
Multi-Constraint Security Policies for Delegated
Firewall Administration

Cássio Ditzel Kropiwiec1, Edgard Jamhour2, Manoel C. Penna2, Guy Pujolle1

1 LIP6, UPMC, 104 Avenue du Président Kennedy
75016 Paris, France

 2 PPGIA, PUCPR, Rua Imaculada Conceição, 1155, 80215-901,Curitiba, Brazil

Abstract. This work presents a new policy based security framework that is
able handle simultaneously and coherently mandatory, discretionary and
security property policies. One important aspect of the proposed framework
is that each dimension of the security policies can be managed
independently, allowing people playing different roles in an organization to
define security policies without violating a global security goal. The
framework creates an abstract layer that permits to define security policies
independently of how they will be enforced. For example, the mandatory
and security property polices could be assigned to the risk management
staff while the discretionary policies could be delegated among the several
departments in the organization.

1 Introduction

In large networks, using a collection of firewalls increases the network security by
separating public and private resources. It also permits to control the access of
internal users to internal resources, reducing the risks of attacks originated from
the inside of the network [1]. However, many difficulties arise when configuring
large networks. First, it is necessary to determine the rule set that must be applied
to each firewall, in a way that the overall security policy is satisfied [2]. Also, as
firewalls of diverse models and vendors can be present, it is necessary to consider
the specific set of rules that can be interpreted and enforced by each firewall in the
network before applying the configuration. The topology of the network and the
placement of the firewalls with respect to the users and resources is another aspect
that must be considered. Each firewall receives a rule set according to its location
in the network. If more than one firewall is present between a user and a resource,
the rule set can be combined in order to better explore the distinct features offered
by the firewalls. Ideally, the process of defining security policies should be
decoupled from the mechanisms that will actually enforce them over the network.
In most organizations, security policies are related to business goals, and are not
anymore a purely technical issue.

In order to address the aforementioned issues, this paper proposes a policy-
based security framework that introduces a new approach related to the security

Cássio Ditzel Kropiwiec1, Edgard Jamhour2, Manoel C. Penna2, Guy Pujolle1

policy definition and the generation of firewall configuration in a distributed
environment. The framework adopts a policy model with three dimensions of
security policies: mandatory, discretionary and security property. Mandatory
policies are coarse grained and reflect the inviolable security restrictions in the
organization. Discretionary policies are fine grained, and are subjected to the
mandatory policies. While mandatory and discretionary policies are restrictions
imposed to the right of access from users to resources, the security property
policies are restrictions imposed to the paths connecting users to resources. In our
framework a path must satisfy some security requirements in order to be allowed.
This permits to create policies which are independent on the user or resource
location. The motivation for this division is to support the cooperation of multiple
security staff in the security policy definition. For example, the right to define
mandatory and security property policies could be assigned to an organizational-
level risk management staff while the discretionary policies could be delegated to
the local administrators in several departments in the organization.

The process of translating the three-dimensional high level security policy into
firewall configuration is highly complex. In order that the firewall configuration
respects the high level definition, we have formalized both the policy model and
the translating algorithm using the Z-language notation. The proof of some
important theorems permits to demonstrate the coherence of our approach with
respect of combining multiple policies.

The remaining of this paper is organized as follows: section 2 presents some
representative related works. Section 3 describes our proposed framework,
presenting both the security policy language and the translation algorithm. Section
4 presents the Z-language representation of the framework and the theorem
proving. Section 5 presents a case study, illustrating how the framework works.
Finally, Section 6 concludes the paper and points to future developments.

2 Related Work

Presently, it is possible to find numerous academic or commercial firewall
languages proposed to simplify the firewall configuration process. These
languages can be classified according to criteria such as vendor independence,
topology independency and their level of abstraction.

Firewall languages are vendor dependent when they apply only to firewall
devices of a specific vendor. Some examples are the Cisco PIX [3] e Cisco IOS
[4] languages. On the other hand, vendor independent languages are not limited to
a specific vendor. This is the case of INSPECT language patented by CheckPoint
[5]. A vendor can create a firewall supporting the INSPECT standard by
implementing a compiler that translates the INSPECT language into the firewall’s
native configuration instructions.

Languages are topology dependent when they were designed to represent the
configuration of each firewall isolated, i.e., the placement of the users and
resources with respect to the firewalls is taken into account by the network

Multi-Constraint Security Policies for Delegated Firewall Administration

administrator and not by the language compiler. The language used by the
framework presented in [6] is an example of topology dependent language. The
framework represents firewall configuration as high level policies based on the
Ponder specification [7]. Even though the high level language provides the use of
symbols for masquerading host and network addresses, it is still topology
dependent, because there is no automated strategy for selecting the sub-set of rules
that applies for a specific firewall.

The languages are independent of topology when it is possible to represent both
the security rules and the network topology independently. In this case, rules are
not specific to each firewall. There is a mechanism or algorithm that evaluates the
network topology (i.e., the placement of users and resources with respect to the
firewalls) and translates the security policies into localized firewall configuration.
The framework described in [8] is an example of topology independent firewall
configuration. In [8] the access control policies are defined in three levels:
organizational, global and local. Policies at the organizational level are described
in natural language, and define security goals such as blocking offensive content
and scanning actions. Organizational policies are transformed into global filtering
rules at the global level. The subset of the global rules that concerns each firewall
is separated and distributed at the local level.

The languages employed for firewall configuration can be further classified
according to its level of abstraction. In low-level languages, the network
configuration is represented by a set of rules of type “if conditions are satisfied
than enforce actions”. The conditions are basically described in terms of the
packet’s header fields. Most languages found in the literature, such as the one
employed by the Firmato toolkit, are low-level [12]. On the other hand, the high-
level languages uses a more abstract concept, wherein the security policies says
“what must be done” instead of saying “how must be done”, i.e., the policy define
an intention independently of the mechanisms used to implement it. Some
examples of policy based languages can be found in [9], [10] and [11]. The
framework presented in [9] permits to represent high-level policies in the form of
a list of data access rules (DACL), that declares permissions of executing simple
operations (read or write) on objects. The framework translates the high-level
policies into low-level policies suitable to be configured into the firewall devices.
An algorithm for checking the fidelity of the low-level policies with respect to the
high-level policies is also presented. The project presented in [10] aims to
automate the management of security policy in dynamic networks. The central
component is a policy engine with templates of the network elements and services
that validates the policy and generates the new security configurations for the
network elements when the security is violated. The work presented in [11]
abstracts hosts and area addresses by using names, which permits to easily
determine which firewalls are traversed by the communication flows. It defines an
algorithm that, given a specific topology, creates the filter set for each firewall or
router. It also defines a second algorithm that verifies if the resulting configuration
violates any of access policies.

The work described in [14] adopts a graphic representation of security rules.
The work also defines the concept of security goals (e.g., top secret, mission critic,

Cássio Ditzel Kropiwiec1, Edgard Jamhour2, Manoel C. Penna2, Guy Pujolle1

etc), which impose additional security properties that are required in order to
access an object or perform a given access mode. At a lower level, a security goal
is expressed in terms of a security requirement vector, which defines the minimum
levels of properties such as confidentiality, integrity, availability and
accountability. A security assumption vector defines the same properties assigned
for the principal and elements along the path between the principal and the
resource. In order of an access to be granted, it is necessary that all properties of
the security assumption vector satisfy the corresponding properties in the security
requirement vector. We have borrowed many concepts related to the security
property model from this work.

3 The Framework

This work presents a new policy based security framework that is capable to
handle simultaneously and coherently mandatory, discretionary and security
property policies. The framework supports the definition of network security
configuration for systems formed by a set of users willing to access a set of
protected resources. A resource is a service delivered at a location, which can play
the role of the source or the destination of an access. A source location is the place
where a user initiates an access while a destination location is the place where one
or more services are delivered.

A user can access a resource if there is permission. Permissions are represented
by three different security models: mandatory, discretionary and security property.
The mandatory model defines permissions by classifying users and resources with
clearances and classifications. In the mandatory model, a permission is defined
whenever a user classification is greater then a resource clearance [13]. The
discretionary model defines permissions by mean of rules that relate users to
resources, including their possible sources and destinations. Finally, the security
property model defines permissions by assigning security levels to firewalls, and
locations.

The framework has two main components: an information model and a
refinement algorithm. The first includes all high level security information,
whereas the second allows security policy formulated by high level statements to
be consistently translated to firewall security rules.

3.1 The Information Model

The Information model is organized in five main blocks: the Inventory, the
Mandatory Model, the Discretionary Model, the Security Property Model, and the
Firewall Features Model, and is depicted in Figure 1.

The Inventory contains the objects and relationships necessary to build the
security policy. It is organized in two main objects groups. The first includes
users, locations, resources and services. A Service is modeled by the combination
of a protocol and two port numbers for the source and destination sides. For

Multi-Constraint Security Policies for Delegated Firewall Administration

instance, the Telnet service would be defined as TCP with destination port 23 and
any source port. Although users interact with services, permissions are granted to
resources. A Resource consists of one or more services delivered from one or
more locations. For example, the E-mail resource could be defined to represent
SMTP, POP and IMAP services. A Location is the place from where users access
resources and also the place where a resource is located. Physically it corresponds
to a host or subnet, and is represented by an IP address and a mask. When
assigned to users, a location plays the source role, and the destination role when
assigned to resources. The User Located At and Resource Located At classes
indicate, respectively, the locations from where a user can initiate an access or
from where a resource can deliver a service. Users, locations and resources can be
organized in groups, what is modeled by a corresponding abstract class. For
example, an Abstract User can be a User or a User Group, which in its turn can
contains many abstract users, that is, many users or user groups.

Abstract User

User
User Group

Rule

Clearance

Abstract Resource

Resource Group Resource

Classification Abstract Location

Location

- IP/Mask:

Location Group

User Located At

Security Class

Protocol

Connection

Firew all

Firew all Features

Serv ice

- SourcePorts:
- DestinationPorts:
- Options:

ResourceLocatedAt

1..*

1..*
+Source 1..*

1..*

1..*

1

1..*

1

1..*

+SR
1

1..*
1..*

+Destination 1..*

+SA

1

+SA

1

0..1

1..*

1..*

0..1

1

1..*

+SA 1

Fig. 1. The Information Model

The second object group includes connections, locations and firewalls. The
Connection class represents connections between locations and firewalls or
between two firewalls. Together, they model the network topology. The Firewall
Feature class models firewall functionality, that is, its ability to perform some
processing over the network packets.

The Mandatory Model establishes the mandatory access control policy by
determining resource access according to a clearance versus classification schema.
Clearance levels are assigned to users wherever classification levels are assigned
to resources. A user is allowed to access a resource only if its clearance is equal to
or greater than the corresponding resource classification.

The Discretionary Model is constructed by a set of discretionary rules that state
the security actions to be enforced for specific service accesses. A service access
includes the service, a user, and the location from where he can initiate an access;
and a resource, and the destination from where it can be accessed. Examples of

Cássio Ditzel Kropiwiec1, Edgard Jamhour2, Manoel C. Penna2, Guy Pujolle1

security actions are: accept, deny, log, and forward. In this study we just consider
the accept action, and adopt the “anything not explicitly allowed is forbidden”
strategy.

The Security Property Model provides fine-grained security information by
including configuration and location dependent constraints. Security property
rules enforce access control based on two properties, the security requirement
(SR), which is defined for destination locations, and security assumption (SA),
which is defined for source locations, firewalls and protocols.

Security requirements and security assumptions are specified by security levels
within a security class. The security level is a natural number ranging from one to
four, expressing the “strength” of one of the following security properties:
confidentiality, integrity, availability and accountability. The security level
establishes a total order over the security property set: the greater is the
corresponding number (1, 2, 3 or 4) the stronger is security level. A security class
is defined by an array of size four. If sc is a security class, sc[1], sc[2], sc[3] and
sc[4] correspond, respectively, to its confidentiality, traceability, integrity and
accountability security levels. Any entities that can be involved in resource
accesses (i.e., locations, firewalls, and protocols) have a security class.

Security requirements and security assumptions can change when the related
objects are combined. For example, John Doe trying to access a resource from the
Engineering subnet would probably have a different SA than when he is trying to
access the same resource from JD-Home host. Assuming that the corporation has
much more control over the Engineering subnet then the first combination should
result in a stronger SA. The protocol used by the object also changes its SA. For
example, John Doe at Engineering subnet accessing a resource through HTTPS
protocol introduces lower risk than when he is trying to access same resource from
the same subnet through HTTP. Consequently a stronger SA should be assigned to
the first. The modified security assumption is referred as effective security
assumption (ESA). The upper effective class operation (∪∪∪∪) over the security class
set is defined to compute it. Let sc1, sc2, …, scn, to be security classes such that sci
= [x1i, x2i, x3i, x4i].

[])(sup),(sup),(sup),(sup 4321
1

iiiiiiii

n

i
i xxxxsc =

=
U (1)

Security assumptions along an end-to-end path are combined together to form
the overall security assumption (OSA). The permission to a user (from a source
location) willing access a resource (at a destination location) is granted only if the
end-to-end path OSA is at least as “strong” as the destination location SR. This
involves the comparison of security classes. Because there is a partial order over
the security class set, we are able to define its “strength”. When sc1 and sc2 are
security classes such that sc1 = [x1, x2, x3, x4] and sc2 = [y1, y2, y3, y4], the security
class sc2 is stronger than sc1 if yi ≥ xi, for i = 1..4.

The OSA is calculated as follows: First, compute the ESA for the (source
location, protocol) pair and for each (firewall, protocol) pair along the path. Then,
the resulting ESAs are combined along the end-to-end path. In this case the
calculation should retain the set of weakest security levels. For this, the lower

Multi-Constraint Security Policies for Delegated Firewall Administration

effective class operation (∩) is defined over the security class set as follows. Let
sc1, sc2, …, scn, to be security classes such that sci = [x1i, x2i, x3i, x4i].

[])(inf),(inf),(inf),(inf 4321
1

iiiiiiii

n

i
i xxxxsc =

=
I (2)

The Firewall Features Model contains the objects and relationships necessary to
represent the firewall security functionality. The Firewall Feature class models the
firewall ability to perform some processing over the network packets. For
instance, a stateful firewall has the ability (or feature) of keeping track the state of
network connections (such as TCP streams or UDP communication) flowing
across it. This concept was introduced in Firmato [12] where the following
features, included in the most common firewalls are listed: Names, Groups, IP
Ranges, Stateful, Trust levels, Directional, Default Stance, Predefined Services
and Layer.

A service access introduces the need for firewall features along the end-to-end
path. For example, if the Email-plus resource represents a service that allows the
exchange of e-mails with attached videos, then the Predefined Services feature
must be present. The required features (RF) operation computes the set of all
firewall features that are necessary for a service access. On the other hand, the
feature can be supported by any of the firewalls along the path. In other words, the
sequence of firewalls within a path supports the union of individual features. The
virtual firewall (VF) operation computes the set of features supported along the
path. If A = RF(service access) and B = VF(path), the service access is feasible if
A ⊆ B.

A service access determines a firewall rule, that is, a sequence of conditions
that must be satisfied to allow the access. We introduce the concept of firewall
abstract rule, a vendor independent syntax firewall rule, that is, a sequence of
abstract (vendor independent) conditions and the corresponding action. To build
this abstract rule, one should consider the objects included in the service access,
obtaining, for each one, the conditions registered in the inventory. For example, if
John Doe is named in the service access and its login name in the inventory is
JDoe, then the corresponding abstract condition is (login_name, JDoe). Also, if
the Engineering subnet is named in the service access and its IP address is
10.1.1.0/24, the corresponding abstract condition is (IP_SRC, 10.1.1.0/24). Each
abstract rule must be distributed along the firewalls involved in a service access.
The features supported by each firewall are registered in the inventory. Please note
that the RF operation assures that all necessary conditions can be enforced by the
firewalls along the path.

3.2 The Refinement Algorithm

The refinement algorithm is presented in the following, supported by the
example depicted in figure 2.

Cássio Ditzel Kropiwiec1, Edgard Jamhour2, Manoel C. Penna2, Guy Pujolle1

U R

 SP UC RC

H H

 S D Discretionary Rule: ((U)ser, (R)esource, (S)ource, (D)estination)
Mandatory: (User Clearance (UC), Resources Classification (RC))
Security Properties (SP): access related objects SA and destination SR

U R

U R

R

H2

H3

H6

H7

H8

P1

P2

P3 P4

P5

U R

U

R

R

H2

H3

H6

H7

H8

U H2

FW1, FW2 (P2)

FW1, FW3, FW6 (P3)

FW4, FW5 (P4)

U R

U R

U R

U R

H1

H2

H3

H4

H5

H6

H7

H8

a b

d

R

U R

U R

H2

H3

H6

H7

H8

P1 P2

P3 P4
P5

c

Fig. 2. A Refinement Example

1. Identify the set of (user, resource) pairs that hold the discretionary and
mandatory models: (i) Take all abstract users and resources that are referenced by
discretionary rules. (ii) Expand groups to individual users and resources. (iii)
Select all (user, resource) pairs for which user clearance is greater than or equal to
resource classification.

2. For the (user, resource) pairs obtained in step 1, compute the set of service
accesses, that is, ((user, source), (destination, resource), service) tuples, that hold
the inventory and discretionary model (Figure 2a). The source and destination
locations must be referred by a discretionary rule and be registered in User
Located at or Resource Located at, respectively. Each resource is related to one or
more services. If the set is empty, terminate the algorithm.

3. Compute the set of possible paths for the service access computed in step 2
(Figure 2b): (i) For each service access, find a candidate path. (ii) Identify the
possible protocols for the candidate path, from the services delivered at the
corresponding destination. (iii) For each candidate path, compute the
corresponding OSA. If it is at least as stronger as the destination SR, include it in
the set of possible paths. (iv) If the set of possible paths is empty for all services
accesses, terminate the algorithm.

4. Compute the set of feasible paths for the service accesses that corresponds to
a possible path computed in step 3 (Figure 2c): (i) For each service access,
compute A = RF(service access). (ii) For each path in the set of possible path,
compute B = VF(path). (iii) If A ⊆ B, include the path in the set of feasible paths.
(iv) If the set of feasible paths is empty for all services accesses, terminate the
algorithm.

5. Compute the set of abstract firewall rules for each service access that
corresponds to a feasible path computed in step 4 (Figure 2d): (i) For each
firewall, compute the set of service access in which it is involved. (ii) For each
service access in which the firewall is involved, produces an abstract rule with the
conditions it can implement.

Multi-Constraint Security Policies for Delegated Firewall Administration

4 Formal Representation, Analysis and Validation

The refinement algorithm must guarantee that translation process doesn’t cause
the violation of the policies. High-level and low-level policies must represent the
same set of permissions; otherwise, the whole system can be compromised. Two
main theorems must be demonstrated to validate the algorithm:

1. Every access allowed by the higher level policy should be supported by the
lower level policy (if they can be correctly enforced), and

2. No action allowed by the lower level policy should be forbidden by the
higher level policy.

The formalism used in this work for formal validation and analysis is based on
Z notation [15]. The Z notation is a formal specification language used for
describing and modeling computing systems. The Z/EVES tool [16] is used to aid
in representation and manipulation of Z notation. It is an interactive system for
composing, checking, and analyzing Z specifications.

The validation approach used in this work consists of representing the
algorithm in Z notation, creating theorems that represents the properties that the
system must hold and using the Z-Eves tool to automatically prove these
theorems, thus validating that the mathematical representation of the algorithm is
consistent and complete.

The complete Z specification of the system and the proved theorems is very
extensive and complex to be entirely presented in this paper. However, to illustrate
how it is done, we present some excerpts in the following. The full Z specification
is available to download at [17]. As an example, Figure 3 presents the procedure
for handling discretionary rules.

 »_DiscretionarySchema________________________
1 Æ Rule: P User x P Resource x P Location x P Location x Action
 «_______________
2 ÆRule = (users, resources, sources, destinations, action)
3 Æif Euser: users • user = AnyUser
4 Æthen RuleUsers = Users
5 Æelse if users z Users then RuleUsers = users else RuleUsers = 0
6 Æif Eresource: resources • resource = AnyResource
7 Æthen RuleResources = Resources
8 Æelse if resources z Resources
9 Æ then RuleResources = resources
10 Æ else RuleResources = 0
11 Æif Esource: sources • source = AnySource
12 Æthen RuleSourcesExplicit = Locations
13 Æelse if sources z Locations
14 Æ then RuleSourcesExplicit = sources
15 Æ else RuleSourcesExplicit = 0
16 ÆRuleSourcesLocatedAt
17 Æ = { u: User; l: Location | u e users ¶ (u, l) e UserLocatedAt • l }

Cássio Ditzel Kropiwiec1, Edgard Jamhour2, Manoel C. Penna2, Guy Pujolle1

18 ÆRuleSources = RuleSourcesExplicit I RuleSourcesLocatedAt
19 Æif Edestination: destinations • destination = AnyDestination
20 Æthen RuleDestinationsExplicit = Locations
21 Æelse if destinations z Locations
22 Æ then RuleDestinationsExplicit = destinations
23 Æ else RuleDestinationsExplicit = 0
24 ÆRuleDestinationsLocatedAt
25 Æ = { r: Resource; l: Location | (r, l) e ResourceLocatedAt • l }
26 ÆRuleDestinations = RuleDestinationsExplicit I RuleDestinationsLocatedAt
 –_____________________________________

Fig. 3. Line 2 defines the structure of the rule. Lines 3 to 5 select the users referenced by
the rule in RuleUsers set. If AnyUser is present in the rule then the RuleUsers set must
contain all the users registered in the system. Otherwise, the specification checks if the
specified users are registered in the system and makes the RuleUsers set to include them if
true. If the two previous verifications are false, then RuleUsers set is empty, meaning that
the rule is not valid for any user. Lines 6 to 10 state the same logic for RuleResources set.
Lines 11 to 18 specify how RuleSources set is built. Note that lines 11 to 15 are similar to
RuleUsers set specification. The differences are at lines 16, 17 and 18. In the first two, the
sources where the users can be located are selected, while in line 18, the RuleSources set is
defined as the intersection between the sources specified in the rule and the locations of the
users. The same logic is applied to RuleDestinations set at lines 19 to 26.

With the algorithm modeled in Z, the next step is to specify the theorems and to
prove them. The two main theorems previously cited in this section were divided
into several small theorems, in order to make the demonstration process simpler.
We present some of these theorems in the following paragraphs.

Theorem 1. “If a rule specifies a user and a resource and if the user clearance is
less than the resource classification, then the pair (user, resource) can not be a
member of the UsersAndResources set”. The Z-Eves code is presented in Figure 4.

Theorem 2. “For any protocol, source and destination allowed by the rule, if
the OSA is smaller than SR, then the tuple ((protocol, source, destination),
firewalls) cannot be a member of SecurePaths set”. The Z-Eves code is presented
in Figure 5.

Theorem 3. “If the ((user, resource), (protocol, source, destination),
firewalls) tuple defines a service access across the firewalls (i.e., if the tuple is a
member of the Permissions set), then the rule must include these user, resource,
source and destination; the user clearance must be equal to or greater than the
resource classification; and the OSA for the (protocol, source, firewall) tuple must
be equal to or greater than the destination SR”. The Z-Eves code is presented in
Figure 6.

theorem rule testMandatory
 MandatorySchema
 ¶ user e RuleUsers ¶ resource e RuleResources
 ¶ Clearance user < Classification resource
 fi ! (user, resource) e UsersAndResources

Multi-Constraint Security Policies for Delegated Firewall Administration

Fig. 4. Z representation of Theorem 1

theorem rule testSecurityProperties
 SecurityPropertiesSchema
 ¶ protocol e Protocol ¶ source e Location ¶ destination e Location
 ¶ firewalls e seq Firewall
 ¶ ((protocol, source, destination), firewalls) e RulePathsAndProtocols
 ¶ ! (OSA (protocol, source, firewalls), SR destination) e GOSA
 fi ! ((protocol, source, destination), firewalls) e SecurePaths

Fig. 5. Z representation of Theorem 2 - The GOSA set represents a relation between OSA
and SR, and their elements are those for which OSA is equal to or greater than SR. Thus,
the tuples (OSA, SR) that are not members of the GOSA set are those for which OSA is
smaller than SR.

theorem rule testPermissions
 PermissionsSchema
 ¶ ((user, resource), (protocol, source, destination), firewalls) e Permissions
 fi user e RuleUsers ¶ resource e RuleResources
 ¶ Clearance user ˘ Classification resource
 ¶ ((protocol, source, destination), firewalls) e RulePathsAndProtocols
 ¶ (OSA (protocol, source, firewalls), SR destination) e GOSA

Fig. 6. Z representation of theorem 3 - If some permission is a member of the Permissions
set, then it must be present at discretionary, mandatory and security property policies.

5 Example

According to our approach, only the framework has the credentials necessary to
create rules in the firewalls. The policy administrators need to use the framework
in order to manage the security policies. To illustrate the use of the framework,
consider the example in Figure 7. It supposes an imaginary university network
(yet realistic), with two firewalls separating 4 networks. The example illustrate
how the mandatory and security property policies constraints the discretionary
policies, avoiding violation of global security rules. For sake of simplicity, the
security assumption and requirement vectors have been reduced to two
dimensions: [confidentiality, traceability].

Suppose that the mandatory and security property policies have been previously
defined (as presented in Figure 7) by a specialized department in the university,
responsible for the overall security. Now suppose that an administrator
responsible for creating discretionary policy decide to give full access permissions
for all users with a discretionary rule such as: “Any User from Any Location may
Access Any Resource at Any Location”. In spite of this rule the discretionary rules
generated by the framework would be defined as follows.

Cássio Ditzel Kropiwiec1, Edgard Jamhour2, Manoel C. Penna2, Guy Pujolle1

Fig. 7. Teachers and students can be located at Internet, Office or Lab network, and Guest
users can only be located at Internet. Teachers have mandatory level (clearance 4)
necessary to access resources http and ftp at Srv1 and Srv2, https and ftp at Srv3
(classifications 1, 2 and 3, respectively). Students have mandatory level (clearance 2) to
access resources http and ftp at Srv1 and Srv2 (classifications 1 and 2, respectively). Guests
users have mandatory level (clearance 1) to access resources http and ftp at Srv1
(classification 1). Considering the security property rules, https at Srv3 can be accessed
from Office and Lab networks, and ftp can be accessed from any network if using IPsec
AH. Srv2 can be accessed from Office network with http protocol. Srv1 can be accessed
from any network (including Internet) using any protocol.

The rules for Firewall1 are:
• Permit Teachers, Students and Guests from Internet to access http and ftp

services at Srv1 – because the clearance of these users are greater than the
classification of resources at Srv1 and the OSA of the path [Internet, FW1] is
equal to SR of Srv1.

• Permit Teachers from Internet to access ftp over IPsec AH at Srv3 – in this
case, the OSA of the path [Internet, FW1, DMZ, FW2] combined with ftp over
IPsec AH results in [4,3] that is greater than the SR [3,3] of Srv3 (the OSA
were obtained from the combination of individual ESA of network elements,
that for this situation are the following: Internet: [4,3], FW1: [4,4], DMZ: [4,3],
FW2: [4,4]), but only Teachers have clearance (4) greater or equal to
classification of resources at Srv3.

The rules for Firewall2 are:
• Permit that Teachers and Students access the http and ftp services at Srv1 from

Office and Lab – both Teachers and Students have clearance greater than the
classification of resources at Srv1, and the OSA of the combination these paths
and protocols are greater than the SR [1,1] of Srv1.

• Permit Teachers and Students from Office to have access to http services at
Srv2.

• Permit Teachers from Lab to have access to the https or ftp over IPsec AH
services at Srv3.

• Permit Teachers from Internet to have access to the ftp over IPsec AH service
at Srv3 – for the same reason of the second rule of Firewall1.

Multi-Constraint Security Policies for Delegated Firewall Administration

6 Conclusion

This paper has presented a framework capable of handling a multi-constraint
security policy model. The security policy permits to create discretionary rules
which are constrained by mandatory and security property policies. This is a very
flexible approach that permits to describe a large number of discretionary rules
without violating the primary security goals in a corporate environment. The
motivation for this division is to support the cooperation of multiple security staff
in the security policy definition. The policy model has been formalized and
validated using the Z-notation and the Z-Eves tool. There are, however, many
aspects to be considered in future studies. The methodology “anything not
explicitly allowed is forbidden” should be replaced by a more flexible approach
capable of supporting negative policies. Also, although a prototype has already
been developed in Prolog, a broader scalability study is necessary.

References

1. Markham, T., Payne, C.: Security at the Network Edge: A Distributed Firewall
Architecture. DARPA Information Survivability Conference and Exposition (DISCEX
II'01), pp. 279, vol. I, (2001)

2. Al-Shaer, E., Hamed, H.: Discovery of Policy Anomalies in Distributed Firewalls. In:
23rd Conference of the IEEE Communications Society (INFOCOMM), pp. 2605-2616
(2004)

3. Cisco Systems Inc.: Cisco PIX Firewall Command Reference. Available at:
http://www.cisco.com , (2004)

4. Cisco Systems Inc.: Cisco IOS Reference Guide. Available at: http://www.cisco.com,
(2004)

5. CheckPoint Software Technologies Ltd.: Stateful Inspection Technology. Available at:
http://www.checkpoint.com/products, (2005)

6. Lee, T.K., Yusuf, S., Luk, W., Sloman, M., Lupu, E., Dulay, N.: Compiling Policy
Descriptions into Reconfigurable Firewall Processors. In: 11th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, pp. 39-48, (2003)

7. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language. In: Policy 2001: Workshop on Policies for Distributed Systems and
Networks, pp. 18-39, (2001)

8. Haixin, D., Jianping, W., Xing, L.: Policy-Based Access Control Framework for Large
Networks. In: Eighth IEEE International Conference on Networks, pp. 267-273, (2000)

9. Ou, X., Govindavajhala, S., Appel, A. W.: Network security management with high-
level security policies”. Technical report TR-714-04, Computer Science Dept,
Princeton University, (2004)

10. Burns, J., Cheng, A., Gurung, P., Rajagopalan, S., Rao, P., Rosenbluth, D., Surendran,
A.V., Martin Jr, D. M.: Automatic Management of Network Security Policy. In:
DARPA Information Survivability Conference and Exposition, vol. II, pp. 12-26,
(2001)

11. Guttman, J.D.: Filtering postures: local enforcement for global policies. In: IEEE
Symposium on Security and Privacy, pp. 120-129, (1997)

Cássio Ditzel Kropiwiec1, Edgard Jamhour2, Manoel C. Penna2, Guy Pujolle1

12. Yair Bartal, Alain J. Mayer, Kobbi Nissin and Avishai Wool.: Firmato: A novel
firewall management toolkit. ACM Transactions on Computer Systems, vol. 22, no. 4,
pp. 381-420, (2004)

13. DOD: Trusted Computer Security Evaluation Criteria. DOD 5200.28-STD. Department
of Defense, (1985)

14. Albuquerque, J. P., Krumm, H. ; Geus, P.L.: Policy Modeling and Refinement for
Network Security Systems. In: IEEE 6th International Workshop on Policies for
Distributed Systems and Networks, pp. 24-33, (2005)

15. Spivey, J. M.: The Z notation: a reference manual. Prentice Hall International (UK)
Ltd., Hertfordshire, UK, (1992)

16. Saaltink, M.: The Z/EVES system. In: J. P. Bowen, M. G. Hinchey, and D. Till, (eds.),
ZUM 1997 LNCS, vol. 1212, pp. 72–85, Springer-Verlag, (1997)

17. Kropiwiec, C. D.: Z-specification for Firewall Policies, Algorithms and Theorem
Proofs. Available at: http://www.ppgia.pucpr.br/~jamhour/Research/, (2008)

