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Abstract. Dynamic Querying (DQ) is a technique adopted in unstruc-
tured Peer-to-Peer (P2P) networks to minimize the number of peers that
is necessary to visit to reach the desired number of results. In this paper
we introduce the use of the DQ technique in structured P2P networks.
In particular, we present a P2P search algorithm, named DQ-DHT (Dy-
namic Querying over a Distributed Hash Table), to perform DQ-like
searches over DHT-based overlays. The aim of DQ-DHT is two-fold: al-
lowing arbitrary queries to be performed in structured P2P networks,
and providing dynamic adaptation of the search according to the popu-
larity of the resources to be located. This paper describes the DQ-DHT
algorithm using Chord as basic overlay and analyzes its performance in
comparison with DQ in unstructured networks.

1 Introduction

Structured Peer-to-Peer (P2P) systems like Chord [1] keep association of re-
source identifiers to nodes using a Distributed Hash Table (DHT), which al-
lows to locate the node responsible for the resource with a given Id (or key)
with logarithmic performance bounds. As compared to unstructured P2P sys-
tems like Gnutella [2], however, structured systems provide a limited support to
complex queries. Although several extensions to basic DHT schemes have been
proposed to support, for instance, range queries [3], multi-attribute search [4],
and keyword-based search [5], DHT-based lookups still do not support arbitrary
queries (e.g., regular expressions [6]) since it is infeasible to generate and store
keys for every query expression. On the other hand, unstructured systems can
do it effortless since all queries are processed locally on a node-by-node basis [7].

Even if the lookup mechanisms of DHT-based systems do not support arbi-
trary queries, it is possible to exploit their structure to distribute any kind of
information across the overlay with minimal cost. For example, in [8] a tech-
nique for efficient broadcast over a DHT is proposed. Using such technique, a
broadcast message originating at an arbitrary node in the DHT overlay reaches
all other nodes without redundant messages in O(log N) steps. It can be used
to broadcast arbitrary types of queries, which can be then processed locally by
single nodes as in unstructured systems. We elaborate on such an approach by
proposing a P2P search algorithm, named DQ-DHT (Dynamic Querying over



a Distributed Hash Table), to provide efficient execution of arbitrary queries in
structured P2P networks. DQ-DHT is based on a combination of the broadcast
technique mentioned above with the Dynamic Querying (DQ) technique [9] used
in unstructured networks.

The goal of DQ is to minimize the number of nodes that is necessary to visit
in an unstructured network to obtain the desired number of results. The query
initiator starts the search by sending the query to a few of its neighbors and with
a small Time-To-Live (TTL). The main goal of this “probe” query is to estimate
the popularity of the resource to be located. If such an attempt does not produce
a sufficient number of results, the search initiator sends the query towards the
next neighbor with a new TTL. Such TTL is calculated taking into account both
the desired number of results and the resource popularity estimated during the
previous phase. This process is repeated until the expected number of results is
received, or there are no more neighbors to query.

Similarly to DQ, DQ-DHT performs the broadcast in an iterative way until
the target number of results is obtained. At each iteration, a new subset of nodes
is queried on the basis of the estimated resource popularity and the desired num-
ber of results. Differently from DQ, DQ-DHT exploits the structural constraints
of the DHT to avoid message duplications and ensure higher success rate.

DQ-DHT has been particularly designed to serve as resource discovery mech-
anism for decentralized infrastructures like computational Grids. Large-scale
Grids are typically organized into multiple administrative domains. Within each
domain, one node is designated as information server to answer queries about
all the resources belonging to that domain. Since information servers are highly
reliable nodes, it is possible to build a P2P network of information servers having
a significantly lower churn rate than typical P2P networks. Thus, we consider
a scenario in which the DHT overlay is composed by information servers only,
which ensures a high stability of the overlay even in large-scale networks.

The work that most relates to DQ-DHT is the Structella system designed
by Castro et al. [10]. Structella replaces the random graph of Gnutella with the
structured overlay of Pastry [11], while retaining the content placement of un-
structured P2P systems to support complex queries. Queries in Structella are
propagated using either constrained flooding or random walks. Each node receiv-
ing a query evaluates it against the local content and sends matching content
back to the query originator. Beyond Structella, a few other works broadly re-
late to DQ-DHT for their combined use of structured and unstructured P2P
techniques (see for example [12] and [13]).

In this paper we describe the DQ-DHT algorithm using Chord as DHT over-
lay. We analyze the performance of DQ-DHT through simulations under different
algorithm configurations. We also compare the performance of DQ-DHT with
that of DQ in unstructured networks. The simulation results show that DQ-DHT
generates much less network overhead (i.e., number of messages) than DQ, with
a comparable - and in some cases better - search time, and with a higher success
rate when the resource to be found is rare.



The rest of the paper is organized as follows. Section 2 provides a background
on the technique of broadcast over a DHT exploited by DQ-DHT. Section 3 de-
scribes the DQ-DHT algorithm. Section 4 analyzes its performance and compares
DQ-DHT with DQ. Finally, Section 5 concludes the paper.

2 Broadcast over a DHT

This section briefly describes the Chord-based implementation of the broadcast
algorithm designed by El-Ansary et al., as it is proposed in [8].

Chord uses a consistent hash function to assign each node an m-bit identifier,
which represents its position in a circular identifier space ranging from 0 and
2m − 1. Each node, x, maintains a finger table with m entries. The jth entry in
the finger table at node x contains the identity of the first node, s, that succeeds
x by at least 2j−1 positions on the identifier circle, where 1 ≤ j ≤ m. Node s is
called the jth finger of node x. If the identifier space is not fully populated (i.e.,
the number of nodes, N , is lower than 2m), the finger table contains redundant
fingers. In a network of N nodes, the number u of unique (i.e., distinct) fingers
of a generic node x is likely to be log2 N [1]. In the following, we will use the
notation Fi to indicate the ith unique finger of node x, where 1 ≤ i ≤ u.

To perform the broadcast of a data item D, a node x sends a Broadcast
message to all its unique fingers. The Broadcast message contains D and a
limit argument, which is used to restrict the forwarding space of a receiving
node. The limit sent to Fi is set to Fi+1, for 1 ≤ i ≤ u − 1. The limit sent to
the last unique finger, Fu, is set to the identifier of the sender, x. When a node
y receives a Broadcast message with a data item D and a given limit, it is
responsible for forwarding D to all its unique fingers in the interval ]y, limit [.
When forwarding the message to Fi, for 1 ≤ i ≤ u− 1, y supplies it a new limit,
which is set to Fi+1 if it does not exceed the old limit, to the old limit otherwise.
As before, the new limit sent to Fu is set to y.

As shown in [8], in a network of N nodes, a broadcast message originating
at an arbitrary node reaches all other nodes after exactly N − 1 messages, with
log2 N steps. The overall broadcast procedure can be viewed as the process
of passing the data item through a spanning tree, rooted at the querying node,
which covers all nodes in the network. Since the spanning tree corresponds to the
lookup tree, which is a binomial tree in a (fully populated) Chord network [14],
also the spanning tree associated to the broadcast over a fully populated Chord
ring is a binomial tree.

3 Dynamic Querying over a DHT

In short, the DQ-DHT algorithm works as follows. Let x be the node that initi-
ates the search, U the set of unique fingers not yet visited, and Rd the desired
number of results. Initially U includes all unique fingers of x. Node x starts by
choosing a subset V of U and sending the query to all fingers in V . These fin-
gers will in turn forward the query to all nodes in the portions of the spanning



tree they are responsible for, following the broadcast algorithm described above.
When a node receives a query, it checks for local items matching the query cri-
teria and, for each matching item, sends a query hit directly to x. The fingers
in V are removed from U to indicate that they have been already visited.

After sending the query to all nodes in V , x waits for an amount of time
TL, which is the estimated time needed by the query to reach all nodes, up to
a given level L, of the subtrees rooted at the unique fingers in V , plus the time
needed to receive a query hit from those nodes. Then, if the current number of
received query hits Rc is equal or greater than Rd, x terminates. Otherwise, an
iterative procedure takes place.

At each iteration, node x: 1) calculates the item popularity P as the ratio
between Rc and the number of nodes already theoretically queried; 2) calculates
the number Hq of hosts in the network that should be queried to hit Rd query
hits based on P ; 3) chooses, among the nodes in U , a new subset V ′ of unique
fingers whose associated subtrees contain at least Hq nodes; 4) sends the query
to all nodes in V ′; 5) waits for an amount of time needed to propagate the query
to all nodes in the subtrees associated to V ′.

The iterative procedure above is repeated until the desired number of query
hits is reached, or there are no more fingers to contact. Note that, if the item pop-
ularity is properly estimated after the first phase of search, only one additional
iteration may be sufficient to obtain the desired number of query hits.

An important point in DQ-DHT is estimating the number of nodes present
in the different subtrees, and at different levels, of the spanning tree associated
to the broadcast process. In the next section we discuss how we calculate such
properties of the spanning tree and introduce some functions that are used in
the algorithm (described in Section 3.2).

3.1 Properties of the Spanning Tree Associated to the Broadcast
Process

As recalled in Section 2, the spanning tree associated to the broadcast over a
fully populated Chord ring is a binomial tree. A binomial tree of order i ≥ 0,
Bi, consists of a root with i subtrees, where the jth subtree is a binomial tree of
order j − 1, with 1 ≤ j ≤ i. Given a binomial tree Bi, the following properties
can be proven [15]: 1) The number of nodes in Bi is 2i; 2) The depth of Bi is i;
3) The number of nodes at level l in Bi is given by the binomial coefficient

(
i
l

)
.

Given the binomial tree properties, we can calculate the properties of the
spanning tree associated to a broadcast initiated by a node having u unique
fingers (see Table 1).

Basically, in Table 1 we correct the binomial tree properties by a factor
c = N/2u, where N is the number of nodes in the network (which can be
estimated [16]), to compensate the fact that the value of u may be different from
the value of log2 N in case of not fully populated rings. Note that, since the
value of Di may be not an integer, we use the generalized binomial coefficient
to calculate N l

i .



Table 1. Properties of the spanning tree rooted at a node with u unique fingers F1..Fu.

Notation Description Value

Ni Number of nodes in the subtree rooted at Fi, where 1 ≤ i ≤ u 2i−1
× c

Di Depth of the subtree rooted at Fi, where 1 ≤ i ≤ u log
2
Ni

N
l

i

Number of nodes at level l of the subtree rooted at Fi, where

1 ≤ i ≤ u and 0 ≤ l ≤ Di

(

Di

l

)

Based on the spanning tree properties defined in Table 1, we define in Table 2
some aggregate functions operating on a set of unique fingers. Such functions
are used in the DQ-DHT algorithm presented in the next section.

Table 2. Aggregate functions operating on a set V of n unique fingers with indices
i1..in ∈ [1, u].

Function Returned result Value

N(V ) Total number of nodes in the subtrees
associated to the unique fingers in V

∑

i=i1..in

Ni

D(V ) Depth of the subtree associated to the
unique finger with highest index in V

Di where i = max(i1..in)

N(V,L)
Total number of nodes from level 0 to
level L of the subtrees associated to the
unique fingers in V

∑

i=i1..in

li∑

l=0

N l

i
where li = min(L, Di)

3.2 DQ-DHT Algorithm

DQ-DHT defines two procedures: SubmitQuery, executed by a node to submit
a query, and ProcessQuery, executed by a node receiving a query to process.

SubmitQuery (see Fig. 1) receives the query Q and the desired number of
results Rd. It makes use of the functions defined in Table 2, and it is assumed
that the procedure is executed by a node x.

The procedure starts by initializing to 0 the current number of results Rc

(line 1 ). The value of Rc is incremented by 1 whenever a query hit is received.
A set U is initialized to contain all unique fingers of node x (line 2 ), and Ht is
set to N(U), which corresponds to the total number of hosts that can be queried
in the network (line 3 ). The first subset V of fingers to visit is selected from U
(line 4 ), and U is updated accordingly (line 5 ).

Afterwards, an integer L between 0 and D(V ) is chosen (line 6 ). The value
of L represents the last level of the subtrees associated to V from which to wait a
response before to estimate the item popularity. The amount of time TL needed
to receive a response from those levels is then calculated as TH × (L + 2), where
TH is the average time to pass a message from node to node (line 7 ). The value
L+2 is obtained by counting one hop to pass the message from x to the fingers,



procedure SUBMITQUERY(Q,Rd)

1: Rc ⇐ 0
2: U ⇐ all unique fingers of node x
3: Ht ⇐ N(U)
4: V ⇐ a subset of U
5: U ⇐ U \ V
6: L ⇐ an integer ∈ [0, D(V )]
7: TL ⇐ TH × (L + 2)
8: SEND(Q,V )
9: sleep(TL)

10: Hv ⇐ N(V, L)
11: Tr ⇐ TH × (D(V ) − L)
12: while Rc < Rd and U 6= Ø do

13: if Rc > 0 then

14: P ⇐ Rc/Hv

15: Hd ⇐ Rd/P
16: else

17: Hd ⇐ Ht + 1
18: end if

19: if Hd ≤ N(V ) then

20: sleep(Tr)
21: Hv ⇐ N(V )
22: Tr ⇐ 0
23: else

24: Hq ⇐ Hd− N(V )
25: if Hq > N(U) then

26: V ′ ⇐ U
27: else

28: V ′ ⇐ subset of U with min. N(V ′) ≥ Hq

29: end if

30: U ⇐ U \ V ′

31: TV ′ ⇐ TH × (D(V ′) + 2)
32: SEND(Q,V ′)
33: sleep(max(TV ′ , Tr))
34: Hv ⇐ N(V )+ N(V ′)
35: V ⇐ V ′

36: Tr ⇐ 0
37: end if

38: end while

subroutine SEND(Q,V = {Fi1 ..Fin})

1: for i = i1 to in do

2: if i < u then

3: limit ⇐ Fi+1

4: else

5: limit ⇐ x
6: end if

7: send message M = {x,Q, limit} to node Fi

8: end for

Fig. 1. The SubmitQuery procedure.

L hops to propagate the message up to level L, and an additional hop to return
the query hit to node x.

Then, Q is sent to all fingers in V invoking the subroutine Send described
below (line 8 ). After the wait (line 9 ), the number of nodes visited Hv is ini-
tialized to N(V, L) (line 10 ). While the popularity will be estimated considering
only levels from 0 to L, the query continues to be forwarded up to level D(V ).
The additional amount of time Tr that would be necessary to get a response
from the remaining levels is therefore proportional to D(V )− L (line 11 ).

After this first phase, an iterative process takes place while Rc < Rd and
there are more fingers to visit (U 6= Ø) (line 12 ). If at least one result has been
received, node x estimates the item popularity P (line 14 ), and the estimated
number Hd of hosts to obtain Rd results based on P (line 15 ). Otherwise (i.e.,
Rc = 0), Hd is set to Ht +1, meaning that it is likely that more than all available
hosts must be contacted to hit Rd results (line 17 ).

If Hd < N(V ), it is expected to receive enough results from the fingers that
have been already contacted. Note that this may happen only if L < D(V ),
because P is estimated on the basis of the results arriving from nodes up to level
L of the subtrees associated to V . Thus, only in this case, the search initiator
must wait for the additional amount of time Tr (line 20 ). After the wait, the
value of Hv is updated to include all nodes in V (line 21 ), and Tr is set to 0
(line 22 ).



Otherwise (Hd > N(V )), the number of nodes to be queried Hq is given by
Hd minus the number of nodes already queried (line 24 ). If Hq is greater than
the number of nodes available, the new set V ′ of fingers to visit is set to U
(line 26 ). Else, V ′ is the subset of U with the minimum value of N(V ′) which is
greater or equal to Hq (line 28 ). The elements in V ′ are removed from U (line
30 ), and the time TV ′ needed to receive response from all levels of the subtrees
associated to V ′ is calculated (line 31 ).

After sending the query to all nodes in V ′ (line 32 ), x performs a wait (line
33 ), updates the number of hosts visited (line 34 ), and sets V to V ′ (line 35 ).
The waiting time on line 33 is the maximum between TV ′ and Tr, for managing
the case in which the time Tr needed to visit the levels remaining from the
previous phase is greater than the time TV ′ needed to receive a response from
all levels in V ′. As for lines 19-22, this may happen only on the first iteration,
since after that the timeout is always set to be proportional to D(V ′), and so
Tr = 0 (line 36 ).

The subroutine Send forwards the query Q to a set of unique fingers V . Ba-
sically, it implements the procedure executed by a node x to perform a broadcast
(see Section 2). The only difference is that we do not send the message to all
unique fingers of x, but only to those in V . The message M sent by x to a node
y includes the Id of the querying node (x), the query to be processed Q, and the
limit parameter used to restrict the forwarding space of node y.

ProcessQuery (see Fig. 2) is executed by a node y that receives a message
M containing the Id of the search initiator x, the query to process Q, and the
limit parameter.

procedure PROCESSQUERY(M = {x,Q, limit})

1: for i = 1 to u do

2: if Fi ∈]y, limit[ then

3: if i < u then

4: oldLimit ⇐ limit

5: limit ⇐ Fi+1

6: if limit /∈]y, oldLimit[ then

7: limit ⇐ oldLimit

8: end if

9: else

10: limit ⇐ y
11: end if

12: send message M = {x,Q, limit} to node Fi

13: else

14: exit for

15: end if

16: end for

17: for each local item matching Q do

18: send query hit to node x
19: end for

Fig. 2. The ProcessQuery procedure.

The procedure broadcasts the query to all nodes in the portion of the span-
ning tree node y is responsible for (lines 1-16 ), following the broadcast algorithm
described in Section 2. Then, it processes the query against its local resources,
and for each matching item sends a query hit directly to the search initiator
(lines 17-19 ).



4 Performance Evaluation

We evaluate DQ-DHT in terms of two performance parameters: number of mes-
sages (Nm) and search time (Ts). Nm is the total number of messages generated
during the search process, while Ts is the amount of time needed to receive the
desired number of results.

The system parameters are: the number of nodes in the network (N) and the
resource replication rate (r), where r is the ratio between the total number of
resources satisfying the query criteria and N . The algorithm parameters are: the
initial set of unique fingers to visit (V ), the initial number of levels (L), and the
desired number of results (Rd). Even if it is possible to choose V to include an
arbitrary subset of the unique fingers of the querying node, we consider the case
in which V = {Fi}, i.e., V includes only the ith unique finger, where 1 ≤ i ≤ u.
This permits to have, after the probe query, still u−1 unique fingers from which
to choose the new set of subtrees to query, this way improving the granularity
of search.

To analyze the message and time complexity of the algorithm we consider
the following worst case scenario: at each iteration (including the probe query)
the querying node chooses exactly one unique finger to contact, among those not
yet contacted. Therefore, the overall search process will complete in u iterations.
Since all subtrees are queried one after another, Nm = N−1, and so the message
complexity is O(N). In the same scenario the search time is the sum of the
times needed to query all subtrees in sequence, i.e., Ts = TH ×∑u

i=1(Di + 2),
where TH is the average time per hop. From Table 1, Di = log Ni = log(2i−1 ×
c) = i − 1 + log c, where c = N/2u. Thus, Ts = TH × ∑u

i=1(i + 1 + log c) =
TH × (1

2u2 + 3
2u + (log c)u). Since on average u = log N , we obtain that Ts =

TH × ( 1
2 log2 N + 3

2 log N). Therefore, the time complexity in the worst case is
O(log2 N).

The worst case scenario considered above is based on the very pessimistic
assumptions that, at each iteration, the current estimated value of the resource
popularity determines the inclusion in the next set V of exactly one unique finger
among those still available. In a more typical scenario, assuming a uniform distri-
bution of the matching resources across nodes, the popularity can be estimated
with enough accuracy during the probe query, thus allowing most searches to
complete in two iterations. In such two-iteration scenario the maximum search
time is the sum of the probe query time (which is proportional to L + 2) plus
the time to cover the deepest subtree that can be chosen for the second iteration
(i.e., the subtree associated to Fu): Ts = TH × ((L + 2) + (Du + 2)). Since on
average Du = log N − 1, Ts = TH × ((L + 2) + (log N + 1)) and so the time
complexity in such scenario is O(log N).

4.1 Simulation Analysis

We experimentally evaluated the behavior of DQ-DHT in different scenarios us-
ing a discrete-event simulator. All the tests have been performed in a randomly-
generated Chord network with N = 50000 nodes and a value of r ranging from



 0

 10000

 20000

 30000

 40000

 50000

321684210.50.25

N
u

m
b

e
r 

o
f 

m
e

s
s
a

g
e

s

Replication rate (%)

N=50000, Rd=100, L=5

V={F8}
V={F9}

V={F10}
V={F11}
V={F12}
V={F13}
V={F14}

 0

 5

 10

 15

 20

 25

 30

321684210.50.25

S
e

a
rc

h
 t

im
e

 (
ti
m

e
 u

n
it
s
)

Replication rate (%)

N=50000, Rd=100, L=5

V={F8}
V={F9}

V={F10}
V={F11}
V={F12}
V={F13}
V={F14}

(a) (b)

Fig. 3. Effect of varying the initial set V , with L = 5 and Rd = 100: (a) number of
messages; (b) search time.

0.25 % to 32 %. Different combinations of the algorithm parameters V , L, and
Rd have been experimented. All the results presented in the following are calcu-
lated as an average of 100 independent simulation runs, where at each run the
search is initiated by a randomly chosen node.

We run a first set of simulations to evaluate the behavior of DQ-DHT varying
the initial set V of unique fingers to contact. At each run we chose V to include
one of the fingers between F8 to F14, with the initial value of L fixed to 5, and
Rd set to 100. The graphs in Fig. 3 show number of messages and search time
in function of the replication rate. The search time is expressed in time units,
where one time unit corresponds to the average time to pass a message from
node to node.

As expected, Fig. 3a shows that the number of messages decreases as the
replication rate increases, for any value of V . When V = {F8}, the average
number of messages passes from 48735 for r = 0.25%, to 360 for r = 32%. In
the opposite case, V = {F14}, the number of messages passes from 46473 for
r = 0.25%, to 8159 for r = 32%.

For high values of r (i.e., r = 16 − 32%), in most cases the probe query is
sufficient to obtain the desired number of results, and so the number of messages
corresponds to the number of nodes in the subtree associated to the finger in V .

For values of r lower than 2%, typically at least one additional iteration after
the probe query is needed. In these cases, the generated number of messages
depends on the accuracy of the popularity estimation, which is better when a
higher number of nodes is queried during the probe query (that is, when V
includes a finger with a high index). For instance, when r = 1%, the average
number of messages is 25207 for V = {F8}, 14341 for V = {F11}, and 13169 for
V = {F14}.

This suggests to start the search by contacting a finger with a high index (e.g.,
F14), when it is known that the resource is “rare.” When there is no information
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Fig. 4. Effect of varying the initial value of L, with V = {F11} and Rd = 100: (a)
number of messages; (b) search time.

about the popularity of the resource to be found, an intermediate finger (e.g.,
F11) should be used.

As shown in Fig. 3b, also the search time decreases as the replication rate
increases, for any value of V . When V = {F8}, the average search time passes
from 22.3 for r = 0.25%, to 16.1 for r = 32%. When V = {F14}, the search time
ranges from 24.4 for r = 0.25%, to 5.2 for r = 32%.

The graph shows that with low values of r it is convenient to contact a finger
with a high index, which leads to a lower search time with respect to fingers with
a lower index. However, since the the main objective of DQ-DHT is reducing the
number of messages, an intermediate finger (e.g., F11) should be preferred in
most cases, even if this may result to an increased search time.

We run a second set of simulations to evaluate the effect of varying the initial
value of L. According to the results discussed above, we chose an intermediate
finger for the probe query (V = {F11}), and varied L from 2 to 8, with Rd fixed
to 100. The results are presented by the graphs in Fig. 4.

Fig. 4b shows that lower values of L generate lower search times. For instance,
when r = 1% the average search time passes from 17.1 with L = 2, to 25.2 with
L = 8. This is mainly due to the fact that the wait after the probe phase is
proportional to L, as described in Section 3.2.

On the other hand, Fig. 4a shows that very low values of L produce a signifi-
cant increase in the number of messages. For example, when r = 1% the average
number of messages passes from 14259 with L = 8, to 34654 with L = 2. The
excess of messages in the second case is due to the reduced accuracy in the esti-
mation of the resource popularity that is obtained considering only a few levels
of the subtrees associated to V .

In general, intermediate values of L produce the best compromise between
number of messages and search time. For the scenario analyzed here (V = {F11}),
the best result is obtained with L = 4, which generates a number of messages



similar to that produced by higher values of L, but with a quite lower search
time, as shown by the graphs in Fig. 4.

4.2 Comparison with Dynamic Querying in Unstructured Networks

In this section we compare the performance of DQ-DHT with that of DQ in
unstructured networks. Since DQ-DHT is designed to work on a DHT-based
network, while DQ works on unstructured networks, we adopted the following
approach to compare the two systems. First, we built a random Chord network
with N = 50000 nodes, and measured the average number of unique fingers
across all nodes, which resulted to be ū = 15.94. Then, we built an unstructured
overlay among the same nodes, in which each node is connected to ū other
random nodes, on the average.

As before, we measured the number of messages and the search time. In
addition, we evaluated the following performance parameters: duplication rate,
defined as the percentage of duplicate messages on the total number of messages;
success rate, defined as the percentage of successful searches on the total number
of searches performed.

For DQ in unstructured networks, we implemented the DQ+ algorithm pro-
posed by Jiang and Jin in [17], which is an enhanced version of the original
algorithm proposed by Fisk in [9]. The main difference between DQ+ and the
original DQ algorithm is briefly described in the following.

In the original DQ, after each iteration, the querying node calculates the total
number Ht of hosts to query to reach the desired number of results. Then, it
calculates the number Hn of hosts to query per neighbor as Ht/n, where n is the
number of neighbors that have not yet received the query. Finally, it calculates
the minimum TTL to reach Hn hosts through the next neighbor, and sends the
query towards that neighbor.

DQ+ adopts a “greedy” strategy. After each iteration, the querying node
estimates the total number Ht of host to query, and then calculates the minimum
TTL to reach Ht hosts via the next neighbor alone. To avoid overshooting of the
search space, DQ+ uses a confidence interval method to estimate the popularity
of the searched item. The simulation results presented in [17] show that DQ+
reduces the latency by more than four times with respect to the original DQ
algorithm.

The initial parameters of DQ+ are: the number of neighbors contacted during
the probe phase, n, and the TTL used for the probe query, t. We experimented
two configurations: i) n = 3 and t = 2; ii) n = 3 and t = 3. In both cases, the
maximum value of TTL allowed after the probe query is 5.

For DQ-DHT we chose the following configurations: i) V = {F14} and L = 5;
ii) V = {F11} and L = 4. The first configuration aims at minimizing the search
time, but at the cost of a higher number of messages. The second configura-
tion provides a better balance between number of messages and search time, as
discussed above.

The results of the comparison between DQ-DHT and DQ+ are presented in
Fig. 5. All the simulations have been conducted with a value of r ranging from
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Fig. 5. Comparison between DQ-DHT and dynamic querying in unstructured networks
(DQ+): (a) number of messages; (b) search time; (c) success rate; (d) duplication rate.

0.25 % to 32 %, and Rd fixed to 100. Moreover, each result is obtained as the
average of 100 independent simulation runs.

As shown in Fig. 5c, the success rate for replication rates greater or equal to
0.5% is 100% with both DQ+ and DQ-DHT. However, for r = 0.25%, DQ-DHT
has a success rate of 100%, while DQ+ has a success rate of only 8.5%. This is
due to the incomplete network coverage of the constrained flooding implemented
by DQ+, which in some cases fails to find the desired number of results even if
they are actually available in the network. On the contrary, DQ-DHT ensures a
complete network coverage and therefore maintains a success rate of 100% even
in presence of very low replication rates.

The search time in DQ+ and DQ-DHT is compared in Fig. 5b. As already
discussed above, the search time in DQ-DHT strongly depends on the choice of
the initial set V . With V = {F14} the search time of DQ-DHT is comparable
with (and in some cases better than) the search time of DQ+. This is obtained
at the cost of more messages than the case in which V = {F11}, but they are
much less than those generated by DQ+ for values of r < 2%.

Fig. 5a shows the number of messages generated by the two algorithms.
DQ-DHT with V = {F11} produces less messages than DQ+ for all values of



r ≤ 16%, while they generate approximatively the same number of messages for
r = 32%. For values of r lesser than 2% DQ-DHT outperforms DQ+ by more
than a factor two. For instance, for r = 1% DQ-DHT with V = {F11} generates
15025 messages, while DQ+ with t = 3 produces 40155 messages.

Note that, for low replication rates, DQ-DHT generates less messages with
V = {F14}, while it works better with V = {F11} for high replication rates.
This is due to the fact that with V = {F14} the minimum number of messages
sent to the network is higher, and so more messages than needed are generated
when the resource to be found is popular. On the other hand, a high number of
messages ensures a better accuracy in the estimation of the resource popularity,
leading to less messages when the resource to be found is rare.

The greater number of messages generated by DQ+ with respect to DQ-DHT
is mainly due to the message duplication caused by flooding. The percentage
of duplicate messages on the total number of messages is shown in Fig. 5d. As
expected, the duplication rate of DQ+ increases as the replication rate decreases,
reaching approximatively the value of 44% with r = 0.25%. DQ-DHT does not
suffer the message duplication problem, as each node receives the query at most
once. Therefore, the duplication rate for DQ-DHT is 0% for any value of r.

In summary, the simulation results presented throughout this section show
that DQ-DHT produces much less network overhead (i.e., number of messages)
than DQ+, with a comparable - and in some cases better - search time, and with
a higher success rate when the resource to be found is rare.

5 Conclusions

A way to support arbitrary queries in structured networks is implementing un-
structured search techniques on top of DHT-based overlays. Following this ap-
proach, we proposed DQ-DHT: a P2P search algorithm that combines the dy-
namic querying technique with an algorithm for efficient broadcast over a DHT.
DQ-DHT has been particularly designed to be used in Grid scenarios, where it
is necessary to support arbitraries queries for searching resources on the basis of
complex criteria or semantic features.

The behavior of DQ-DHT has been analyzed through a simulator by varying
its initial configuration, in order to understand which are the best parameters
to use based on user/system requirements and objectives (i.e., minimizing the
number of messages or the search time). We also compared the performance of
DQ-DHT with that of the enhanced dynamic querying in unstructured networks
(DQ+). The simulation results show that DQ-DHT generates much less network
overhead than DQ+, with a comparable (and in some cases better) search time,
and with a higher success rate when the resource to be found is rare.
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