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Abstract. This work presents a new policy based security framework that is 
able handle simultaneously and coherently mandatory, discretionary and 
security property policies. One important aspect of the proposed framework 
is that each dimension of the security policies can be managed 
independently, allowing people playing different roles in an organization to 
define security policies without violating a global security goal. The 
framework creates an abstract layer that permits to define security policies 
independently of how they will be enforced. For example, the mandatory 
and security property polices could be assigned to the risk management 
staff while the discretionary policies could be delegated among the several 
departments in the organization.  

1 Introduction 

In large networks, using a collection of firewalls increases the network security by 
separating public and private resources. It also permits to control the access of 
internal users to internal resources, reducing the risks of attacks originated from 
the inside of the network [1]. However, many difficulties arise when configuring 
large networks. First, it is necessary to determine the rule set that must be applied 
to each firewall, in a way that the overall security policy is satisfied [2]. Also, as 
firewalls of diverse models and vendors can be present, it is necessary to consider 
the specific set of rules that can be interpreted and enforced by each firewall in the 
network before applying the configuration. The topology of the network and the 
placement of the firewalls with respect to the users and resources is another aspect 
that must be considered. Each firewall receives a rule set according to its location 
in the network. If more than one firewall is present between a user and a resource, 
the rule set can be combined in order to better explore the distinct features offered 
by the firewalls.  Ideally, the process of defining security policies should be 
decoupled from the mechanisms that will actually enforce them over the network. 
In most organizations, security policies are related to business goals, and are not 
anymore a purely technical issue. 

In order to address the aforementioned issues, this paper proposes a policy-
based security framework that introduces a new approach related to the security 
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policy definition and the generation of firewall configuration in a distributed 
environment. The framework adopts a policy model with three dimensions of 
security policies: mandatory, discretionary and security property. Mandatory 
policies are coarse grained and reflect the inviolable security restrictions in the 
organization. Discretionary policies are fine grained, and are subjected to the 
mandatory policies. While mandatory and discretionary policies are restrictions 
imposed to the right of access from users to resources, the security property 
policies are restrictions imposed to the paths connecting users to resources. In our 
framework a path must satisfy some security requirements in order to be allowed. 
This permits to create policies which are independent on the user or resource 
location. The motivation for this division is to support the cooperation of multiple 
security staff in the security policy definition. For example, the right to define 
mandatory and security property policies could be assigned to an organizational-
level risk management staff while the discretionary policies could be delegated to 
the local administrators in several departments in the organization. 

The process of translating the three-dimensional high level security policy into 
firewall configuration is highly complex. In order that the firewall configuration 
respects the high level definition, we have formalized both the policy model and 
the translating algorithm using the Z-language notation. The proof of some 
important theorems permits to demonstrate the coherence of our approach with 
respect of combining multiple policies. 

The remaining of this paper is organized as follows: section 2 presents some 
representative related works. Section 3 describes our proposed framework, 
presenting both the security policy language and the translation algorithm. Section 
4 presents the Z-language representation of the framework and the theorem 
proving. Section 5 presents a case study, illustrating how the framework works. 
Finally, Section 6 concludes the paper and points to future developments. 

2 Related Work 

Presently, it is possible to find numerous academic or commercial firewall 
languages proposed to simplify the firewall configuration process. These 
languages can be classified according to criteria such as vendor independence, 
topology independency and their level of abstraction. 

Firewall languages are vendor dependent when they apply only to firewall 
devices of a specific vendor. Some examples are the Cisco PIX [3] e Cisco IOS 
[4] languages. On the other hand, vendor independent languages are not limited to 
a specific vendor. This is the case of INSPECT language patented by CheckPoint 
[5]. A vendor can create a firewall supporting the INSPECT standard by 
implementing a compiler that translates the INSPECT language into the firewall’s 
native configuration instructions.  

Languages are topology dependent when they were designed to represent the 
configuration of each firewall isolated, i.e., the placement of the users and 
resources with respect to the firewalls is taken into account by the network 
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administrator and not by the language compiler. The language used by the 
framework presented in [6] is an example of topology dependent language. The 
framework represents firewall configuration as high level policies based on the 
Ponder specification [7]. Even though the high level language provides the use of 
symbols for masquerading host and network addresses, it is still topology 
dependent, because there is no automated strategy for selecting the sub-set of rules 
that applies for a specific firewall.  

The languages are independent of topology when it is possible to represent both 
the security rules and the network topology independently. In this case, rules are 
not specific to each firewall. There is a mechanism or algorithm that evaluates the 
network topology (i.e., the placement of users and resources with respect to the 
firewalls) and translates the security policies into localized firewall configuration. 
The framework described in [8] is an example of topology independent firewall 
configuration. In [8] the access control policies are defined in three levels: 
organizational, global and local. Policies at the organizational level are described 
in natural language, and define security goals such as blocking offensive content 
and scanning actions. Organizational policies are transformed into global filtering 
rules at the global level. The subset of the global rules that concerns each firewall 
is separated and distributed at the local level.  

The languages employed for firewall configuration can be further classified 
according to its level of abstraction. In low-level languages, the network 
configuration is represented by a set of rules of type “if conditions are satisfied 
than enforce actions”. The conditions are basically described in terms of the 
packet’s header fields. Most languages found in the literature, such as the one 
employed by the Firmato toolkit, are low-level [12]. On the other hand, the high-
level languages uses a more abstract concept, wherein the security policies says 
“what must be done” instead of saying “how must be done”, i.e., the policy define 
an intention independently of the mechanisms used to implement it. Some 
examples of policy based languages can be found in [9], [10] and [11]. The 
framework presented in [9] permits to represent high-level policies in the form of 
a list of data access rules (DACL), that declares permissions of executing simple 
operations (read or write) on objects. The framework translates the high-level 
policies into low-level policies suitable to be configured into the firewall devices. 
An algorithm for checking the fidelity of the low-level policies with respect to the 
high-level policies is also presented. The project presented in [10] aims to 
automate the management of security policy in dynamic networks. The central 
component is a policy engine with templates of the network elements and services 
that validates the policy and generates the new security configurations for the 
network elements when the security is violated. The work presented in [11] 
abstracts hosts and area addresses by using names, which permits to easily 
determine which firewalls are traversed by the communication flows. It defines an 
algorithm that, given a specific topology, creates the filter set for each firewall or 
router. It also defines a second algorithm that verifies if the resulting configuration 
violates any of access policies.  

The work described in [14] adopts a graphic representation of security rules. 
The work also defines the concept of security goals (e.g., top secret, mission critic, 
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etc), which impose additional security properties that are required in order to 
access an object or perform a given access mode. At a lower level, a security goal 
is expressed in terms of a security requirement vector, which defines the minimum 
levels of properties such as confidentiality, integrity, availability and 
accountability. A security assumption vector defines the same properties assigned 
for the principal and elements along the path between the principal and the 
resource. In order of an access to be granted, it is necessary that all properties of 
the security assumption vector satisfy the corresponding properties in the security 
requirement vector. We have borrowed many concepts related to the security 
property model from this work. 

3 The Framework 

This work presents a new policy based security framework that is capable to 
handle simultaneously and coherently mandatory, discretionary and security 
property policies. The framework supports the definition of network security 
configuration for systems formed by a set of users willing to access a set of 
protected resources. A resource is a service delivered at a location, which can play 
the role of the source or the destination of an access. A source location is the place 
where a user initiates an access while a destination location is the place where one 
or more services are delivered. 

A user can access a resource if there is permission. Permissions are represented 
by three different security models: mandatory, discretionary and security property. 
The mandatory model defines permissions by classifying users and resources with 
clearances and classifications. In the mandatory model, a permission is defined 
whenever a user classification is greater then a resource clearance [13]. The 
discretionary model defines permissions by mean of rules that relate users to 
resources, including their possible sources and destinations. Finally, the security 
property model defines permissions by assigning security levels to firewalls, and 
locations. 

The framework has two main components: an information model and a 
refinement algorithm. The first includes all high level security information, 
whereas the second allows security policy formulated by high level statements to 
be consistently translated to firewall security rules. 

3.1 The Information Model 

The Information model is organized in five main blocks: the Inventory, the 
Mandatory Model, the Discretionary Model, the Security Property Model, and the 
Firewall Features Model, and is depicted in Figure 1. 

The Inventory contains the objects and relationships necessary to build the 
security policy. It is organized in two main objects groups. The first includes 
users, locations, resources and services. A Service is modeled by the combination 
of a protocol and two port numbers for the source and destination sides. For 
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instance, the Telnet service would be defined as TCP with destination port 23 and 
any source port. Although users interact with services, permissions are granted to 
resources. A Resource consists of one or more services delivered from one or 
more locations. For example, the E-mail resource could be defined to represent 
SMTP, POP and IMAP services. A Location is the place from where users access 
resources and also the place where a resource is located. Physically it corresponds 
to a host or subnet, and is represented by an IP address and a mask. When 
assigned to users, a location plays the source role, and the destination role when 
assigned to resources. The User Located At and Resource Located At classes 
indicate, respectively, the locations from where a user can initiate an access or 
from where a resource can deliver a service. Users, locations and resources can be 
organized in groups, what is modeled by a corresponding abstract class. For 
example, an Abstract User can be a User or a User Group, which in its turn can 
contains many abstract users, that is, many users or user groups. 
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Fig. 1. The Information Model 

The second object group includes connections, locations and firewalls. The 
Connection class represents connections between locations and firewalls or 
between two firewalls. Together, they model the network topology. The Firewall 
Feature class models firewall functionality, that is, its ability to perform some 
processing over the network packets.  

The Mandatory Model establishes the mandatory access control policy by 
determining resource access according to a clearance versus classification schema. 
Clearance levels are assigned to users wherever classification levels are assigned 
to resources. A user is allowed to access a resource only if its clearance is equal to 
or greater than the corresponding resource classification. 

The Discretionary Model is constructed by a set of discretionary rules that state 
the security actions to be enforced for specific service accesses. A service access 
includes the service, a user, and the location from where he can initiate an access; 
and a resource, and the destination from where it can be accessed. Examples of 



 

 

Cássio Ditzel Kropiwiec1, Edgard Jamhour2, Manoel C. Penna2, Guy Pujolle1 

security actions are: accept, deny, log, and forward. In this study we just consider 
the accept action, and adopt the “anything not explicitly allowed is forbidden” 
strategy. 

The Security Property Model provides fine-grained security information by 
including configuration and location dependent constraints. Security property 
rules enforce access control based on two properties, the security requirement 
(SR), which is defined for destination locations, and security assumption (SA), 
which is defined for source locations, firewalls and protocols.  

Security requirements and security assumptions are specified by security levels 
within a security class. The security level is a natural number ranging from one to 
four, expressing the “strength” of one of the following security properties: 
confidentiality, integrity, availability and accountability. The security level 
establishes a total order over the security property set: the greater is the 
corresponding number (1, 2, 3 or 4) the stronger is security level. A security class 
is defined by an array of size four. If sc is a security class, sc[1], sc[2], sc[3] and 
sc[4] correspond, respectively, to its confidentiality, traceability, integrity and 
accountability security levels. Any entities that can be involved in resource 
accesses (i.e., locations, firewalls, and protocols) have a security class. 

Security requirements and security assumptions can change when the related 
objects are combined. For example, John Doe trying to access a resource from the 
Engineering subnet would probably have a different SA than when he is trying to 
access the same resource from JD-Home host. Assuming that the corporation has 
much more control over the Engineering subnet then the first combination should 
result in a stronger SA. The protocol used by the object also changes its SA. For 
example, John Doe at Engineering subnet accessing a resource through HTTPS 
protocol introduces lower risk than when he is trying to access same resource from 
the same subnet through HTTP. Consequently a stronger SA should be assigned to 
the first. The modified security assumption is referred as effective security 
assumption (ESA). The upper effective class operation (∪∪∪∪) over the security class 
set is defined to compute it. Let sc1, sc2, …, scn, to be security classes such that sci 
= [x1i, x2i, x3i, x4i ]. 

[ ])(sup),(sup),(sup),(sup 4321
1

iiiiiiii

n

i
i xxxxsc =

=
U  (1) 

Security assumptions along an end-to-end path are combined together to form 
the overall security assumption (OSA). The permission to a user (from a source 
location) willing access a resource (at a destination location) is granted only if the 
end-to-end path OSA is at least as “strong” as the destination location SR. This 
involves the comparison of security classes. Because there is a partial order over 
the security class set, we are able to define its “strength”. When sc1 and sc2 are 
security classes such that sc1 = [x1, x2, x3, x4] and sc2 = [y1, y2, y3, y4], the security 
class sc2 is stronger than sc1 if yi ≥ xi, for i = 1..4. 

The OSA is calculated as follows: First, compute the ESA for the (source 
location, protocol) pair and for each (firewall, protocol) pair along the path. Then, 
the resulting ESAs are combined along the end-to-end path. In this case the 
calculation should retain the set of weakest security levels. For this, the lower 
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effective class operation (∩) is defined over the security class set as follows. Let 
sc1, sc2, …, scn, to be security classes such that sci = [x1i, x2i, x3i, x4i ]. 

[ ])(inf),(inf),(inf),(inf 4321
1

iiiiiiii

n

i
i xxxxsc =

=
I  (2) 

The Firewall Features Model contains the objects and relationships necessary to 
represent the firewall security functionality. The Firewall Feature class models the 
firewall ability to perform some processing over the network packets. For 
instance, a stateful firewall has the ability (or feature) of keeping track the state of 
network connections (such as TCP streams or UDP communication) flowing 
across it. This concept was introduced in Firmato [12] where the following 
features, included in the most common firewalls are listed: Names, Groups, IP 
Ranges, Stateful, Trust levels, Directional, Default Stance, Predefined Services 
and Layer. 

A service access introduces the need for firewall features along the end-to-end 
path. For example, if the Email-plus resource represents a service that allows the 
exchange of e-mails with attached videos, then the Predefined Services feature 
must be present. The required features (RF) operation computes the set of all 
firewall features that are necessary for a service access. On the other hand, the 
feature can be supported by any of the firewalls along the path. In other words, the 
sequence of firewalls within a path supports the union of individual features. The 
virtual firewall (VF) operation computes the set of features supported along the 
path. If A = RF(service access) and B = VF(path), the service access is feasible if 
A ⊆ B. 

A service access determines a firewall rule, that is, a sequence of conditions 
that must be satisfied to allow the access. We introduce the concept of firewall 
abstract rule, a vendor independent syntax firewall rule, that is, a sequence of 
abstract (vendor independent) conditions and the corresponding action. To build 
this abstract rule, one should consider the objects included in the service access, 
obtaining, for each one, the conditions registered in the inventory. For example, if 
John Doe is named in the service access and its login name in the inventory is 
JDoe, then the corresponding abstract condition is (login_name, JDoe). Also, if 
the Engineering subnet is named in the service access and its IP address is 
10.1.1.0/24, the corresponding abstract condition is (IP_SRC, 10.1.1.0/24). Each 
abstract rule must be distributed along the firewalls involved in a service access. 
The features supported by each firewall are registered in the inventory. Please note 
that the RF operation assures that all necessary conditions can be enforced by the 
firewalls along the path. 

3.2 The Refinement Algorithm 

The refinement algorithm is presented in the following, supported by the 
example depicted in figure 2. 
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Fig. 2. A Refinement Example 

1. Identify the set of (user, resource) pairs that hold the discretionary and 
mandatory models: (i) Take all abstract users and resources that are referenced by 
discretionary rules. (ii) Expand groups to individual users and resources. (iii) 
Select all (user, resource) pairs for which user clearance is greater than or equal to 
resource classification. 

2. For the (user, resource) pairs obtained in step 1, compute the set of service 
accesses, that is, ((user, source), (destination, resource), service) tuples, that hold 
the inventory and discretionary model (Figure 2a). The source and destination 
locations must be referred by a discretionary rule and be registered in User 
Located at or Resource Located at, respectively. Each resource is related to one or 
more services. If the set is empty, terminate the algorithm. 

3. Compute the set of possible paths for the service access computed in step 2 
(Figure 2b): (i) For each service access, find a candidate path. (ii) Identify the 
possible protocols for the candidate path, from the services delivered at the 
corresponding destination. (iii) For each candidate path, compute the 
corresponding OSA. If it is at least as stronger as the destination SR, include it in 
the set of possible paths. (iv) If the set of possible paths is empty for all services 
accesses, terminate the algorithm. 

4. Compute the set of feasible paths for the service accesses that corresponds to 
a possible path computed in step 3 (Figure 2c): (i) For each service access, 
compute A = RF(service access). (ii) For each path in the set of possible path, 
compute B = VF(path). (iii) If A ⊆ B, include the path in the set of feasible paths. 
(iv) If the set of feasible paths is empty for all services accesses, terminate the 
algorithm. 

5. Compute the set of abstract firewall rules for each service access that 
corresponds to a feasible path computed in step 4 (Figure 2d): (i) For each 
firewall, compute the set of service access in which it is involved. (ii) For each 
service access in which the firewall is involved, produces an abstract rule with the 
conditions it can implement. 
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4 Formal Representation, Analysis and Validation 

The refinement algorithm must guarantee that translation process doesn’t cause 
the violation of the policies. High-level and low-level policies must represent the 
same set of permissions; otherwise, the whole system can be compromised. Two 
main theorems must be demonstrated to validate the algorithm: 

1. Every access allowed by the higher level policy should be supported by the 
lower level policy (if they can be correctly enforced), and 

2. No action allowed by the lower level policy should be forbidden by the 
higher level policy. 

The formalism used in this work for formal validation and analysis is based on 
Z notation [15]. The Z notation is a formal specification language used for 
describing and modeling computing systems. The Z/EVES tool [16] is used to aid 
in representation and manipulation of Z notation. It is an interactive system for 
composing, checking, and analyzing Z specifications.  

The validation approach used in this work consists of representing the 
algorithm in Z notation, creating theorems that represents the properties that the 
system must hold and using the Z-Eves tool to automatically prove these 
theorems, thus validating that the mathematical representation of the algorithm is 
consistent and complete. 

The complete Z specification of the system and the proved theorems is very 
extensive and complex to be entirely presented in this paper. However, to illustrate 
how it is done, we present some excerpts in the following. The full Z specification 
is available to download at [17]. As an example, Figure 3 presents the procedure 
for handling discretionary rules.  

 »_DiscretionarySchema________________________ 
1 Æ Rule: P User x P Resource x P Location x P Location x Action 
 «_______________ 
2 ÆRule = (users, resources, sources, destinations, action) 
3 Æif Euser: users • user = AnyUser 
4 Æthen RuleUsers = Users 
5 Æelse if users z Users then RuleUsers = users else RuleUsers = 0 
6 Æif Eresource: resources • resource = AnyResource 
7 Æthen RuleResources = Resources 
8 Æelse if resources z Resources 
9 Æ     then RuleResources = resources 
10 Æ     else RuleResources = 0 
11 Æif Esource: sources • source = AnySource 
12 Æthen RuleSourcesExplicit = Locations 
13 Æelse if sources z Locations 
14 Æ     then RuleSourcesExplicit = sources 
15 Æ     else RuleSourcesExplicit = 0 
16 ÆRuleSourcesLocatedAt 
17 Æ  = { u: User; l: Location | u e users ¶ (u, l) e UserLocatedAt • l } 
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18 ÆRuleSources = RuleSourcesExplicit I RuleSourcesLocatedAt 
19 Æif Edestination: destinations • destination = AnyDestination 
20 Æthen RuleDestinationsExplicit = Locations 
21 Æelse if destinations z Locations 
22 Æ     then RuleDestinationsExplicit = destinations 
23 Æ     else RuleDestinationsExplicit = 0 
24 ÆRuleDestinationsLocatedAt 
25 Æ  = { r: Resource; l: Location | (r, l) e ResourceLocatedAt • l } 
26 ÆRuleDestinations = RuleDestinationsExplicit I RuleDestinationsLocatedAt 
 –_____________________________________ 

Fig. 3. Line 2 defines the structure of the rule. Lines 3 to 5 select the users referenced by 
the rule in RuleUsers set. If AnyUser is present in the rule then the RuleUsers set must 
contain all the users registered in the system. Otherwise, the specification checks if the 
specified users are registered in the system and makes the RuleUsers set to include them if 
true. If the two previous verifications are false, then RuleUsers set is empty, meaning that 
the rule is not valid for any user. Lines 6 to 10 state the same logic for RuleResources set. 
Lines 11 to 18 specify how RuleSources set is built. Note that lines 11 to 15 are similar to 
RuleUsers set specification. The differences are at lines 16, 17 and 18. In the first two, the 
sources where the users can be located are selected, while in line 18, the RuleSources set is 
defined as the intersection between the sources specified in the rule and the locations of the 
users. The same logic is applied to RuleDestinations set at lines 19 to 26.  

With the algorithm modeled in Z, the next step is to specify the theorems and to 
prove them. The two main theorems previously cited in this section were divided 
into several small theorems, in order to make the demonstration process simpler. 
We present some of these theorems in the following paragraphs. 

Theorem 1. “If a rule specifies a user and a resource and if the user clearance is 
less than the resource classification, then the pair (user, resource) can not be a 
member of the UsersAndResources set”. The Z-Eves code is presented in Figure 4. 

Theorem 2. “For any protocol, source and destination allowed by the rule, if 
the OSA is smaller than SR, then the tuple ((protocol, source, destination), 
firewalls) cannot be a member of SecurePaths set”. The Z-Eves code is presented 
in Figure 5. 

Theorem 3. “If the ((user, resource), (protocol, source, destination), 
firewalls) tuple defines a service access across the firewalls (i.e., if the tuple is a 
member of the Permissions set), then the rule must include these user, resource, 
source and destination; the user clearance must be equal to or greater than the 
resource classification; and the OSA for the (protocol, source, firewall) tuple must 
be equal to or greater than the destination SR”. The Z-Eves code is presented in 
Figure 6. 

theorem rule testMandatory 
  MandatorySchema 
  ¶ user e RuleUsers  ¶ resource e RuleResources  
  ¶ Clearance user < Classification resource 
  fi ! (user, resource) e UsersAndResources 
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Fig. 4. Z representation of Theorem 1 

theorem rule testSecurityProperties 
  SecurityPropertiesSchema 
  ¶ protocol e Protocol  ¶ source e Location  ¶ destination e Location   
 ¶ firewalls e seq Firewall 
  ¶ ((protocol, source, destination), firewalls) e RulePathsAndProtocols 
  ¶ ! (OSA (protocol, source, firewalls), SR destination) e GOSA 
  fi ! ((protocol, source, destination), firewalls) e SecurePaths 

Fig. 5. Z representation of Theorem 2 - The GOSA set represents a relation between OSA 
and SR, and their elements are those for which OSA is equal to or greater than SR. Thus, 
the tuples (OSA, SR) that are not members of the GOSA set are those for which OSA is 
smaller than SR. 

theorem rule testPermissions 
  PermissionsSchema 
  ¶ ((user, resource), (protocol, source, destination), firewalls) e Permissions 
  fi user e RuleUsers ¶ resource e RuleResources  
 ¶ Clearance user ˘ Classification resource 
  ¶ ((protocol, source, destination), firewalls) e RulePathsAndProtocols 
  ¶ (OSA (protocol, source, firewalls), SR destination) e GOSA 

Fig. 6. Z representation of theorem 3 - If some permission is a member of the Permissions 
set, then it must be present at discretionary, mandatory and security property policies. 

5 Example 

According to our approach, only the framework has the credentials necessary to 
create rules in the firewalls. The policy administrators need to use the framework 
in order to manage the security policies. To illustrate the use of the framework, 
consider the example in Figure 7. It supposes an imaginary university network 
(yet realistic), with two firewalls separating 4 networks. The example illustrate 
how the mandatory and security property policies constraints the discretionary 
policies, avoiding violation of global security rules. For sake of simplicity, the 
security assumption and requirement vectors have been reduced to two 
dimensions: [confidentiality, traceability]. 

Suppose that the mandatory and security property policies have been previously 
defined (as presented in Figure 7) by a specialized department in the university, 
responsible for the overall security.  Now suppose that an administrator 
responsible for creating discretionary policy decide to give full access permissions 
for all users with a discretionary rule such as: “Any User from Any Location may 
Access Any Resource at Any Location”. In spite of this rule the discretionary rules 
generated by the framework would be defined as follows. 
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Fig. 7. Teachers and students can be located at Internet, Office or Lab network, and Guest 
users can only be located at Internet. Teachers have mandatory level (clearance 4) 
necessary to access resources http and ftp at Srv1 and Srv2, https and ftp at Srv3 
(classifications 1, 2 and 3, respectively). Students have mandatory level (clearance 2) to 
access resources http and ftp at Srv1 and Srv2 (classifications 1 and 2, respectively). Guests 
users have mandatory level (clearance 1) to access resources http and ftp at Srv1 
(classification 1). Considering the security property rules, https at Srv3 can be accessed 
from Office and Lab networks, and ftp can be accessed from any network if using IPsec 
AH. Srv2 can be accessed from Office network with http protocol. Srv1 can be accessed 
from any network (including Internet) using any protocol. 

The rules for Firewall1 are: 
• Permit Teachers, Students and Guests from Internet to access http and ftp 

services at Srv1 – because the clearance of these users are greater than the 
classification of resources at Srv1 and the OSA of the path [Internet, FW1] is 
equal to SR of Srv1. 

• Permit Teachers from Internet to access ftp over IPsec AH at Srv3 – in this 
case, the OSA of the path [Internet, FW1, DMZ, FW2] combined with ftp over 
IPsec AH results in [4,3] that is greater than the SR [3,3] of Srv3 (the OSA 
were obtained from the combination of individual ESA of network elements, 
that for this situation are the following: Internet: [4,3], FW1: [4,4], DMZ: [4,3], 
FW2: [4,4]), but only Teachers have clearance (4) greater or equal to 
classification of resources at Srv3. 

The rules for Firewall2 are: 
• Permit that Teachers and Students access the http and ftp services at Srv1 from 

Office and Lab – both Teachers and Students have clearance greater than the 
classification of resources at Srv1, and the OSA of the combination these paths 
and protocols are greater than the SR [1,1] of Srv1. 

• Permit Teachers and Students from Office to have access to http services at 
Srv2. 

• Permit Teachers from Lab to have access to the https or ftp over IPsec AH 
services at Srv3. 

• Permit Teachers from Internet to have access to the ftp over IPsec AH service 
at Srv3 – for the same reason of the second rule of Firewall1. 
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6 Conclusion 

This paper has presented a framework capable of handling a multi-constraint 
security policy model. The security policy permits to create discretionary rules 
which are constrained by mandatory and security property policies. This is a very 
flexible approach that permits to describe a large number of discretionary rules 
without violating the primary security goals in a corporate environment. The 
motivation for this division is to support the cooperation of multiple security staff 
in the security policy definition. The policy model has been formalized and 
validated using the Z-notation and the Z-Eves tool. There are, however, many 
aspects to be considered in future studies. The methodology “anything not 
explicitly allowed is forbidden” should be replaced by a more flexible approach 
capable of supporting negative policies. Also, although a prototype has already 
been developed in Prolog, a broader scalability study is necessary.  
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