distinct user’ application, and significantly impacts on the overall
performance of a VO as a whole [7]. The responsibility for performing this crucial
activity is commonly left to the matchmaking component, whose main task is to grant
the discovery of available resources and services on the base of the specific properties
defined by users and expressed through pertinent requests [8]. To this end, the
matchmaker may greatly benefit from a performance characterization of resources
based on the employment of benchmarks [9].

Benchmarking represents a powerful mean to investigate, characterize and
compare the performance of different computer systems in order to select the most
suitable resource to execute a class of applications. Considering traditional
microprocessors as well as High Performance Computing systems, it is possible to
outline two categories: Micro-benchmark and Application-specific benchmarks. The
former is apt to profile resources considering isolated low-level capabilities such as
CPU, memory, and interconnection speed [10]. The latter is apt to stress
simultaneously several aspects of the system, and corresponds to the computationally
demanding part of real applications. Moving towards Grids, the characterization of
computational resources through benchmarks is largely acknowledged together with
its intrinsic criticality [11, 12], mainly due to the multi-layered, dynamical,
heterogeneous structure of the Grid, and often hindered by the specific procedures
adopted by each VO in classifying and making resources accessible.

In this paper, we present GREEN, Grid Environment ENabler, a management
tool designed to assist Grid administrators and users to set-up, administrate and
exploit Grid infrastructures, with prior activity the matchmaking process. To fulfil this
goal, GREEN relies on a two-level benchmark methodology, i.e. Micro and
Application-specific, through which every resource of a PO is tagged with the
performance results obtained under different workloads. Operating at intermediate
level between applications and Grid middleware, GREEN focuses on the discovery of
resources satisfying user requirements ordered by performance ranking, while the
selection of any particular amongst them, is left to a scheduler, responsible to apply
the proper policies. To sustain the matching operation, GREEN offers administrators
and users, functionalities to store benchmarks results and to submit jobs, respectively.
From the administrator’s point of view, GREEN supports the creation and
maintenance of the performance description, allowing to efficiently respond to user’s
requests of integrating new relevant application-driven benchmarks. From user’s
point of view, GREEN enables the declaration of a ranking preference for the
resources during job submission, i.e. the selection of the benchmark to guide the

matching process. GREEN receives requests of job submission initiated by users; it
uniforms execution requests, expressed through different Job submission languages,
thus addressing interoperability issues; and carries-out their subsequent submission to
the underlying middleware.

The outline of the paper is as follow. Section 2 discusses some valuable
contributions in the fields of matchmaking and benchmarking on Grid. In Section 3,
we present our two-level benchmarking methodology along with some preliminary
results highlighting its appropriateness in Grid scenarios. Section 4 introduces
GREEN as a management tool for Grid environments, focusing on a technical
overview. Section 5 gives some concluding remarks.

2 Related Works

The implementation of an efficient and automatic mechanism for the effective
discovery of the resources that best fit the requirements of users’ job is one of the
major problems in present Grids. A possible way to improve the efficiency of this step
is to drive the search towards resources that show good performance in the execution
of jobs with similar or known behavior. This issue initially obtained little attention
from the middleware designers and developers, thus several projects and tools
proposed solutions to address the topic.

From the middleware point of view, the Globus toolkit did not provide, originally,
a resource matchmaking/brokering as core service. However, since June 2007, the
GridWay metascheduler [13] has been included in the Globus distribution as an
optional high-level service. GridWay allows users to specify a fixed and limited set of
resource requirements, mainly related to the queue policies of the underlying batch
job systems. Benchmarks are not considered at all, and this choice limits the ranking
of resources. On the contrary, gLite has a native matchmaking/brokering service that
takes into account a richer set of requirements, including benchmark values. This
service is based on a semi-centralized approach, and may result in long waiting time
in the job execution. The set of benchmarks actually considered by gLite, i.e. the
SPEC suite, mainly evaluates CPU performance [14]; thus, the description of system
performance may result partial, hence not completely suitable to specific application
requirements. A more accurate strategy should take into account some of the proper
characteristics of the application at hand, as claimed in Section 3.

Due to the peculiar nature of the Grid, performance evaluation in a dynamical,
heterogeneous context is more complex and less deterministic than in traditional
scenarios. In fact, the Grid has a multi-layered structure, thus benchmarks
investigating performance aspects of the different Grid layers should be considered in
order to grasp a predictable behaviour of a real application run [11]. Actually, besides
the set of interesting parameters to measure the single isolated resource, e.g. CPU
speed, memory and interconnection bandwidth, different factors have to be taken into
account when considering the execution of a benchmark (suite) on Grid. For example,
the Grid Assessment Probes [15] has a means of attempting to provide an insight into
the stability, robustness, and performance of the Grid. The probes are designed to
serve as simple Grid application exemplars and diagnostic tools. They test and

measure performance of basic Grid functions, including file transfers, remote
execution, and Grid Information Services response. GridBench [9] is a complex and
interesting tool that provides a graphical interface to define, execute and administrate
benchmarks. It takes into account interconnection performance and evaluates resource
workload, and can be used to rank Grid resources. The NAS Grid Benchmark (NGB)
suite [16] is defined by NASA, and represents typical activity of Computational Fluid
Dynamics applications. It provides a set of computationally intensive benchmarks
representative of scientific, post-processing and visualization workloads, and tests the
Grid capabilities to manage and execute distributed applications.

A brokering mechanism based on benchmarking of Grid resources is proposed by
Elmroth and Tordsson [17]. However, the scope of the broker is focused on the ARC
middleware and the NorduGrid and SweGrid production environments, and it adopts
an extension of RSL (earlier Globus submission language) to submit user’s jobs,
conversely to our proposal aimed to follow a more interoperable approach.

3 A Two-Level Benchmarking Methodology

To describe Grid resources, we propose a two-level methodology aimed to give a
useful enriched description of resources, and to facilitate the matchmaking process.
Our methodology considers two approaches: I) the use of micro-benchmarks to
supply a basic description of resource performance; II) the deployment of application-
driven benchmarks to get a closer insight into the behavior of resources under more
realistic conditions of a class of applications. Through application-driven benchmarks,
it is possible to add an evaluation of the resources based on the system indicators that
are more stressed by an application.

3.1 Micro-Benchmarks

In order to supply a basic resource characterization, mainly based on low-level
performance capacity, we considered the use of traditional micro-benchmarks. To this
aim, a reasonable assumption is that the performance of a machine mainly depends on
the CPU, the memory and cache, and interconnection performance [10]; therefore, we
individuated a concise number of parameters to evaluate in order to provide an easy-
to-use description of the various nodes. We selected a set of five, largely widespread,
benchmarks able to capture relevant metrics to characterize computational resources’
performances. In particular, Flops provides an estimate of peak floating-point
performance (MFLOPS) by making maximal use of register variables with minimal
interaction with main memory [18]. Stream is the industrial de facto standard
benchmark to measure sustained memory bandwidth [19]. CacheBench is designed to
evaluate the performance of the memory hierarchy of computer systems, expressed by
raw bandwidth in megabytes per second [20]. Mpptest measures the performance of
some of the basic MPI message passing routines in a variety of situations [21]. Bonnie
performs a series of tests on a file of known size. For each test, it reports the bytes
processed per CPU second, and the percentage of CPU usage [22].

The micro-benchmarks used in this phase generally return more than a value. To
obtain results easily usable in the matchmaking process, we considered for each
benchmark synthetic parameters or the most significant value. These results are
managed by GREEN to populate the benchmark description of resources.

3.2 Application-Specific Benchmarks

Micro benchmarks are a good solution in the case of applications stressing mainly one
architecture aspects, e.g. CPU intensive, or not frequently executed. Indeed, usually
the participants to a VO have similar aims, from which a set of the most used
applications emerges. In these cases, a more suitable approach is to evaluate system
performance through application-specific benchmarks that approximate at best the
real application workload. This benchmarking level offers two procedural approaches
a) the use of a “light” version of the application at hand, with a reasonable
computational cost but still representative of the real behaviour; b) the use of well
known application specific benchmarks largely employed in the scientific community.

As case studies, we considered some applications of our interest, i.e. image
processing, isosurface extraction, and linear algebra. For the first two classes of
applications, we adopted approach a) using a sequential code aimed to emphasize
precise aspects of the considered metrics. With respect to image processing, we
selected a compute intensive elaboration applied to a reference image of about 1 MB;
in this way, CPU metrics are mainly stressed. Hereafter we refer to this code as
Image Processing Benchmark (IPB). The isosurface extraction application provides a
more exhaustive performance evaluation of the system, as it also heavily involves I/O
operations. In this case, we considered the processing of a small 3D data set of 16
MB, producing a result of 67 MB. Following approach b) for the class of applications
based on linear algebra, we selected the well-known High Perfomance Linpack (HPL)
benchmark [23]. For application-driven benchmarks, the metric considered to
characterize resources is wall clock time. Similarly, to the micro-benchmarks case,
the results are stored in the internal data structure of GREEN.

3.3 Methodology Evaluation

To evaluate the effectiveness of our methodology, we experimented upon two specific
resources: 1) a Beowulf Cluster made up of sixteen nodes interconnected by a Gigabit
switched Ethernet. Each node is equipped with a 2.66 GHz Pentium processor, 1 GB
of RAM and two EIDE disks interface in RAID 0 2) the SiCortex SC1458 system
with 243 SiCortex node chips, each equipped with six cores; linked by a proprietary
interconnection network supporting large message bandwidth of 4 GBytes/sec. This
system pursues the Green Computing guidelines, through extremely low energy
consumption. By a quick comparison, clearly emerges that the two resources vary
greatly both in terms of the number of CPUs and in terms of individual CPU
performance. In fact, SC1458 has a greater number of CPUs than the Beowulf
Cluster, but the latter has faster CPUs and better memory bandwidth. Notwithstanding

from these technical differences, one may infer consequent performance results, this
expectation is contradicted by our experiments.

Starting from micro-benchmark results, the SC1458 achieves better performance in
almost each case and parameters evaluated, when considering aggregate computing
power. However, its single cores have relatively low performance compared with the
single CPU of the Beowulf Cluster, and the actual power of the resource derives from
the high number of provided cores and the native fast connection among processes.
To outline CPU performance, we depicted in Figures 1 and 2 the results obtained with
FLOPS and STREAM.

426

183

6819

25686

Beowulf Cluster

SiCortex.SC1458

R
es

ou
rc

es

MFLOPS

Aggregate Power
Single CPU

Figure 1 Comparison between resources according to FLOPS

Both benchmarks have been run on a CPU/core independently, and then the
aggregated results are gathered to represent the performance of the whole parallel
resources [9]. For each resource, we present the evaluation of the single CPU/core and
the parallel resources.

1188

449

19005

62916

Beowulf Cluster

SiCortexSC1458

R
es

ou
rc

es

MB/Sec

Aggregate Power
Single CPU

Figure 2 Comparison between resources according to STREAM

Also with respect to interconnection evaluation, the SC1458 achieved definitely
better performance, as reported in Figure 3. We tested point-to-point communication
performance, through the MPPTest benchmark; results are expressed in MB/Sec. As
mentioned above, the Beowulf Cluster employs a Gigabit Ethernet, while SC1458 has
a proprietary interconnection that performed significantly better.

0

20000

40000

60000

80000

100000

120000

140000

0 1 2 3 4 5 6 7 8

Size (Mbytes)

Ti
m

e
(µ

s)

Beowulf Cluster
SiCortex.SC1458

Figure 3 Comparision wrt MPPTest

Considering the second level of benchmark, the situation is quite different. In fact,
depending on the application domain, better results were obtained alternatively by
both resources. We conducted our tests by using IPB and HPL benchmark, and
considering the execution times (Wall Clock Time) as metric to evaluate
performance. The results are normalized according to a base value; to this end, we
adopted the values returned from the Beowulf Cluster. Table 1 reports the values
obtained for IPB and HPL benchmark. As already said, in the latter case, we
considered all available processes for the Beowulf Cluster, i.e. 16 nodes, while for the
SC1458 resource we examined separately the use of different number of processors
(16, 64, 128).

Table 1 Comparison of executions performance, normalized wrt Beowulf Cluster

 Beowulf
Cluster

SC1458 SC1458
16 p

SC1458
64 p

SC1458
128 p

IPB 1 6.1
HPL benchmark 1 0.44 0.13 0.08

The first row of Table 1 shows that Beowulf Cluster performed significantly better

considering the image processing application, but the situation is exactly the opposite
for HPL benchmark as expressed in row 2, which highlights that SC1458 outperforms
Beowulf up to a factor 10, when increasing the number of processes. This behaviour
depends on the different requirements of the two applications. In the analyzed cases,
IPB solely benefits from fast single CPU, while HPL tests the entire system and
benefits from high number of processes linked with fast connections. Starting from
these remarks, it is quite evident that the Beowulf Cluster is faster in the execution of
IPB, while it poorly performs with respect to HPL. On the contrary, with respect to

HPL, SC1458 outdoes the Beowulf Cluster, but it does not achieve good results on
the proposed image processing operations.

Following our methodology, it clearly emerges the differences in the performance
of both resources in each level of benchmark. SC1458 definitely performs better than
the Beowulf Cluster with respect to the micro-benchmark. However, considering the
second level of benchmark, the Beowulf Cluster appears as the suitable choice for the
execution of specific applications. This performance divergence also occurred in other
similar comparisons we conducted for all the other benchmarks previously described,
and thus testifies the appropriateness of our approach.

4 GREEN a Benchmark-Based Tool to Manage Grid Resources

To reduce the gap between users and resources, we designed GREEN, a Grid
management tools mainly aimed to perform matchmaking based on a performance
characterization of resources and jobs. GREEN bases on a distributed approach and
leverages on a overlay network infrastructure to connect the various POs constituting
a Grid [24]. GREEN introduces some features able to satisfactory fulfil the diverse
needs of Grid stakeholder:

• Insertion of benchmark information by system administrators;
• Supporting users to the submission of Job to the Grid;
• Translation of job submission expressed into a JSDL document into the specific

submission language accepted by the middleware;
• Execution of the (distributed) matchmaking process;

These functionalities rely on a proper description of resources required both on
the job/user and on the owner side, necessary to accomplish the coupling task. In fact,
according to our methodology, benchmarking outcomes are used to annotate (tagging)
Grid resources. These tags are then compared with the benchmark-related
requirements, contained in the job documents submitted by users. Analysing the main
success proposals, carried out by different projects and research groups in the field of
resources and job description, and aimed to deal with different middlewares
transparently to Grid users, we defined two extensions capable of capturing the
benchmark characterization of both resources and jobs.

4.1 Extending Languages for Job and Resource Characterization

As to resources characterization, we adopted the Grid resources vision offered
by the Glue 2.0 specification language [25], which foresees that benchmark-value
copies are represented as Glue entities according to the XML reference realizations of
Glue 2.0 [26]. By employing the openness of BenchmarkType_t, the set of
recognized benchmarks is extensible without any change to the document schema.
This solution allows the seamless insertion of new benchmarks data as soon as they
should appear relevant to the users of a VO. The specificity of our two-level

methodology is modelled with the extension mechanism defined in Glue. We
enriched the Benchmark_t type adding the BenchLevel element to specify the
benchmark level (i.e. two string values micro and application). An excerpt
from a document related to the execution of micro-benchmark Flops against the
Beowulf Cluster, whose head node has IP 150.145.8.160, resulting in 480 MFlops is:

<Benchmark>
 <LocalID>150.145.8.160</LocalID>
 <Type>MFlops</Type>
 <Value>480</Value>
 <BenchLevel>micro</BenchLevel>
</Benchmark>

Listing 1 Example of the extension to the Benchmark element

The counterpart of benchmarking resources is the ability for users submitting a

job to express their preferences about the performance of target machines. A job
submission request, in addition to stating the application-related attributes (e.g. name
and location of source code, input and output files), should express syntactic
requirements (e.g. number of processors, main memory size) and ranking preferences
(if any) to guide and constraint the matching process on resources. To this end, some
mechanism is required to allow users to explicitly assess these requirements inside the
job submission document.

The three main Job Submission Languages (JSL) currently used by Grid
community are the Globus Job Description Document (JDD) [27], the EU-DataGrid
Job Description Language (JDL) [28], and the Job Submission Description Language
(JSDL) [29] proposed by one of the Working Group of Grid Forum. Evaluating their
major properties and how they differentiate each others, e.g. in the support to express
requirements on resource, we decided to extend JSDL, whose mission is to provide a
standard language to be used on top of existing middlewares. Augmenting JSDL
schema to take into account ranking specification, we introduced an element Rank
(of complex type Rank_Type) devoted to this task. To maintain a desirable,
although not mandatory, uniform lexicon between the JSDL constructs on job side
and the Glue description on resource side, we borrowed from the Glue extension the
definition of BenchmarkType_t, which is embedded as sub-element of Rank.

4.2 Components Description

GREEN is designed as a Grid service based on a distributed and cooperative approach
for Grid resource discovery and ranking. For every PO in a Grid, a GREEN instance
is responsible for the management of updated data about the state of its resources, and
for its exchange with other GREEN instances to satisfy user’s requests. Figure 4
depicts the main components of GREEN, along with some interactions with other
middleware services, notably the Information Service (IS) and Execution
Environment (EE), occurring after the submission of a job. In the following, we
summarise the role and the behaviour of those components:

• The Job Submission (JS) component is the main gateway to GREEN
functionalities; it receives requests of benchmark submission by PO administrator
or jobs submission initiated by users. Depending on the activation mode
(according to the different published signatures), it behaves just like a messages
dispatcher or a translator of JSL documents carrying-out their subsequent
submission to the EE, thus addressing interoperability issues.

• The main task of the Benchmark Evaluation (BE) component is to support

administrator in the characterization of PO resources on the basis of benchmark-
measured performance. Initially, for any relevant benchmark, the administrator
submits a JSDL document to the JS component of the GREEN instance
associated with his PO. After translating the JSDL document into the particular
JSL document compliant with the middleware used by the PO (e.g. JDL for
gLite, JDD for Globus), JS passes it to the Benchmark Evaluator port, which
interacts with the EE to execute the benchmark against all resources/machines
alive. When results are returned, an XML fragment, similar to the one reported in
Listing 1, is created for each resource and inserted in a XML document (i.e.
Benchmark image), which collects all benchmark evaluations for the PO.

• The Resource Discovery (RD) is in charge of feeding GREEN with the state of

Grid resources. RD operates both locally and globally by carrying out two tasks:
1) to discover the state of the PO resources, 2) to dispatch requests to other
GREEN instances. As to the first task, RD dialogues with the underlying IS (e.g.
MDS, gLite IS) that periodically reports the state of the PO in the form of an
XML file largely conformed to the Glue version adopted by the underlying
middleware. This document (namely the PO snapshot) is stored, as it is, in
memory and managed by GREEN to answer to external queries issued by other
clients (e.g. other GREEN instances, meta-schedulers). To accomplish the
dispatching task, RD handles the so called neighbours view, establishing network
routes to other nodes. Depending of the number of POs, this view may be limited
to a reduced set of network addresses to be contacted individually (as in the case
of Figure 3), or deployed via complex data structures and algorithms like those
used in Super-Peer networks such as DHT [30] or random walk [31].

• The Matchmaker performs the core feature of GREEN: the matching of resources
in the Grid and their subsequent ranking, according to the benchmark preferences
expressed by the users. Acting as a distributed matchmaker, GREEN manages
and compares the benchmark-enriched view of resources with user-submitted
jobs, and produces a list of feasible resources (see Figure 4). The task of selecting
the “best” among this list, is left to a (meta)scheduler to which the resource set is
passed, so allowing to apply the preferred scheduling policies to optimize Grid
throughput or other target functions (e.g. response times, QoS,….). Once the
“best” resource is chosen, GREEN will be re-invoked to carry-out the submission
of the job on it, via the EE. To carry out the exchange of message with other
GREEN instances, MM leverages on the services of RD.

Figure 4 exemplifies the submission of an extended JSDL document (i.e. including
benchmark requirements) by a user via Grid portal (Step 1). The Resource Selector

(RS) forwards the document to the JS component of a randomly selected GREEN
instance (2) (e.g. PO1). JS activates the Matchmaker (MM) (3), which, through RD
forwards the document to all the other known GREEN instances and
contemporaneously checks its local memory (4). All the matchmakers filter their PO
snapshot selecting the set of PO resources satisfying the query (including benchmark
preferences). The resources identifiers and their corresponding benchmark values are
included in a list, called PO list, which is returned back to MM, following the routes
expressed by their neighbors’ views (5). MM merges these lists with its own PO list
and produce a Global List, ordered on the ranking values, that is passed to JS (7),
which returns it back to RS (8). RS applies its scheduling policy to determine the
resource to use, and calls the JS of the GREEN responsible of the PO owning the
selected machine (GREEN PO2’s instance in our case), by sending it the extended
JSDL document along with the data indentifying the selected resource (9). This JS
translates the information regarding the job execution of the original JSDL document
in the format proper of the specific PO middleware, stating the resource on which the
computation takes place (producing a JDD document for GT4 resources or a JDL
document for the gLite ones), and finally, activates the Execution Environment in
charge of executing the job represented in the translated document (10).

Figure 4 A user submitting an extended JSDL document via Grid portal

5 Concluding Remarks

To satisfactorily fulfil all the potentialities offered by Grids, users have to be supplied
with practices and tools, able to overcome the difficulties and obstacles present in
such rich but complex environments. In particular, distributed resources and users
applications have to be orchestrated in such a way that user’s objectives are addressed
in the most seamless and effective way. We designed GREEN a management tool,
primarily devoted to the matching of resources and jobs. It operates at intermediate
level between users and Grid middleware, and in this way enables a simplified
management of Grid resources. GREEN is based on a benchmarking methodology
aimed to evaluate the performance of resources, and allowing users to express her
performance preference, through an appropriate extension to Grid submission and
description languages such as JSDL and Glue. The appropriateness of our
methodological approach is documented by the presentation of some experimental
results, which confirmed, in our opinion, the choice of adopting a double level of
benchmark, as a means to reduce the gap between users’ needs and resources offer.

References

1. I. Foster, C. Kesselman: The Grid 2: Blueprint for a New Computing, 2 edition, Morgan
Kaufmann (2003)

2. The cancer Biomedical Informatics Grid Homepage, https://cabig.nci.nih.gov/
3. The Worldwide LHC Computing Grid Homepage, http://lcg.web.cern.ch/LCG/
4. The AstroGrid Homepage, http://www.astroGrid.org/
5. The Business Experiments in Grid, http://www.beinGrid.eu/
6. I. Foster, C. Kesselman, S. Tuecke: The Anatomy of the Grid: Enabling Scalable Virtual

Organizations. International Journal of Supercomputer Applications, V 15, 3, 200-222,
(2001)

7. J. Yu, R. Buyya,.K. Ramamohanarao: Workflow Scheduling Algorithms for Grid
Computing. Metaheuristics for Scheduling in Distributed Computing Environments,
Springer, (2008)

8. X. Bai, H. Yu, Y. Ji, D.C. Marinescu: Resource matching and a matchmaking service for
an intelligent Grid. Int. Journal of Computational Intelligence, v.1, n. 3, 163-171 (2004)

9. G. Tsouloupas, M. D. Dikaiakos, GridBench: A Tool for the Interactive Performance
Exploration of Grid Infrastructures. Journal of Parallel and Distributed Computing,
Elsevier, v. 67, pp. 1029-1045 (2007)

10. R.W. Hockney: The science of computer benchmarking. Software, environments, tools,
SIAM, Philadelphia (1996)

11. F. Nadeem, R, Prodan, T. Fahringer and A. Iosup: Benchmarking Grid Applications for
Performance and Scalability Predictions. In CoreGrid Workshop on Middleware, Springer
Verlag, Dresden, Germany (2007)

12. M.D. Dikaiakos: Grid benchmarking: vision, challenges, and current status. Concurrency
and Computation - Practice & Experience, v. 19, n. 1, pp. 89-105 (2007)

13. E. Huedo, R.S. Montero and I.M. Llorente, A Framework for Adaptive Scheduling and
Execution on Grids, Software - Practice & Experience, v. 34, n. 7, pp. 631-651, John
Wiley & Sons, (2004)

14. gLite 3.1 User Guide, Doc. CERN-LCG-GDEIS-722398, 28 April 2009,
https://edms.cern.ch/file/722398/1.2/gLite-3-UserGuide.html

15. G. Chun, H. Dail, H. Casanova, and A. Snavely: Benchmark probes for Grid assessment.
In: 18th International Parallel and Distributed Processing Symposium (IPDPS 2004),
Santa Fe, New Mexico, USA. IEEE Computer Society (2004)

16. M. Frumking, R.F. Van der Wijngaart: NAS Grid Benchmarks: A tool for Grid space
exploration. Cluster Computing, v. 5, n. 3, pp. 315–324, (2002)

17. E. Elmroth, J. Tordsson: Grid resource brokering algorithms enabling advance
reservations and resource selection based on performance predictions. Future Generation
Computer Systems, v. 24 n. 6, pp. 585-593, (2008)

18. The Flop Benchmark: http://www.netlib.org/performance/papers/flops/flops_2/
19. The STREAM Benchmark: Computer Memory Bandwidth, www.streambench.org
20. Cachebench Home Page, http://icl.cs.utk.edu/projects/llcbench/cachebench.html
21. MPPTest - Measuring MPI Performance, http://www-unix.mcs.anl.gov/mpi/mpptest/).
22. Bonnie Home Page, http://www.textuality.com/bonnie/
23. The LINPACK Benchmark: http://www.netlib.org/benchmark/hpl/
24. A. Clematis, A. Corana, D. D'Agostino, V. Gianuzzi, A. Merlo, A. Quarati: A distributed

approach for structured resource discovery on Grid, Proceeding of CISIS 2008, pp. 117-
125, IEEE Computer Society (2008)

25. S. Andreozzi: GLUE Specification v. 2.0 (rev. 3) (2009),
http://forge.Gridforum.org/sf/docman/do/downloadDocument/projects.glue-
wg/docman.root.drafts/doc15023

26. GLUE v. 2.0 – Reference Realizations to Concrete Data Models, 2008,
http://forge.Gridforum.org/sf/go/doc15221?nav=1

27. http://www.globus.org/toolkit/docs/4.2/4.2.0/user/gtuser-execution.html
28. Job Description Language Attributes Specification for the gLite Middleware, Doc. EGEE-

JRA1-TEC-555796-JDL-Attributes-v0-8, 3/5/2006
29. A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough, D. Pulsipher,

A. Savva: Job Submission Description Language (JSDL) Specification v1.0. Grid Forum
Document GFD, 56 (2005)

30. M. Cai, M. Frank, J. Chen, and P. Szekely, Maan: A multiattribute addressable network
for Grid Information Services, Proc. 4th Int. Workshop on Grid Computing, 2003.

31. C. Rabat, A. Bui, O. Flauzac, A Random Walk Topology Management Solution for Grid,
Lecture Notes in Computer Science 3908, pp. 91-104, Springer, 2006.

