
Crawling Bug Tracker for Semantic Bug Search

Ha Manh Tran, Georgi Chulkov, and Jürgen Schönwälder

Computer Science, Jacobs University Bremen, Germany
{h.tran,g.chulkov,j.schoenwaelder}@jacobs-university.de

Abstract. The Web has become an important knowledge source for
resolving system installation problems and for working around software
bugs. In particular, web-based bug tracking systems offer large archives of
useful troubleshooting advice. However, searching bug tracking systems
can be time consuming since generic search engines do not take advantage
of the semi-structured knowledge recorded in bug tracking systems. We
present work towards a semantics-based bug search system which tries to
take advantage of the semi-structured data found in many widely used
bug tracking systems. We present a study of bug tracking systems and we
describe how to crawl them in order to extract semi-structured data. We
describe a unified data model to store bug tracking data. The model has
been derived from the analysis of the most popular systems. Finally, we
describe how the crawled data can be fed into a semantic search engine
to facilitate semantic search.

Key words: Bug tracking system, Bug crawler, Semantic search

1 Introduction

Trouble ticket systems and bug tracking systems are widely deployed in the infor-
mation technology industry. Software and hardware companies use bug tracking
systems during the development cycle to track bugs and design issues, or during
later phases of the product lifecycle to keep track of defect reports and to obtain
quality indicators. Almost all large open source projects maintain online bug
tracking systems. In addition, there are many bug tracking systems supporting
people who package open source software components for various software dis-
tributions. Some companies provide special online support forums (also known
as communities or knowledge bases) for their products that often resemble bug
tracking systems.

The fast growing amount of online information that can be used to resolve
problems has led to a situation where system administrators and network op-
erators often use search engines in order to find hints how to resolve a specific
problem. However, it is our experience that searching in this way is not as ef-
ficient as we would like it to be; generic search engines do not seem to take
advantage of the data found in trouble ticket or bug tracking systems.

Trouble ticket systems and bug tracking systems contain semi-structured
data. Predefined fields are used to keep track of the status and metadata as-
sociated with a problem report while textual descriptions are used to describe

2 Tran, Chulkov and Schönwälder

the problem and to document the process for resolving the problem. Exploiting
this semi-structured data has been considered a challenge. An early study in [1]
suggests avoiding textual descriptions as much as possible since they cause dif-
ficulties in processing trouble tickets automatically. While this recommendation
makes sense from a programmer’s perspective, it clearly does not match the re-
quirements of users who prefer to write down free-form text. Other studies [2, 3]
exploit only predefined fields that only use binary, numeric or symbolic values,
an approach that has several limitations. These works have experimented with
using trouble tickets as a basis for case-based reasoning (CBR) systems.

The semi-structured data contained in bug tracking systems is a valuable
resource. It can be used to construct specialized search systems that have access
to and knowledge of metadata out of reach to general text-based search engines.
It can also be used to build automated reasoning systems that help to diagnose
problems based on past experience. The goal of the work presented in this paper
is to build a semantics-based bug search system and a bug dataset that can be
used by a distributed case-based reasoning system which we are developing [4,
5]. The aim of our system is to find relevant information quickly and to cope
with the fact that the relevance of bug records changes quickly, due the short
lifecycles of today’s software products and services. Our contribution in this
paper is fourfold:

1. We present a study of popular bug tracking systems and their features that
can be used by semantic bug search or automated reasoning systems.

2. We present two methods to crawl bug tracking systems and to extract data.
3. Based on an analysis of the data models used by existing bug tracking sys-

tems, we develop a unified data model to store bug tracking data.
4. Finally, we apply a multi-vector representation (MVR) [5] to bug reports in

order to enable semi-structured bug data search on the bug database.

The rest of the paper is structured as follows: In Section 2, we provide a study
of some popular bug tracking systems. Section 3 explains how bug data can be
extracted from these systems and Section 4 describes the unified data model we
have developed to store the extracted bug data. Section 5 explains how the data
are used for finding similar bugs and provides an experimental evaluation. We
discuss related work in Section 6 before we conclude the paper in Section 7.

2 Bug Tracking Systems

Trouble ticket systems (TTS) have been widely used by network operators in
order to assure the quality of communication services. A bug tracking system
(BTS) is a special trouble ticket system used to keep track of software bugs. BTSs
in general aim to improve the quality of software products. They do so by keep-
ing track of current problems, and maintaining historical records of previously
experienced issues. They also establish an expert system that allows to search
for similar past problems, and provide reports and statistics for performance
evaluation of the services [6].

Crawling Bug Tracker for Semantic Bug Search 3

Table 1. Overview of bug tracking systems and some of their features (as of October
2007). Items marked with * are optional for each site. † reads dependencies

Tracker License Access Updates Schema Dep.† Search

Bugzilla MPL HTML,XML-RPC* SMTP, RSS* textual optional filter,keywords
Mantis GPL HTML, SOAP* SMTP, RSS graphical yes filter
Trac BSD HTML SMTP, RSS* graphical no filter,keywords

Debian BTS GPL HTML, SMTP SMTP unknown optional filter
phpBugTracker GPL HTML SMTP textual yes filter,keywords

Flyspray LGPL HTML SMTP,RSS,XMPP unknown yes filter,keywords

We explore the features of several BTSs, focusing on several properties that
are important for obtaining data from them. For each BTS we checked whether
the BTS supports the functionality in question, and if so, which bug sites (i.e.,
specific installations of a BTS) support that function. A small sample of our
results for BTSs and sites is given in Table 1 and Table 2 respectively. An
explanation of each column in these tables is given below.

For each BTS, we looked at how the system is licensed for use, how its collec-
tion of bugs can be accessed, whether it is possible to easily receive notification
of updated data, whether the database schema used by the BTS was available,
whether the BTS keeps track of bug dependencies, and whether the BTS can be
searched for bugs with a given property.

The license of a BTS affects its popularity. Generally, large free software
projects tend to prefer a BTS licensed as free software itself. These projects
also tend to be the ones that make their BTS sites public. For this reason, we
excluded proprietary BTSs from our study.

The most important function of a BTS is retrieving bug reports in their most
current states. All systems must at a minimum have an HTML-based web in-
terface, but convenient automated retrieval requires a formalized programmatic
interface, either based on XML-RPC or SOAP. While all BTSs support e-mail
(via SMTP) as an update notification mechanism, e-mail is non-trivial to use
for a web application. For instance, to receive notifications for all bug reports
in a BTS by e-mail, an application would need to have its own e-mail address,
register an account with that e-mail address in the BTS, and subscribe for ev-
ery bug report of interest. Some systems support RSS or Atom feeds, which are
significantly easier to use by a program.

In order to understand the structure of the information stored in a BTS, we
investigated whether the underlying data model is documented. Some systems
provide this information in a textual format while others provide graphical rep-
resentations, usually in ad-hoc notations. Some systems do not provide a clear
description of the data model underlying the BTS and it is necessary to reverse
engineer the data model by looking at concrete bug reports.

Tracking any dependency relations between bug reports is useful, because it
helps to correlate bugs. Generally, a bug is dependent on another bug if it cannot
be resolved or acted upon, until the dependency is itself resolved or acted upon.

Some systems allow full keyword search for their reports, while others only
support searching via a set of predefined filters applied on the entire bug database.

4 Tran, Chulkov and Schönwälder

The former is more useful for an automated system that aims to provide keyword
search capabilities itself.

Table 2. Some popular bug tracking sites (as of October 2007). A plus indicates that
we were unable to get precise numbers and our numbers present a lower bound. † reads
dependencies

Site System Version Bugs Activity Custom RPC RSS Dep.†

bugs.debian.org Debian BTS N/A 349346 1036 N/A no no no
bugs.kde.org Bugzilla unknown 9655+ 24+ light no no no

bugs.eclipse.org Bugzilla unknown 204600 746 heavy yes yes yes
bugs.gentoo.org Bugzilla unknown 183365 538 none no yes yes

bugzilla.mozilla.org Bugzilla 3.0.1+ 173885 721 none yes yes yes
bugzilla.redhat.com Bugzilla 2.18-rh 177724 unknown light yes yes yes

qa.netbeans.org Bugzilla unknown 116639+ unknown heavy no no yes
bugs.digium.com Mantis unknown 10765 63 none no yes yes
bugs.scribus.net Mantis 1.0.7 6142 24 none no yes yes

bugtrack.alsa-project.org Mantis 1.0.6 3430 22 none no no yes
dev.rubyonrails.org Trac 0.10.5dev 11493+ unknown none no yes no
trac.edgewall.org Trac unknown 5948 unknown none no yes no

bugs.icu-project.org Trac 0.10.4 5845 unknown none no yes no

Based on popularity and available documentation, we chose to focus on
Bugzilla, Mantis, Trac and Debian BTS. With the exception of the Debian BTS,
which is only used for the Debian operating system, the BTSs we chose all pub-
lish lists of known public sites that use them for bug tracking. Starting from
these lists, we investigated all sites that are accessible and did not require au-
thentication to browse their repositories (about 85 sites). Table 2 lists the sites
with the largest number of bugs for each BTS. For each site, Table 2 shows which
version of what BTS is used, how many bugs are stored there in total and how
many have been added in one week, indicating the activity of the site. The table
also specifies whether the site has been customized from its base BTS, whether
it supports a programmatic XML-RPC interface or RSS feeds, and whether the
site supports bug dependency relations.

The version of the underlying BTS largely impacts the set of available fea-
tures. For example, Bugzilla only supports RSS feeds as of version 2.20, and
XML-RPC as of version 3.0. Note that some sites hide this version number, pos-
sibly because this information may be sensitive with respect to security exploits
in the BTS source code. The number of stored bugs and the rate of opening
new bugs indicate the popularity and activity of a site. The margin between the
most popular Bugzilla sites and the most popular sites using other BTSs is very
large. We believe that the reason is that Bugzilla was the first widely-known
open-source BTS when it was released in 1998. Mantis was only started in late
2000, and Trac is even newer.

Some sites customize their BTS in order to provide better integration of the
bug tracker into the rest of their web site. While some sites only change the visual
appearance of the BTS (marked as “light” customization in Table 2), others
also modify the functionality of the BTS (marked as “heavy” customization).
Customized sites pose a problem for automated bug retrieval: a system that

Crawling Bug Tracker for Semantic Bug Search 5

is designed to derive structured data from presentational HTML (see Section
3.2) will generally fail to handle a significant change of a site’s appearance. In
addition, customizing a BTS naturally makes upgrading the site to a newer
version of the BTS much more difficult; therefore customized sites tend to lag
behind in version number, and consequently lack features such as RSS feeds or
XML-RPC support.

Programmatic interfaces provided by protocols like XML-RPC or SOAP can
be used by programs to directly query a bug tracker for structured data, without
having to guess the value of any fields presented in human-readable form (HTML,
SMTP). While this greatly simplifies interfacing to that bug tracker, no BTS
currently makes such an interface a default option. It is an optional feature
of the BTS at best, and not supported at all at worst. Only very few sites
actually deploy and enable such programmatic interfaces, and clearly relying on
their availability is not sufficient. RSS, on the other hand, is much more widely
supported. RSS feeds allow programs to query a bug tracker for any updated
bug reports, and while they are not as useful as XML-RPC interfaces, they still
provide a better alternative to SMTP update notification.

3 Retrieving Data from BTSs

This section describes ways to retrieve semi-structured data from BTSs. First, we
describe how we can exploit application programming interfaces (APIs) provided
by the BTSs themselves. Since such APIs are only available on some sites, we
have also implemented a web crawler specialized for bug tracking systems.

3.1 Exploiting APIs

The Bugzilla BTS provides an XML-RPC web service interface for users to
access and modify bug reports. Users can write an external tool to interact
with Bugzilla through several web service modules: The User module allows
applications to create user accounts and to log in/out using an existing account.
The Bug module can be used to file a new bug in Bugzilla, or to get information
about already filed bugs. The Product module allows applications to list the
available Products and to get information about them. Products are Bugzilla’s
top-level categories for bugs. Finally, the Bugzilla module provides functions to
retrieve some general information about a Bugzilla installation.

The Bugzilla XML-RPC API in addition allows programs to retrieve a large
number of bug reports in a single request using an array of bug identifiers. This
saves much time when downloading many bug reports from a single Bugzilla
website that supports XML-RPC.

We have implemented a crawler that uses several methods provided by the
Bugzilla web service interface. It acts like an XML-RPC client that submits a
bug identifier to a Bugzilla server and obtains the details of the bug (i.e., a list of
field-value pairs) from the Bugzilla server. Note that the XML-RPC API is rarely
available on production BTS installations (see Section 2) and is incomplete: it

6 Tran, Chulkov and Schönwälder

Fig. 1. Architecture of the Buglook crawler

restricts users from retrieving any attachments from a bug report, as well as the
bug description or any related discussion entries. We access this information via
another tool (described below).

Unlike all other BTSs, the Debian BTS allows users to access the raw bug
data directly. Users can use the rsync utility to copy the whole bug database
from bugs-mirror.debian.org. Debian’s database is split into three sections: bts-
spool-db for the active bug report spool, bts-spool-archive for bug reports that
have been closed for a while and thus archived, and bts-spool-index for the bug
index files. Each bug report is stored in four different files whose names consist
of the bug number and either .log, .report, .status, or .summary as an extension.

3.2 Crawling with Buglook

While some BTSs provide a machine-readable web service interface to their bug
data, most do not. In all systems where such an interface is supported, it is an
optional feature, and because optional features require additional effort from an
administrator to be set up, they are rarely available. In addition, a web service
interface often provides much less data than the human-readable web interface
that is most commonly used. Clearly, relying on the availability of a web service
API is unrealistic. To solve this problem, we created Buglook [7], a tool which
attempts to directly use the presentational HTML-based web interface in order
to get as much access to information as ordinary users.

The problem with presentational HTML pages is that the same structure
can be presented in vastly different ways. As an example, consider an algorithm
that must detect the end of a bug report comment and the beginning of the next
one. In HTML, this boundary could be encoded as a closing <div> tag and the
opening of another <div>, or as a new paragraph (<p>), or why not a sequence
of newlines (
)? There is nothing preventing the same elements from being
used in another context, while being rendered differently (dictated by CSS tags).
No consistency can be expected.

To tackle this problem, we note the following: (i) Because bug report pages
are generated from a template, all bug reports within a single BTS site have the
same structure. An algorithm that can parse one bug report can parse all bugs in
that site. (ii) BTS sites that use the same software have similar bug structure, and

Crawling Bug Tracker for Semantic Bug Search 7

Table 3. Severity of bugs

Unified model Bugzilla Trac Mantis Debian

critical blocker, critical blocker, critical block, crash critical, grave, serious
normal major major major important, normal
minor minor, trivial minor, trivial minor, tweak, text, trivial minor
feature enhancement - feature wishlist

often similar appearance. The underlying BTS software determines the structure
of the data it can work with, and only allows presentational customization of the
displayed HTML pages. (iii) For each BTS, there is a canonical appearance. In
general, most sites do not find it necessary to customize their appearance, and
use the one that the BTS provides by default.

Buglook (Figure 1) uses a small set of parsers defined for each BTS’s canonical
appearance, together with specialized parsers for the most important customized
sites. These parsers, called “site modules”, can provide a very high degree of cov-
erage of all BTS sites. The set of sites covered by a site module is its “sitetype”.
Sitetypes are essentially equivalence classes of BTS sites, with respect to parsing.

Buglook’s bug extraction component consists of two essential parts - the set
of site modules, and a common component independent of all of them. The com-
mon component is responsible for generic tasks such as downloading web pages,
parsing HTML, etc. The site modules encapsulate all logic unique to a given
sitetype. This distinction allows more sitetypes to be supported with minimal
duplication of effort. To support a sitetype, a site module must implement a
fixed interface to the common component.

4 Unified Data Model

In order to integrate bug data from different BTSs into a single bug database,
we define a unified data model for bugs. This model must be simple and easy
to use for our purpose; it is not necessary to be able to represent all available
details of all systems. Our investigation of the database schemas of the four
BTSs we considered exposes several interesting observations. The bug formats
of Bugzilla, Trac and Mantis share many similar fields that can be classified in
two main groups:

1. The administrative metadata associated with a bug is often represented as
field-value pairs with very precise semantics, such as id, severity, reporter,
summary, among others.

2. The descriptions detailing the bug and any followup discussion or actions
are typically represented as free-form (i.e., non-formal) textual attachments.

Because the unified data model is used to support semantic search, we aim
to extract fields from bug reports in such a way as to minimize the loss of bug
information. We introduce new fields that establish the relationships between
bugs or provide for more sophisticated classification. The values of these fields

8 Tran, Chulkov and Schönwälder

Bug

+id: in t
+author: emai l
+owner: emai l
+created: date
+updated: date
+resolved: date
+sever i ty : enum
+status: enum
+summary: s t r ing
+descr ipt ion: text

At tachment

+id: in t
+author: emai l
+created: date
+body: text

Package

+id: in t
+name: s t r ing
+version: str ing
+mainta iner: emai l
+descr ipt ion: text

Keyword

+id: in t
+name: s t r ing
+descr ipt ion: text

depends on

0..*

0..*

Component

+id: in t
+name: s t r ing
+contact : emai l
+descr ipt ion: text

belongs to

0..*

1

Sof tware

+id: in t
+name: s t r ing
+contact : emai l
+version: str ing
+desr ipt ion: text

is part of

depends on

0..*

0..*

contains

0..1

0..*

classified with0..*

0..*

Pla t form

+id: in t
+name: s t r ing
+descr ipt ion: text

occurs on

0..*

0..*

is related to

+0..*

+0..*

concerns

0..*

0..1

concerns

0..1

0..*

concerns

0..1

0..*

Fig. 2. Unified bug data model represented as a UML diagram

can be derived differently for each BTS: Mantis users can manually specify the
relation of a bug to other bugs when reporting it; Debian users can indicate
which package a bug relates to; and Bugzilla and Trac offer a keyword field that
enables the classification of bugs. To exploit data from a bug’s description and
its attachments, we use several text processing techniques [8, 9].

Figure 2 shows our unified bug data model in the form of a UML class
diagram. The central class is the Bug class. The id attribute of a Bug instance
uniquely identifies a bug. We use the URL where a bug can be retrieved as its
identifier. Most of the attributes of a Bug instance can be easily extracted from
the retrieved data. Our severity attribute is probably the most interesting to
fill correctly, because BTSs have very different severity classifications for bugs.
Table 3 shows how we map the severity values of the BTSs into our data model,
which only distinguishes the severity values critical, normal, minor, and feature.
The status attribute of a Bug instance only has two values: the value open
represents what BTSs call unconfirmed, new, assigned, reopened bugs while the
value fixed represents what BTSs call resolved, verified, and closed bugs.

Free-form textual descriptions are modelled as Attachment objects. Every
Attachment belongs to exactly one Bug object. Some BTSs provide information
about the platforms affected by a bug. We represent platforms (such as “Win-
dows2000” or “MacOS X”) as Platform objects. The Keyword class represents
keywords used to describe and classify bugs.

Crawling Bug Tracker for Semantic Bug Search 9

The left part of Figure 2 models what piece of software a bug is concerned
with. While some BTSs are only concerned with bugs in a specific piece of
software, software in larger projects is split into components and bugs can be
related to specific components. The classes Software and Component model
this structure. The Debian BTS is somewhat different from the other BTSs
as it is primarily used to track issues related to software “packages”, that is
software components packaged for end user deployment. Since there is a large
amount of meta information available for Debian software packages (dependency,
maintainer and version information), we have introduced a separate Package
class to represent packaged software.

5 Semi-Structured Bug Data Search

BTSs only support keyword search and restricted meta-data search by pre-
defined fields and values (as discussed in Section 2); e.g., searching for bugs
with the resolved status or bugs with the critical severity. This section presents
the performance of different search algorithms on semi-structured bug data from
the unified dataset.

We have previously evaluated the combination of fulltext search and meta-
data search, namely ft-md search, on the CISI and MED bibliographic datasets
whose documents contain semi-structured data [5]. With the bug dataset, meta-
data search exploits significant keywords extracted from bug contents, such as
type of problems, scope of problems, typical symptoms, error messages and dis-
tinct terms. A set of keywords is represented by a field-value vector. The similar-
ity of two field-value vectors is estimated by the sum of weight values of matched
keywords. Fulltext search involves indexing terms from bug contents using text
processing techniques [8, 9]. Each bug is converted to a term vector which is
then transformed to a real number vector (or a semantic vector) using algebraic
computation. The similarity of two semantic vectors is evaluated by the cosine
of these vectors.

We consider keyword search as baseline search that evaluates the similarity
between a bug and a query by simply matching keywords from the query to the
bug content without considering the significance of keywords. We use a matching
rate metric to compare the performance of the combination of search algorithms:
ft-md combining fulltext search and meta-data search, ft-bl combining fulltext
search and keyword search, and md-bl combining meta-data search and keyword
search. The matching rate r is the ratio of the number of the identical bugs
obtained by two search algorithms to the minimum number of bugs obtained by
these algorithms for a query:

r =
|Sx ∩ Sy|

min(Nx, Ny)
(1)

where Sx and Sy are the resulting set of search algorithms x and y per query,
|S| is the size of set S, and parameters Nx and Ny are the total number of
bugs obtained by search algorithms x and y per query. Intuitively, if two search

10 Tran, Chulkov and Schönwälder

algorithms are good, the probability of a large number of identical bugs obtained
by these algorithms is high. This metric is more feasible and flexible than the
recall rate or precision rate metrics that require knowledge of the correct number
of relevant bugs per query. Note that it is difficult to obtain this number from a
new and large dataset.

The evaluation of a semantic bug search engine on a large dataset of several
hundred thousand bugs will be reported in another study. In these experiments,
the dataset contains 11.077 bugs, and the number of obtained bugs Nft, Nmd

and Nbl are set to 100 by sorting the resulting sets according to the similarity
value and selecting only the top N elements. A set of 50 queries include pieces
of textual descriptions, distinct keywords, typical symptoms and error messages
that are extracted from bug contents. Terms or keywords from bug contents
are stemmed by the Porter stemming algorithm [10] and weighted by the term
frequency-inverse document frequency (tf-idf). Semantic vectors are generated
by computing singular value decomposition using the single-vector Lanczos al-
gorithm [11] implemented in svdlibc. The experiments were performed on an
x86 64 GNU/Linux machine with two dual-core AMD Opteron(tm) processors
running at 2 GHz with 4 GB RAM.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 10 15 20 25 30 35 40 45 50

M
at

ch
in

g
R

at
e

Number of Queries

Ft-md search
Md-bl search
Ft-bl search

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6 0.7

P
er

ce
nt

ag
e

Matching Rate

Queries

Fig. 3. Average matching rate by number of queries for ft-md, md-bl and ft-bl (left).
Query distribution by matching rates for ft-md (right).

The left plot shown in Figure 3 reports the average matching rate of ft-md,
md-bl and ft-bl over an increasing number of queries. The ft-md line stays at
at a matching rate of 0.3 on average and reaches 0.33 finally, whereas the md-bl
and ft-bl lines start lowly and reach 0.22 and 0.12, respectively. Ft-md found
more identical bugs than other combinations. Furthermore, md-bl obtained bet-
ter results than ft-bl. The results of the last two combinations are relatively
different, illustrating that bl search obtains less consistent and reliable results.
Bl search combines better with md search than with ft search because md and
bl both use keyword comparison to estimate similarity.

Crawling Bug Tracker for Semantic Bug Search 11

The query distribution for ft-md shown in the right plot in Figure 3 indicates
that more than 50% of the queries receives a matching rate higher than 0.3.
These queries tend to focus on specific distinct characteristics of bugs, whereas
the other queries tend to be more general or vague, resulting in a large number
of improper bugs obtained.

We relax the number of obtained bugs for only bl search, namely rlbl; Nrlbl

is set to 500. The left plot shown in Figure 4 shows that md-rlbl improves the
matching rate to 0.25 on average, whereare ft-rlbl remains unchanged. Rlbl
search and md search finds more identical bugs than rlbl search and ft search.
While md search is similar to rlbl search, it is much different from ft search in
the way of measuring similar bugs. Combining ft search and md search, therefore,
works well for semi-structured bug data.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 10 15 20 25 30 35 40 45 50

M
at

ch
in

g
R

at
e

Number of Queries

Ft-md search
Md-rlbl search
Ft-rlbl search

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 10 15 20 25 30 35 40 45 50

M
at

ch
in

g
R

at
e

Number of Queries

Ft-md search, N = 100
Ft-md search, N = 80
Ft-md search, N = 60

Fig. 4. Average matching rate by number of queries for ft-md, md-rlbl and ft-rlbl

with a large number of bugs obtained by baseline search (left). Average matching rate
by number of queries with various numbers of bugs obtained by ft-md (right).

We investigate further ft-md search by restricting the number of obtained
bugs; Nft and Nmd are both set to 100, 80 and 60. The right plot in Figure
4 indicates that the matching rate reduces when the number of obtained bugs
reduces. Note that bugs are chosen by their ranking. The ranking of obtained
bugs are different between ft search and md search. This is caused by three
reasons: first, while BTSs may contain duplicated bugs, the number of these
bugs is small, thus the number of truly similar bugs is also small; second, the
ranking values of obtained bugs contain errors from indexing and ranking bugs,
especially when a query is general, ranking many similar bugs is affected by
these errors; last, as described above, ineffective queries make results inaccurate.
These reasons also cause the low matching rate. However, since the bug dataset
is wide and diverse in scope, we believe that ft-md search achieving an average
matching rate of 0.3 is reasonable.

12 Tran, Chulkov and Schönwälder

6 Related Work

The X.790 recommendation from ITU-T [12], the RFC 1297 from the IETF
[13] and the NMF501 and NMF601 documents from the TMF [14, 15] define
terminology and basic functions for reporting and managing trouble tickets.
NetTrouble [16] introduces advanced features for trouble ticket systems (TTSs)
that include a distributed database concept for geographic dissemination, an
administrative domain concept for the multi-organizational characteristics of
network management environments, and an administrative model for hierarchical
decomposition. The work in [17] proposes a generic interface and a generic data
structure, namely customer service management trouble report, to support inter-
domain problem management between customer and service provider. Our work
towards a unified data model is to some extend related to these efforts. However,
instead of designing a feature rich data model from scratch, we took the opposite
approach to extract the common core from the data models used by existing
systems.

Since the problem-solving knowledge in TTSs can be exploited to search
for similar problems or infer typical solutions, several studies discussed in [1]
have used TTSs associated with artificial intelligence techniques for finding and
resolving similar problems. A study in [2] has proposed a CBR system to resolve
network problems by retrieving similar problems and adapting solutions to novel
problems. Trouble tickets obtained by a TTS are used as cases for evaluating
the system. The DUMBO system [3] also takes advantage of TTSs to propose
solutions for network problems. This system provides six types of features to
represent trouble tickets, and employs similarity and reliability measurement for
proposing solutions. The main limitations of these systems, however, contain
the inexpressive representation of trouble tickets and the lack of trouble ticket
sources [1]. We consider these issues in this work by using the unified data
model that allows various bug reports to be collected in one bug database, and
by applying MVR to bug reports to enable semantic search on the bug database.

7 Conclusions

We have provided a study of existing BTSs with a specific focus on the four
most popular open source systems, namely Bugzilla, Trac, Mantis and the De-
bian bug tracking system. Widely used public BTSs based on these software
systems contain a large number of bug reports that can be used for building
bug datasets. Such datasets are invaluable for evaluating systems such as case-
based reasoning engines or semantic search engines. We have used web service
APIs and a special purpose web crawler (Buglook) to obtain a large number of
bug reports from several large BTSs. In order to store the data in an effective
way, we have developed a unified bug data model that is able to capture the
most important aspects of the data maintained by the various BTSs we have
analyzed. Our model enables interoperable aggregation of data from different
sources, useful for various purposes ranging from efficient wide-scale search to
automated reasoning systems.

Crawling Bug Tracker for Semantic Bug Search 13

The multi-vector representation method (MVR) [5] has been used to per-
form semantic search experiments on the unified bug dataset. MVR exploits
semi-structured bug data to search for similar bugs with salient features. The
experimental results indicate that (i) the combination of fulltext search and
meta-data search (using MVR) outperforms the other combinations of fulltext
search and baseline search or of meta-data search and baseline search, (ii) base-
line search provides less consistent and reliable results, and (iii) the bug dataset
is wide and diverse in scope.

We are currently implementing a complete online semantic search system
that will accept user queries so that a larger number of users can test and
evaluate our system. This system also allows us to evaluate search latency and
bug synchronization on a large bug dataset. Future work involves extending
the unified data model to support another semantic bug search system, where
bug reports are represented in the resource description framework (RDF). In
addition, refined and unified datasets are used to evaluate the problem-solving
capability of our distributed case-based reasoning system. Such systems will
certainly be a practical tool for anyone who needs to troubleshoot a software
system with a public bug tracking system.

Acknowledgments The work reported in this paper is supported by the EC
IST-EMANICS Network of Excellence (#26854).

References

1. L. Lewis and G. Dreo. Extending Trouble Ticket Systems to Fault Diagnostics.
IEEE Network Special Issue on Integrated Network Management, 7(6):44–51, 1993.

2. L. Lewis. A Case-Based Reasoning Approach to the Resolution of Faults in Com-
munication Networks. In Proc. 3rd International Symposium on Integrated Network
Management (IM ’93), pages 671–682. North-Holland, 1993.

3. C. Melchiors and L. Tarouco. Fault Management in Computer Networks Using
Case-Based Reasoning: DUMBO System. In Proc. 3rd International Conference
on Case-Based Reasoning and Development (ICCBR ’99), pages 510–524. Springer-
Verlag, 1999.

4. H. M. Tran and J. Schönwälder. Distributed Case-Based Reasoning for Fault
Management. In Proc. 1st International Conference on Autonomous Infrastructure,
Management and Security (AIMS ’07), pages 200–203. Springer-Verlag, 2007.

5. H. M. Tran and J. Schönwälder. Fault Representation in Case-Based Reasoning. In
Proc. 18th IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management (DSOM ’07), pages 50–61. Springer-Verlag, 2007.

6. D. Bloom. Selection Criterion and Implementation of a Trouble Tracking System:
What’s in a Paradigm? In Proc. 22nd Annual ACM SIGUCCS Conference on User
Services (SIGUCCS ’94), pages 201–203. ACM Press, 1994.

7. G. Chulkov. Buglook: a search engine for bug reports. Seminar Report. Jacobs
University Bremen, May 2007.

8. S. Deerwester, S. Dumais, T. Landauer, G. Furnas, and R. Harshman. Indexing
by Latent Semantic Analysis. Journal of the Society for Information Science,
41(6):391–407, 1990.

14 Tran, Chulkov and Schönwälder

9. M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices, Vector Spaces, and Informa-
tion Retrieval. SIAM Review, 41(2):335–362, 1999.

10. M. F. Porter. An algorithm for suffix stripping. Readings in Information Retrieval,
pages 313–316, 1997.

11. G. H. Golub and R. Underwood. The block lanczos method for computing eigen-
values. Mathematical Software III, pages 361–377, 1977.

12. ITU-T. Trouble Management Function for ITU-T Applications. X.790 Recom-
mendation, 1995.

13. D. Johnson. NOC Internal Integrated Trouble Ticket System Functional Specifi-
cation Wishlist. RFC 1297, 1992.

14. TMF. Customer to Service Provider Trouble Administration Business Agreement.
NMF 501, Issue 1.0, 1996.

15. TMF. Customer to Service Provider Trouble Administration Information Agree-
ment. NMF 601, Issue 1.0, 1997.

16. L. Santos, P. Costa, and P. Simes. NetTrouble: A TTS for Network Management. In
Proc. SBT/IEEE International Telecommunications Symposium (ITS ’98), pages
480–485. IEEE Computer Society, 1998.

17. M. Langer and M. Nerb. Defining a Trouble Report Format for the Seamless
Integration of Problem Management into Customer Service Management. In Proc.
6th Workshop of the OpenView University Association (OVUA’99), 1999.

