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Abstract. Monitoring is essential in modern network management. However,

current monitoring systems are unable to recover their internal faulty entities forc-

ing the network administrator to manually fix the occasionally broken monitoring

solution. In this paper we address this issue by introducing a self-healing moni-

toring solution. This solution is described considering a scenario of a monitoring

system for a Network Access Control (NAC) installation. The proposed solution

combines the availability provided by P2P-based overlays with self-healing abil-

ities. This paper also describes a set of experimental evaluations whose results

present the tradeoff between the time required to recover the monitoring infras-

tructure when failures occur, and the associated bandwidth consumed in this pro-

cess. Based on the experiments we show that it is possible to improve availability

and robustness with minimum human intervention.

1 Introduction

Network and service monitoring is an activity essential to identif problems in underly-

ing IT communication infrastructures of modern organizations. Monitoring is typically

materialized by systems that periodically contact elements (e.g., network devices and

services) to check their availability and internal status. A monitoring system may be

simple (like the Multi Router Traffic Grapher (MRTG) [1]) or complex, being com-

posed of as diverse entities as monitors, agents, and event notifiers. The information

collected and processed by monitoring systems enables human administrators, respon-

sible for managing the IT infrastructure, to identify (and possibly predict) problems,

and thus react in order to keep the managed infrastructure operating in a proper way.

Monitoring systems must run uninterruptedly to ensure that failures in the managed

elements are detected. Problems in the monitoring systems break the monitoring pro-

cess and can lead the human administrator to believe that the managed elements are

working properly even when they are not. Robust monitoring systems should thus em-

ploy mechanisms not only to identify failures on the managed infrastructure, but also

to recover the faulty monitoring solution itself. Currently, however, most monitoring

systems force the administrator to manually recover the occasionally broken solution.

Such a manual approach may not drastically affect the monitoring of small networks,

but in larger infrastructures the approach will not scale and should be replaced efficient



alternatives. The self-managed approach is one alternative emerging as a solution for

the manual approach. Typically, a self-managed system is built on top of self-* features

capable to reduce the human intervention and provide more efficient results.

In this paper we address the problem of monitoring systems that lack self-healing-

ness feature by considering the example of a Network Access Control (NAC) [2] in-

stallation. A NAC secured network is composed of devices and services (e.g., routers,

firewalls, RADIUS servers) that control how users and devices join the network. Tra-

ditional monitoring systems (i.e., without self-healing support) fail to protect NAC, for

example, in two situations. First, consider a crashed RADIUS server whose associated

RADIUS monitor crashed too. In this case, the administrator reacts to the RADIUS

problem only when users complain about unsuccessful login attempts. Worse than that,

however, is the second situation. Suppose a failure in the rogue user service responsi-

ble for detecting unregistered devices, and another failure in the monitor associated to

it. In this case, unregistered devices will silently join the network without generating

user complains. In contrast to the first situation, the “silent failure” remains because

no signal is issued either by network users or, and most seriously, by the now broken

monitoring system.

Recent researches on autonomic management certainly present self-* concepts that

could be used to address the aforementioned problems. Such researches, however, take a

mostly abstract approach and rarely touch concrete implementation issues. In this paper,

in turn, we investigate the employment of self-* features to actually implement, deploy,

and evaluate a self-healing monitoring system able to recover from internal failures

without requiring, at some extend, human intervention. The goal of our research is to

understand the advantages and drawbacks of using self-* features in a real scenario of

a service monitoring system.

The monitoring elements of our solution implement two main processes: regular

monitoring (to monitor final devices and services) and recovery (to heal the monitoring

system). We evaluate our solution in terms of recovery time when fail-stop crashes

occur in the monitoring system. In addition, we also measure the traffic generated by the

communication between the elements of our solution. This leads us to the contribution

of showing the tradeoff between the recovery time and associated network traffic. The

determination of such tradeoff is important because it shows when a faster recovery

process consumes too much network bandwidth. On the other side, it also shows when

excessively saved bandwidth leads to services that remain unavailable longer.

The remainder of the paper is organized as follows. In Section 2 we review network

monitoring systems in terms of self-* support, distribution, and availability. In Section

3 we introduce our self-healing architecture for NAC monitoring, while in section 4

we evaluate our proposal in an actual testing environment, presenting associated results

and their analyses. Finally, the paper is concluded in Section 5.

2 Related Work

Although network and service monitoring is widely addressed by current investigations

[3] [4] and products on the market [5], we review in this section solutions that are mainly

related to the aspects of self-monitoring and self-healing on distributed monitoring.



Distributed monitoring are specially required in large-scale networks, like country

or continental-wide backbones [6] [7]. Most of the research in this area propose com-

plex monitoring system that generally identify internal failures and employ algorithms

to reorganize itself without the failed components. In this sense, the solutions present a

certain level of self-awareness and adaption, although self-healing is in fact not present,

i.e., failing entities are not recovered or replaced. It means that in scenarios where most

of the monitoring entities crash, the monitoring systems stop working because no mech-

anism is employed to maintain the execution of the monitoring entities.

Yalagandula et al. [8] propose an architecture for monitoring large networks based

on sensors, sensing information backplane, and scalable inference engine. The commu-

nication among the entities relies on a P2P management overlay using Distributed Hash

Tables (DHTs). Prieto and Stadler [9] introduce a monitoring protocol that uses span-

ning trees to rebuild the P2P overlay used for the communications among the nodes of

the monitoring system. Both Yalagandula et al. and Prieto and Stadler work can reor-

ganize the monitoring infrastructure if failures are detected in monitoring nodes. After

such reorganization the failing nodes are excluded from the core of the rebuilt monitor-

ing infrastructure. Although reorganized, with a few number of nodes, the monitoring

capacity of the system is reduced as a whole. Again, adaptation in the form of infras-

tructure reorganization is present, but proper self-healing it is not.

Few investigations in fact explicitly employ autonomic computing concepts in sys-

tem monitoring. Chaparadza et al. [10], for example, combine self-* aspects and moni-

toring techniques to build a traffic self-monitoring system. The authors define that self-

monitoring networks are those that autonomously decide which information should be

monitored, as well as the moment and local where the monitoring task should take

place. Nevertheless, such work does not define how the monitoring system should react

in case of failures in its components. The meaning of self-monitoring in this case is

different than the one of our work. While self-monitoring in Chaparadza’s work means

autonomous decision about the monitoring process, in our view self-monitoring is about

detecting problems, through monitoring techniques, in the monitoring system itself.

Yangfan Zhou and Michael Lyu [11] present a sensor network monitoring system

closer to our view of self-monitoring. The authors’ contribution resides on the use of

sensors themselves to monitor one another in addition to performing their original task

of sensing their surrounding environment. Although self-monitoring is achieved, given

the restrictions of the sensor nodes (e.g. limited lifetime due to low-capacity batteries)

the system cannot heal itself by reactivating dead nodes.

Considering the current state of the art, there is a necessity for new approaches for

self-monitoring systems. New proposals should explicitly include, in addition to self-

awareness already available in the current investigations, self-healing support on the

monitoring entities in order to autonomously keep the monitoring service up. In the

next section we thus present our self-healing approach for monitoring infrastructures.

3 Self-Healing Architecture for Monitoring Infrastructures

The self-healing architecture built in our investigation forms a P2P management over-

lay on top of the monitored devices and services. The usage of P2P functionalities in



our architecture provides a transparent mechanism to enable communications target

to publish, discover, and access management tasks inside the overlay. In this way, the

control of such basic communications is delegated to the P2P framework used to imple-

ment our architecture. Furthermore, in a previous work we have presented that network

management based on P2P can aggregate benefits, like reliability and scalability, on

the execution of management tasks [12]. Now, we use P2P overlays to have the trans-

parency on basic overlay operations, to distribute the identification of failures and also

to provide scalability on the recovery process.

The overlay proposed in previous work is called ManP2P and its architecture has

been described in the work of Panisson et al. [13]. In this current paper, we extend the

ManP2P functionalities in order to explicitly support self-healing processes. We believe

that combined, self-healing and P2P overlays can bring together a self-monitoring in-

frastructure able to address current problems on monitoring systems. In this section we

review the ManP2P architecture, present self-healing extensions, and exemplifies their

employment in the concrete scenario of a NAC installation.

3.1 P2P Management Overlay and Services

The collection of management peers forms theManP2Pmanagement overlay. Each peer

runs basic functions (e.g., granting access to other peers to join the overlay or detecting

peers that left the P2P network) to maintain the overlay structure. In addition, each peer

hosts a set o management services instances that execute management task over the

managed network. In our specific case, such tasks are monitoring remote equipments.

A management service is available if at least one single instance of it is running on the

overlay. More instances of the same service, however, must be instantiated in order to

implement fault tolerance. Figure 1 exemplifies a scenario where management services

(LDAP monitors, Web servers monitors, rogue user monitors) for a NAC installation

are deployed on the ManP2P management overlay.

Fig. 1. NAC meta-monitoring infrastructure



In Figure 1, peers #1 and #2 host service instances, pictured as a triangle, that moni-

tor an LDAP server. Peer #4, on its turn, contacts both theWeb server and the rogue user

service because it hosts management services to monitor these elements. The special

services of self-healing and configuration, depicted as black and gray circles respec-

tively, will be explained farther in this paper. Each peer, in summary, may host different

services at one. In the extreme cases, there could exist peers with no management ser-

vices (thus useless peers) or peers hosting one instance of each available management

service (this possibly becoming an overloaded peer).

We consider that the a management service is able to heal itself if, after the crashing

of some of its instances (possibly due to peers crash), new instances become available,

thus recovering the service and guaranteeing its availability. In order to cope with that,

two functions must be supported: failure detection and service instance activation.

3.2 Failure Detection

Failures in a management service are detected by a self-monitoring procedure where

each service instance, in intervals of t seconds, sends a signal (heartbeat) to all other

instances of the same service to inform that the former is running. Self-monitoring, in

this sense, means that there is no external entity monitoring the instances of a man-

agement service deployed inside the overlay. Indeed, the instances of the management

service themselves can monitor their liveness throughout the heartbeat messages. So, if

one instance crashes, the other instances will miss the former’s heartbeats and then will

initiate the process to recover this instance, as it will be explained later on this paper.

Heartbeats that get lost in the network may wrongly suggest the unavailability of a

service instance. Instead of immediately assuming an instance as down given the lack

of a heartbeat, it first becomes suspect by the other instances. In order to double check

the availability of the suspicious instance, one of the other alive instance tries to contact

the suspicious instance back. If no contact is possible, the suspicious instance is finally

declared unavailable. Assuming s as the time spent to double check the availability of

a suspicious instance, the maximum detection time is td = t + s.

The distribution of heartbeats from one service instance to all others is accomplished

using group communications. At the network level, in the best case, group communi-

cation is supported by multicast communications. In this case, the number of heartbeat

messages h issued by i service instances in t seconds will be h = i. However, if mul-

ticasting is not available, the notifying service instance is forced to send, via unicast,

copies of the same heartbeat to all other instances. In this case, the number of messages

will be h = i
2
− i. In this way, the presence of multicasting directly influences the

network traffic generated by the failure detection function.

Failure detection is essentially a consensus problem. Solutions on this topic, com-

ing from the dependability field, could be employed and formalisms used to model

and validade our detection approach. Instead of that, however, we preferred to use the

practical approach of actually implementing the aforementioned function. Although no

formal proof is provided, our experiments have shown that this approach is effective in

detecting failures in the management service instances.



3.3 Service Instance Activation and Policies

Instance activation is crucial to recover the management service that just lost some of

its instances. It is on instance activation that the self-healing and configuration services,

presented in Figure 1, play a key role.

Once an instance detects a remote crashed one, it notifies the self-healing service

that determines how many, if any, new instances of the faulty service must be activated.

To do so, the self-healing service internally checks a repository of service policies that

describes, for each management service, the minimum number of instances that must

be running, as well as the number of new instances that must be activated once the

minimum boundary is crossed.

Table 1. Service policy repository

Management service Minimum instances Activate instances

LDAP monitor 2 1

Web server monitor 2 2

Rogue user monitor 2 1

Table 1 shows the service policy repository for the NAC installation of Figure 1. As

can be observed, the LDAP monitoring service must have at least 2 instances running.

In cause of failure, another new one instance must be activated. In the case of the Web

server monitor, on the other hand, although 2 instances are running, whenever activation

is required 2 other new instances will be initiated. If the number of remaining running

instances of a services is still above the minimum boundary, the self-healing service

ignores the faulty service notifications. For example, in the case of the rogue user mon-

itor from Figure 1, if a single instance crashes no action will be executed because the

remaining 2 instances do not cross the minimum boundary. Although it is outside the

scope of this paper stressing the administration and usage of management service poli-

cies (refer to the work of Marquezan et al. [14] for that), we assume that policies are

defined by the system administrator and transferred to the self-healing service instances

long before any failure occurred in the P2P management overlay.

Once required, the self-healing service tries to activate the number of new instances

defined in the service policy by contacting the configuration service. Such configuration

service is then responsible for creating new instances of the faulty service on peers that

do not have those instances yet. A peer hosting solely a configuration service can be

seen as an spare peer ready to active new instances of any service in failure.

Different than the failure detection function, instance activation is performed out-

side the group of instances that implement the failing management service. That is so

because decoupling the instance activation function from the services that require them

allow us to more flexibly deal with the number of components for each function. That

directly impact on the number of message exchanged in the overlay.

So far, we have defined a self-healing architecture that extends the ManP2P func-

tionalities. However, to ensure that the failure detection and instance activation func-

tions work properly, two requirements must be filled on the P2P management overlay.



First, each management service (including the self-healing and configuration services)

must run at least 2 instances in order to detect and recover problems on the management

service. That is so because a single faulty instance cannot react itself if it is crashed,

then at least another instance is required. Second, each peer must not host more than

one instance of the same management service in order to avoid several instances of that

service crashing if the hosting peer crashes too. We assure that the maintenance of the

monitoring infrastructure can be accomplished while these requirements are fulfilled.

3.4 System Implementation

As mentioned before, our architecture extends theManP2P system. The implementation

of our architecture in an actual monitoring system is than based on the previous code of

ManP2P. Figure 2 left depicts the internal componentes of a peer of our solution.

Components are divided by the core peer plane and management service plane.

The core peer plane’s components are responsible for controlling the communication

mechanisms between peers. At the bottom the JXTA and network multicast components

implement group communication using unicast (via JXTA) or network multicast. On

top of them, the group manager and token manager components control, respectively,

group membership and load balancing (via a virtual token ring). Messages are handled

by the message handler component that interfaces with Axis2 to communicate with the

management service plane’s components. A ManP2P component on the top of the core

peer plane is used to implement complementary functionalities that are not inside the

scope of this paper.

At the management service plane the regular monitoring services are found. Al-

though located in this plane, monitoring services themselves do not monitor remote

instances for fault detection; this verification is in fact performed by the group manager

component. That is so because we wanted the self-monitoring function to be native

in any peer, freeing the developer of new management services to concentrate their

efforts on the management functionalities he/she is coding without worrying about

self-monitoring. At the management service plane the self-healing and configuration

services are also found. As mentioned before, they are responsible for activating new

instances of monitoring services when required. The black little square inside the self-

healing service represents the policies that define the minimum number of instances of

eachmanagement service, as well as the number of new instances that must be activated.

Peers and internal monitoring services have been coded in Java using Axis2, JXTA, and

ManP2P previously developed libraries. Monitoring services have been specifically de-

veloped as dynamic libraries that can be instantiated when required be a hosting peer.

4 Experimental Evaluation

In our experimental evaluation we measured the recovery time and the generated net-

work traffic when fail-stop crashes occur in peers of the proposed self-healing monitor-

ing infrastructure. We evaluate the effects of such failures considering variations on: (a)

the number of simultaneously crashing peers, (b) the number of peers in the manage-

ment overlay, and (c) the number of management services running on the overlay.



Fig. 2.Meta-monitoring architecture

We have run our experiments in a high performance cluster, called LabTec from

the GPPD research group at UFRGS [15], from which we used 16 nodes to host the

management peers of our architecture. The recovery time and the generated traffic have

been measured capturing the P2P traffic and timestamping it using a packet capture

tcpdump software. Traffic volume is calculated considering the headers and payload

of all packets generated by the system operations. Recovery time has been measured 30

times for each experimental case and computed with a confidence interval of 95%.

Although the size of P2P systems is typically of scales much higher than 16 nodes,

we emphasize here that we do not believe that, in an actual management scenario of

a single corporation, administrators would use a large number of managing nodes. We

thus assume that 16 peers are sufficient for most actual management environments.

Over the P2P management overlay we deployed up to 12 different NAC management

services (namely, monitors for LDAP, DNS, DHCP, Radius, data base, Web servers,

rogue user, firewall, proxy, access point, switches, and routers), in addition to the self-

healing and configuration special services required in the recovery process. The single

service policy enforced in all management services of our experiments defines that at

least 2 instances per service must be running and, in case of failures, just 1 another

instance must be activated per crashed instance.

Considering the above, two main sets of experiments have been carried out: multi-

ple crashing peers, and variable number of peers and services. These experiments and

associated results are presented in the next subsections.



4.1 Multiple Crashing Peers

The first experiment was designed to check the performance of the self-healing moni-

toring architecture when the number of simultaneously crashing peers hosting manage-

ment services increases until the limit where half of them are broken. In addition, we

want to check whether the number of instances of the self-healing and configuration

services influences the recovery time and generated traffic.

For this set of experiments, we used to following setup: 12 management services are

always deployed, each one with 2 instances running on the overlay. The total 24 service

instances (i.e., 12 × 2) are placed along 8 peers, each one thus hosting 3 (i.e., 24 ÷ 8)

service instances. The number of crashing peers varies from 1 to 4. Since each peer hosts

3 instances, the number of crashing instances varies from 3 (12.5%) to 12 (50%), out

of the total of 24 instances. Additional 4 peers have been used to host the self-healing

and configuration services. Their varying number of instances has been organized, in

pairs of self-healing/configuration, as follows: 2 and 4 instances, and 4 and 4 instances.

Finally, we consider that group communication support is implemented interchangeably

using multicast and unicast.

Figure 3 shows in seconds the time taken by the monitoring system to detect and

activate new instances of the crashing services using the “spare” cluster nodes that host

the configuration service. The first occurrence of 3 crashing services correspond to the

situation where 1 peer fails; 6 crashing services correspond to 2 failing peers, and so

on. No value is provide in 0 (zero) because with no failing peers there will not be any

crashing service. Figure 4, in its turn, presents the network traffic generated by the

management overlay in this recovery process. In this case, for 0 (zero) there exists an

associated network traffic because, in the self-monitoring process, heartbeat messages

are constantly sent regardless the presence or not of a failure.

 

0

10

20

30

40

50

60

70

0 3 6 9 12

Recovery time (secs)

Number of crashing services2 self-healing, 4 configuration (unicast)

4 self-healing, 4 configuration (unicast)

2 self-healing, 4 configuration (multicast)

4 self-healing, 4 configuration (multicast)

Fig. 3. Recovery time with multiple crashing

 

0

1000

2000

3000

4000

5000

6000

0 3 6 9 12

Traffic (Kbytes)

Number of crashing services2 self-healing, 4 configuration (unicast)

4 self-healing, 4 configuration (unicast)

2 self-healing, 4 configuration (multicast)

4 self-healing, 4 configuration (multicast)

Fig. 4. Traffic to recover crashing peers

The recovery time as a function of the number of crashing peers stayed mostly con-

stant. With that we can conclude that the system scales well considering a management

scenario of 16 nodes. There is a little variance on the recovery time as a function of the



self-healing and configuration services. In fact, such difference is the result of employ-

ing multicast or unicast. When peers use multicasting they quickly become aware of

changes in the system, and can rather react faster. Using unicast, however, more mes-

sages are sent, delaying the communication and, as a consequence, the reactions. In

summary, the recovery time is not strongly influenced either by the self-healing and

configuration services or by the number of crashing services. There is, however, a little

influence from the use of multicast or unicast in the group communication support.

Network traffic, in its turn, presents a stronger influence of multicast or unicast

support. As can be observed in Figure 4, multicast-based communications saves more

bandwidth, which is expected. The important point to be observed, however, is that

with the increasing number of crashed services the traffic generated to recover them is

closely linear, but with doubling the number of failures, the traffic generate does not

double together. Although not so efficient as in the case of recovery time, the band-

width consumption is still scalable in this case. Putting these two parameters together

and observing the graphs, if multicasting is used the number of self-healing and config-

uration services and the number of crashing peers do not influence the recovery time,

and slightly increase the bandwidth consumption. In the case of unicast, however, the

option of employing 2 self-healing instances instead of 4 is better, because this setup

reacts slightly faster yet generating less traffic.

4.2 Varying Number of Peers and Services

The second experiment shows the relationship between recovery time and generated

traffic when single crashes occur (which tends to bemore frequent thanmultiple crashes)

but the number of peers and services varies. We consider the recovery process when the

number of management services increases (from 1 to 12, i.e. from 2 to 24 instances)

over three setups where 2, 6, and 12 peers are used to host the management services. In

addition to single crashes, we also fixed the number of 2 self-healing and 2 configura-

tion services instances, hosted by 2 peers. We did so because, as observed before, the

number of such instances few impacts on the recovery time.
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In Figure 5, where the recovery delay is presented, services communicating via

multicast are depicted with dashed lines, while services using unicast are depicted with

solid gray lines. The recovery time when only 2 peers are employed is usually higher

because each of the 2 peers hosts more service instances. When one of the peers crashes,

more instances need to be activated. On the other extreme, with 12 peers, each peer

hosts less services, leading to the situation where a crashing peer actually triggers the

activation of less service instances.

The fact that more instances need to be activated as the result of a more load peer can

be observed in Figure 6, that shows the traffic generated to recover the system. Again,

multicast communications save more bandwidth than unicast, as expected. However, it

is important to notice now that the number of services in each peer influences too. For

example, 6 instances running on the same peer (line “6 serv. multicast”, with 2 peers

in the x axis) despite being multicast still takes longer and generates more traffic to

recover the system than the case where, via unicast, only 1 services is deployed (line “1

serv. unicast”, with 2 peers in the x axis).

This confirms that the number of peers and service instances must be similar in

order to recover more promptly the system without generating too much traffic. If an

administrator is restricted in terms of peers available, he/she must try to restrict the

number of services employed as well. If new services are required, however, the option

of also increasing the number of peers should be considered.

Now considering the whole picture, administrators should not worry about simulta-

neous crashes nor the number of self-healing and configuration services. Increased mul-

tiple crashes are more scare, and even if they happen the system is able to recover rea-

sonably fast. As observed, the number of serf-healing and configuration services does

not affect the overall performance of the system. However, administrator should do pay

attention to the number of available peers and service instances, as mentioned before.

Finally, the employment of multicast and unicast in the group communication mecha-

nism influences in the recovery time (less) and the generated traffic (more). Choosing

multicast whenever possible helps to improve the response time of the system. Unfortu-

nately multicasting is not always available, which forces the administrator to use unicast

to implement group communication.

5 Conclusions and Future Work

We have presented in this paper the design and evaluation of a P2P-based self-healing

monitoring system employed in a NAC environment. The solution achieves self-healing

capacity by splitting in two different processes the functions of failure detection and

system recovery. Failure detection is executed inside management services that monitor

final devices, while system recovery relies on special services called self-healing (that

decides when new service instances must be activated) and configuration (that activates

the new service instance as an reaction for the self-healing service decision).

The results of our experimental evaluations allow us to conclude that the number

of instances of the self-healing and configuration service is not a major player in the

performance of the system. They also permit us to state that simultaneously crashes on

the management services does not influences so expressively the system performance



either. A network administrator willing to employ a self-healing monitoring solution

should not concentrate his/her efforts in finding an ideal number of self-heling and con-

figuration services. Our experiments employed 2 and 4 instances, respectively, and the

system response was satisfactory. The fact that must be observed, however, is the group

communication solution available on the managed network: multicast turns recovery

faster while consuming less network bandwidth. Unfortunately, IP multicasting can not

always be provided, and unicast ends up being chosen in such situations.

The most important aspects that must be observed in a self-healing monitoring so-

lution is the number of peers employed in the P2P management overlay and the number

of service instances deployed. With few instances, there is no need for several peers.

On the other hand, with a large number of instances the number of peers should grow

consistently, otherwise, on the occurrence of a failure, the recovery time will be higher

and more network bandwidth is consumed by the intensive P2P traffic generated.

Currently, we are working on the optimization of the detection mechanism because

the current version of it is responsible for a considerable amount of generated traffic.

Another future work is the investigation about how service policies impact on the con-

sumed network bandwidth and recovery time of our system.
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