
A Runtime Constraint-Aware Solution for Automated
Refinement of IT Change Plans

Weverton Luis da Costa Cordeiro1, Guilherme Sperb Machado1, Fabrício Girardi
Andreis1, Alan Diego Santos1, Cristiano Bonato Both1, Luciano Paschoal Gaspary1,

Lisandro Zambenedetti Granville1, Claudio Bartolini2, David Trastour3

1Institute of Informatics, Federal University of Rio Grande do Sul, Brazil
2HP Laboratories Palo Alto, USA

3HP Laboratories Bristol, UK
{weverton.cordeiro, gsmachado, fgandreis, adsantos,

cbboth, paschoal, granville}@inf.ufrgs.br
{claudio.bartolini, david.trastour}@hp.com

Abstract. Change design is one of the key steps within the IT change
management process and involves defining the set of activities required for the
implementation of a change. Despite its importance, existing approaches for
automating this step disregard the impact that actions will cause on the affected
elements of the IT infrastructure. As a consequence, activities that compose the
change plan may not be executable, for example, due to runtime constraints that
emerge during the change plan execution (e.g., lack of disk space and memory
exhaustion). In order to address this issue, we propose a solution for the
automated refinement of runtime constraint-aware change plans, built upon the
concept of incremental change snapshots of the target IT environment. The
potential benefits of our approach are (i) the generation of accurate, workable
change plans, composed of activities that do not hinder the execution of
subsequent ones, and (ii) a decrease in the occurrence of service-delivery
disruptions caused by failed changes. The experimental evaluation carried out
in our investigation shows the feasibility of the proposed solution, being able to
generate plans less prone to be prematurely aborted due to resource constraints.

1 Introduction

The increasing importance and complexity of IT infrastructures to the final business
of modern companies and organizations has made the Information Technology
Infrastructure Library (ITIL) [1] the most important reference for IT service
deployment and management. In this context, ITIL’s best practices and processes help
organizations to properly maintain their IT services, being of special importance to
those characterized by their large scale and rapidly changing, dynamic services.

Among the several processes that compose ITIL, change management [2] plays an
important role in the efficient and prompt handling of IT changes [3]. According to
this process, changes must be firstly expressed by the change initiator using Requests
for Change (RFC) documents. RFCs are declarative in their nature, specifying what
should be done, but not expressing how it should be performed. In a subsequent step,

an operator must sketch a preliminary change plan, which encodes high level actions
that materialize the objectives of the RFC. Latter steps in this process include
planning, assessing and evaluating, authorizing and scheduling, plan updating,
implementing, and reviewing and closing the submitted change.

Change planning, one of the key steps in this process, consists in refining, either
manually or automatically, the preliminary plan into a detailed, actionable workflow
(also called actionable change plan in this paper). Despite the possibility of manually
refining change plans, automated refinement has the potential to provide better results
for the planning phase, since it (i) decreases the time consumed to produce such
actionable workflows, (ii) captures the intrinsic dependencies among the elements
affected by changes, and (iii) diminishes the occurrence of service disruptions due to
errors and inconsistencies in the generated plans [4].

Since the inception of ITIL, there has been some preliminary research concerning
the automated refinement of change plans. For example, important steps have been
taken towards formalizing change-related documents [5], exploring parallelism in the
execution of tasks [3], and scheduling of change operations considering the long-term
impact on Service Oriented Architecture environments [6]. However, despite the
progresses achieved in the field, proposed solutions for change planning only consider
simple actions (installation, upgrade) and do not model the pre-conditions and effects
of more complex actions. The pre-conditions could be of a technical nature, such as a
memory requirement, or could impose constraints on the change process, for instance
requiring authorization before executing a given task. Effects model how actions
modify each element of the IT infrastructure (e.g., adding memory into a server or
modifying configuration parameters of a J2EE server). Without taking into account
such considerations, the actionable workflow, when executed, may be prematurely
aborted (e.g., due to lack of resources), leading to service-delivery disruption and
leaving the IT infrastructure in an inconsistent state.

To fill in this gap, we propose a solution for the automated refinement of change
plans that takes into consideration the runtime constraints imposed by the target IT
environment. In contrast to previous investigations, our solution focuses on the impact
that already computed actions will cause on the IT infrastructure, in order to compute
the subsequent ones. To this effect, we introduce in this paper the notion of snapshots
of the IT infrastructure, as representations of the intermediate states that the IT
infrastructure would reach throughout the execution of the change plan. As a result,
the refined change plans generated by our solution will be less prone to prematurely
termination, therefore reducing the occurrence of change-related incidents.

The solution proposed in this paper is evaluated through the use of CHANGELEDGE,
a prototypical implementation of a change management system that enables the
design, planning and implementation of IT changes. We have qualitatively and
quantitatively analyzed the actionable workflows generated from several different
preliminary plans, considering a typical IT scenario.

The remainder of this paper is organized as follows. Section 2 discusses some of
the most prominent research in the field of IT change management. Section 3 briefly
reviews the models employed to represent IT related information. Section 4 details
our runtime constraint-aware solution for the automated refinement of IT change
plans. Section 5 presents the results achieved using the CHANGELEDGE system.
Finally, Section 6 concludes the paper with remarks and perspectives for future work.

2 Related Work

In the recent years, several research efforts have been carried out in the area of IT
change design. In this section, we cover some of the most prominent investigations.

Keller et al. [3] have proposed CHAMPS, a system for automating the generation
of change plans that explore a high degree of parallelism in the execution of tasks.
Change planning and scheduling are approached as an optimization problem.
Although the system is able to evaluate technical constraints in the planning and
scheduling of changes, the scope is limited to Service Level Agreements and policies.
Since fine-grained control of resource constraints was not the focus of the work,
modifications on the infrastructure produced by the already processed tasks of the
plan under refinement are not taken into account when computing the subsequent
ones. As a consequence, the resulting change plans may not be executable in practice.

In a previous work [5], we have proposed a solution to support knowledge reuse in
IT change design. Although the solution comprises an algorithm to generate
actionable change plans, this algorithm also performs all the computations
considering a static view of the IT infrastructure. Actually, it was out of the scope of
that work, as a simplification assumption, to deal with runtime constraints in the
refinement of change plans.

Despite not directly related with the problem addressed in this paper, some
additional research efforts on change management published in the recent years merit
attention. Dumitraş et al. [6] have proposed Ecotopia, a framework for change
management that schedules change operations with the goal of minimizing service-
delivery disruptions. In contrast to CHAMPS, Ecotopia optimizes scheduling by
assessing the long-term impact of changes considering the expected values for Key
Performance Indicators. Trastour et al. [7] have formulated the problem of assigning
changes to maintenance windows and of assigning change activities to technicians as
a mixed-integer program. The main difference between this work and Ecotopia is the
fact that human resources are also taken into account. Sauvé et al. [8] have proposed a
method to automatically assign priorities to changes, considering the individual
exposure of each requested change to risks as its execution is postponed. Finally, in
another previous work [9], we have introduced the concept of atomic groups in the
design of change plans with the purpose of providing our end-to-end solution to IT
change management with rollback support.

Although change management is a relatively new discipline, the area has been
quickly progressing, as evidenced by the previously mentioned related work.
Nevertheless, in the particular case of change planning, the existing solutions are
severely lacking with respect to deployment feasibility and IT infrastructure
predictability. In the following sections we envisage a solution to address these issues.

3 Building Blocks of the Proposed Solution

In order to support the automated refinement of change plans, it is of paramount
importance to formalize the change-related documents. Actually, this was a major
concern in our previous work [5], in which we proposed models to (i) characterize

dependencies between the elements that compose the IT infrastructure, (ii) express
information about software packages available for consumption by a change process,
and (iii) express unambiguously the changes that must be executed on the managed
infrastructure. In this section, we briefly review the models that materialize this
formalization: IT infrastructure and Requests for Change & Change Plan.

The IT Infrastructure model is a subset of the Common Information Model (CIM)
[10], proposed by the Distributed Management Task Force (DMTF). It allows the
representation of computing and business entities comprising an organization, as well
as the relationship among them. For the sake of legibility and space constraints, we
present in Fig. 1 a partial view of the model.

The root class ManagedElement permits to represent any Configuration Item (CI)
present in the IT infrastructure (e.g., physical devices, computer and application
systems, personnel, and services). Relationships such as associations, compositions,
and aggregations, map the dependencies among the elements comprising the
infrastructure. In addition, Check and Action classes in this model represent relevant
information for managing the lifecycle of software elements (e.g., software upgrade
and application system installation/uninstallation).

Fig. 1. Partial view of the IT Infrastructure model.

Instances of class Check define conditions to be met or characteristics required by
the associated software element for it to evolve to a new state (e.g., deployable,
installable, executable, or running). Possible checks include verification of software
dependencies, available disk space and memory, and required environment settings.
Each instance of class Action, in its turn, represents an operation of a process to
change the state of the associated SoftwareElement (e.g., from installable to
executable). Examples of actions are invocation of a software installer/uninstaller,
manipulation of files and directories, and modification of configuration files.

In addition to being used to represent the current IT infrastructure, the same model
is also employed to define the Definitive Media Library (DML). The DML is a
repository that specifies the set of software packages (along with their dependencies)
that have been approved for use within the enterprise and that may be required
throughout the change process.

Check

1
EnabledLogical

Element
Software
Element

System

Computer
System

Operating
System Service

User
Entity

Logical
Element

ManagedSystem
Element

Organizational
Entity

Managed
Element

1

Action

Setting
Check

SwapSpace
Check

DiskSpace
Check

*

*

1 0..1

Execute
Program

Reboot
Action

ModifySetting
Action

Memory
Check

SoftwareElement
VersionCheck

Alternate
SwDependency

0..1

1

Human
Action

SwChecks

SwActions

Action
Sequence

In regard to the Requests for Change & Change Plan model, it enables the design
of change-related documents and relies on both (i) guidelines presented in the ITIL
Service Transition book [2], and (ii) the workflow process definition, proposed by the
Workflow Management Coalition (WfMC) [11]. Classes such as RFC and Operation
allow expressing the changes designed by the change initiator, while ChangePlan,
LeafActivity, BlockActivity, SubProcessDefinition, and TransitionInformation enable
the operator to model the preliminary plan that materializes the change. Please refer
to our previous work [5] for additional information about this model.

4 Runtime Constraint-Aware Refinement of Change Plans

The models presented in the previous section represent the common ground for our
runtime constraint-aware solution for automated refinement of IT change plans. In
this section, we describe our solution by means of a conceptual algorithm, illustrated
in Fig. 2.

In order to support our solution, we formalize a change plan C, in the context of
this work, as a 4-tuple 〈A, T, a1, F〉, where A represents the set of activities (or actions)
A = {a1, a2, …, an⏐n ∈ N and n ≥ 1}; T represents a set of ordered pairs of activities,
called transitions, T = {l1, l2, …, lm⏐m ∈ N and m ≥ 1}; a1 is the begin activity of the
change plan (a1 ∈ A); and F represents the set of end activities of the change plan (F
⊆ A). A transition l = (ai, aj) ∈ T is directed from ai to aj, ∀ai, aj ∈ A, and may
represent a conditional flow.

We denote our solution as a function ƒ(C, I, R) = C′ (line 1), where C is the
preliminary change plan; I represents the state of the IT infrastructure as in the instant
in which the preliminary plan C is submitted for refinement; R represents the
Definitive Media Library (DML); and C′ represents the actionable workflow
generated as a result of the refinement process.

As a first step towards the refinement, the submitted plan C is copied to C' (line 2),
and the subset of unrefined activities contained in C is copied to A' (line 3). In a
subsequent step (line 4), ƒ creates an initial snapshot of the IT infrastructure, s0. In the
context of this work, we define snapshot as a representation of the differences
between the current state of the IT infrastructure and the state it would reach after the
execution of i activities contained in the change plan C (0 ≤ i ≤ ⏐A⏐). These
differences include, for example, newly installed (or removed) software, disk space
and memory consumed (or freed), modified settings, and created (or deleted) files and
directories (the dynamics of snapshots is further explained in Subsection 4.2).
Considering that no new activities were added to the change plan C at the point s0 is
created, this step will yield a snapshot that describes no differences in comparison to
the current state of the IT infrastructure.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

ƒ(C, R, I) = C' {
 declare C' = copy of the preliminary change plan C
 declare A' = set of unrefined activities from the preliminary change plan C
 s0 = initial snapshot of I, after the execution of 0 activities
 ƒ'(C', R, I, s0, A')
 if (C' is refined)
 return C'
 else
 return false
}

ƒ'(C, R, I, si, A) {
 if (A is empty)
 return change plan C
 else {
 declare X: set of arrangements Y of activities
 ai = i-est activity ∈ A
 declare A' = A - {ai}
 if (ai has no computable dependencies, given I, si, and R)
 ƒ'(C, R, I, si, A')
 else {
 X = set of arrangements Y of first level dependencies of ai, given I, si, and R
 for each Yi ∈ X {
 declare C' = C + Yi
 declare A″ = A' ∪ Yi
 si+1 = new snapshot of the IT infrastructure I, given C', I, and si
 ƒ'(C', R, I, si+1, A″)
 }
 }
 }
}

Fig. 2. Conceptual algorithm for runtime constraint-aware refinement of change plan.

As a last step, ƒ invokes the execution of ƒ'(C', R, I, s0, A') (line 5), which will
actually perform the refinement process. We assume that C' is passed to ƒ' by
reference. Therefore, modifications performed to C' will be visible outside ƒ'. After
the execution of ƒ', C' will be returned back to the operator (line 7), if refined (line 6).
We consider a change plan C as refined if and only if, ∀a ∈ A, dependencies of a are
already satisfied either by any ai ∈ A or by the current state of the IT infrastructure.

In case the plan returned by ƒ' is not refined, the operator will receive a negative
feedback (line 9). This feedback will mean that an actionable and executable
workflow (for the preliminary plan C submitted) could not be achieved. Having this
feedback, the operator could reformulate and resubmit the preliminary plan, therefore
starting the refinement process over again.

Having presented a general view of our solution, in the following subsections we
describe in more detail the recursive search for a refined change plan, and the concept
of snapshots of the IT infrastructure.

4.1 Refinement of the Preliminary Change Plan

Function ƒ' solves the problem of modifying the received preliminary plan C into an
actionable workflow by using the backtracking technique [12]. This technique permits
exploring the space of possible refinements for C, in order to build a refined plan that

meets IT resource constraints. Fig. 3 illustrates the execution of ƒ' using a simplified
example. For the sake of clarity, only two levels of recursion are presented.

The preliminary plan C in Fig. 3 materializes an RFC to install an e-Commerce
Web application, and is composed of the task Install WebApp. This task represents a
BlockActivity derived from the set of actions necessary to install WebApp (arrow 1 in
Fig. 3). The first verification performed by ƒ' (line 13 in Fig. 2) is whether A, the set
of activities that remain unrefined in the received plan C, is empty or not. If A is
empty, C is returned back to ƒ. Considering the example in Fig. 3, ƒ' will receive in its
first invocation (line 5) the set A' = {Install WebApp}.

Fig. 3. Illustration of the functioning of ƒ'.

The algorithm ƒ' starts by extracting an activity ai from A (line 17), generating a
new set A' (which contains all activities in A except ai) (line 18). In our example, ai is
the activity Install WebApp, and the resulting A', an empty set. Subsequently, ƒ' tests
whether ai has computable dependencies (line 19). An activity is said to have
computable dependencies if: (i) the Configuration Item (CI) modified by ai has checks
(SwChecks) mapped in the DML and/or relationships in the IT repository (e.g.,
shutting down service Service1 requires shutting down Service2 and bringing up
Service3), and (ii) the aforementioned dependencies (or checks) are not yet fulfilled in
neither the current state of the IT infrastructure nor the current snapshot.

If ai has no computable dependencies (i.e., if all pre-conditions for the execution of
ai are already satisfied in either the IT or the current snapshot), ƒ' invokes itself
recursively (line 20), in order to refine another activity of the resulting A'. Otherwise,
ƒ' computes the set of arrangements of immediate dependencies (or first level
dependencies) that (i) fulfill the pre-conditions for the execution of ai, and (ii) would

X =

Sw: WebSrv2 Sw: WebSrv

Sw: LibX

Memory: 20 MB

Disk: 56 MB

Swap: 10 MB

Sw
Ch

ec
ks

Install WebApp

Memory: 30 MB

Disk: 100 MB

Swap: 30 MB

Install WebSrv

Sw: LibY

Install LibX

LibY : Sw

Disk: 10 MB

Install LibY

Sw: LibY

Memory: 35 MB

Disk: 50 MB

Swap: 20 MB

Install WebSrv2

WebApp : Sw
SwActions

WebSrv : Sw

WebSrv2 : Sw

Definitive Media Library

Disk: 2 MB

LibX : Sw
Activity
Install

WebSrv2

Activity
Install LibX

Refined Change Plan C'

Activity
Install LibY

Activity
Install

WebApp

Y1 Y2

Activity
Install

WebSrv
Activity

Install LibX
Activity
Install

WebSrv2
Activity

Install LibX

Preliminary Change Plan C Activity
Install

WebApp

Activity
Install LibY X' =

Y'1

(1)

(3) (2)

(4)

be executable in the current snapshot (considering the requirements of these
arrangements). The arrangements returned from this step will be stored in X (line 22).
In this set, Yi represents each of the arrangements.

In our example, Install WebApp has two computable dependencies described in the
DML: a web server (either WebSvr or WebSrv2) and a generic library (LibX).
Therefore, the computation of X (line 22) yields a set containing two arrangements of
possible immediate dependencies for ai. The first is Y1 = {Install WebSrv, Install
LibX}, and the second is Y2 = {Install WebSrv2, Install LibX}.

After that, ƒ' searches for an arrangement Yi in X that leads to a refined change plan
(line 23). Although more than one Yi may lead to a solution, the first Yi to be tested
will compose the refined plan. Considering the example, the first set tested was Y1
(arrow 2 in Fig. 3), while the second was Y2 (arrow 3).

The aforementioned test performed to an arrangement Yi comprises four steps.
First, a new change plan C' is created, by adding the activities in Yi to C (line 24).
Second, a new set of unrefined activities A" is built, as a result of the union of the sets
A' and Yi (line 25). This is necessary because activities in Yi may not be refined yet,
therefore requiring a future processing. Third, the impact of running activities in Yi is
computed (line 26), considering both the current view of the IT infrastructure (from I)
and the changes performed so far (materialized in the snapshot si). The result will be
stored in the snapshot si+1 (in our example, s1 represents an incremental view of the
snapshot s0, after the execution of Install WebSrv, Install LibX, and Install WebApp).
Finally, ƒ' is invoked recursively to refine C", given the newly computed A" and si+1
(line 27).

Observe that the addition of the activities in Yi to the change plan C' (line 24) takes
into account dependency (pre-requisite) information. In our example, since Y1 =
{Install WebSrv, Install LibX} is a set of dependencies of Install WebApp (i.e., Install
WebSrv and Install LibX must be executed prior to Install WebApp), adding these
activities to C" implies in the creation of the transitions li = (Install WebSrv, Install
WebApp) and li+1 = (Install LibX, Install WebApp), and subsequent addition of li and
li+1 to the set of transitions T of the change plan C".

Putting all the pieces together, recursive invocations of ƒ' is the mechanism
employed to navigate through all paths in the activity dependency tree (which
represents the dependencies between software packages captured from the DML).
From the example illustrated in Fig. 3, in the first invocation to ƒ' (line 5) the activity
Install WebApp is processed. In the first-level recursion (arrow 2 in Fig. 3) of ƒ' (line
27), the set of immediate dependencies Y1 is tested. Once the test fails, the recursion
returns, and then the set Y2 is tested (arrow 3). This yields a new first-level recursion
(line 27). Once the test to Y2 is successful, a second-level recursion is performed, now
to process the set Y = {Install LibY} (arrow 4). Since Install LibY has no computable
dependencies, a third-level recursion of ƒ' is performed (line 20). Finally, given that
there are no dependencies left to refine, the recursive refinement is finished, and the
resulting refined plan C' (Fig. 3) is returned back to ƒ' (line 14).

4.2 Snapshots of the IT Infrastructure

The concept of snapshot is the notion upon which the recursive search for a refined
change plan is built. Having the current snapshot si, the refinement algorithm may
foresee the new state of the IT infrastructure after the execution of the actions already
computed and present in the change plan C. Consequently, it will be able to identify
dependencies that are executable, and then continue the refinement process.

Fig. 4 illustrates the snapshots that are created during the refinement process of our
example. In this figure, CS stands for computer system, OS for operating system, and
SwElement for software element. The initial snapshot in our example is s0. The two
arrows from s0 represent two possible state transitions of the IT infrastructure after the
execution of each of the arrangements returned for activity Install WebApp. The first
transition (arrow 1 in Fig. 4) leads to snapshot s1a, which represents the state after the
execution of (the activities in) Y1 plus Install WebApp. The second transition (arrow
2), on the other hand, leads to s1b, which represents the state after the execution of Y2
(plus Install WebApp). The dashed arrow from s1a to s0 represents the failed test made
with Y1 (in this case, ƒ' goes back to the previous snapshot and attempts another
arrangement of immediate dependencies contained in X, Y2). Finally, the transition
from snapshot s1b to s2 (arrow 3) represents the second-level recursion to ƒ', when the
activity Install LibY is added to the partially refined plan C.

Fig. 4. Evolution of the snapshots as the change plan is refined.

Considering the representation of differences, the snapshots in Fig. 4 hold
information about consumed resources and new settings present in the environment.
For example, the reader may note that after the execution of activities in Y2 and Install
WebApp, the IT infrastructure would evolve to a new state, represented by s1b. In this
new state, the computer system cs03 (i) has 108 MB less disk space available, and (ii)
has the newly installed SoftwareElements WebSrv2, LibX, and WebApp.

Also observe that installing new software in a computer potentially increases the
demand for more available physical memory (in the case of cs03, 55 MB more
physical memory and 30 MB more swap space). Although the use of memory and
swap space is flexible, the amount of such resource available for use imposes a limit,
in terms of performance, in the software that may be running concurrently.

IT Infrastructure

HostedFS

Installed
Sw

InstalledOS Linux: OS
- Mem: 256 MB
- Swap: 200 MB

FTPServer:
SwElement

MailServer:
SwElement

cs01: CS cs02: CS

cs03: CS

root: FileSystem
- Space: 200 MB

S0

cs03: CS

Linux: OS
- Mem: 206 MB
- Swap: 160 MB

root: FileSystem
- Space: 42 MB

WebSrv:
SwElement

LibX:
SwElement
WebApp:

SwElement

S1a

cs03: CS

Linux: OS
- Mem: 201 MB
- Swap: 170 MB

root: FileSystem
- Space: 92 MB

WebSrv2:
SwElement

LibX:
SwElement
WebApp:

SwElement

S1b

cs03: CS

Linux: OS
- Mem: 201 MB
- Swap: 170 MB

root: FileSystem
- Space: 82 MB

WebSrv2:
SwElement

LibX:
SwElement
WebApp:

SwElement
LibY:

SwElement

S2

(3)

(1)

(2)

Elements of the IT that were added

Elements of the IT that were modified

Initial elements of the IT infrastructure

It is important to mention that the scope of the proposed snapshots is restricted to
the change planning step. In addition, the information they hold is useful for the
proposed refinement solution only. As a consequence, they do not take place in other
phases of the change management process (e.g., change testing or implementation).

4.3 Considerations on the Proposed Solution

According to the change management process, there are intermediate steps between
the design and the actual implementation of a change. These steps are assessment and
evaluation, authorization and schedule, and plan updates. The time scale to go
through them may range from hours to days (or even weeks). During this period, the
IT infrastructure may evolve to a new, significantly different state (for example, due
to other implemented changes). In this context, the runtime constraint-aware plan
generated by our solution may not be executable upon implementation. This issue
(that has been long associated with the change management process) may be tackled
during the plan updates phase. The operator may either manually adjust the plan for
the new IT scenario or re-invoke the proposed algorithm, and document the revised
plan afterwards. From this point on, the time gap to implement the change should be
kept to a minimum.

Another important aspect worth discussing is the refinement flexibility provided to
the algorithm. This is regulated by the degree of detail of the preliminary plan
submitted. A loosely defined preliminary plan tends to allow the algorithm to perform
a broader search within the activity dependency tree. Consider, for example, an RFC
to install a certain web-based application. Assuming this application depends on a
Database Management System (DBMS), the operator may explicitly specify in the
preliminary plan the DBMS to be installed or leave it up to the algorithm. In the latter
case, the choice will be based on the alternative database packages available in the
Definitive Media Library and on the runtime constraints.

To deal with the aforementioned flexibility, one could think of the existence of an
automated decision threshold. This threshold could be specified in terms of number of
software dependency levels. During the refinement process, dependencies belonging
to a level above the configured threshold would be decided by the operator in an
interactive fashion. Otherwise, the algorithm would do this on his/her behalf.
Evaluating the pros and cons of setting a more conservative or liberal strategy is left
for future work.

5 Experimental Evaluation

To prove the conceptual and technical feasibility of our proposal, we have (i)
implemented our solution on top of the CHANGELEDGE system [5], and (ii) conducted
an experimental evaluation considering the design and refinement of changes
typically executed in IT infrastructures. Due to space constraints, we focus our
analysis on five of these changes. As a result of the refinement of preliminary plans
into actionable workflows, we have observed the correctness and completeness of the

produced workflows (characterizing a more qualitative analysis of the proposed
solution), in addition to performance indicators (quantitative analysis).

The IT infrastructure employed is equivalent to the environment of a research &
development department of an organization. It is composed of 65 workstations,
located in seven rooms, running either Windows XP SP2 or GNU/Linux. The
environment is also composed of four servers, Server1, Server2, Server3, and Server4,
whose relevant settings to the context of our evaluation are presented in Table 1.
Finally, the content of the Definitive Media Library is summarized in Table 2.

Table 1. Server settings.

Server Name Installed Operating System Available Disk Space Total Physical Memory
Server1 None 20,480 MB 2,048 MB
Server2 Windows 2003 Server 71,680 MB 4,096 MB
Server3 Debian GNU/Linux 51,200 MB 4,096 MB
Server4 Debian GNU/Linux 102,400 MB 4,096 MB

Table 2. System requirements for the software present in the DML. 1

Software Name Disk Space Memory Software Dependencies
e-Commerce Web App2 512 MB 128 MB SQL Server and Internet Information Server (IIS)

IIS 5.1 15 MB 16 MB Windows XP Service Pack 2 (Win XP SP2)
IIS 7.0 15 MB 16 MB Windows Vista Service Pack 1 (Win Vista SP1)

.Net Framework 3.5 280 MB 256 MB Internet Explorer (IE), IIS, and Win XP SP2
SQL Server 2005 425 MB 512 MB IE, Win XP SP2, and .Net Framework
SQL Server 2008 1,460 MB 1,024 MB IE and Win Vista SP1

IE 7 64 MB 128 MB Win XP SP2
Windows XP SP 2 1,800 MB - Windows XP

Windows Vista SP 1 5,445 MB - Windows Vista
Windows XP 1,500 MB 128 MB -

Windows Vista 15,000 MB 1,024 MB -

In regard to the submitted RFCs, the first two have as objective the installation of
an e-Commerce web application (WebApp), one of them having Server1 as target CI
and the other, Server3. The third RFC comprises two operations: one to install and
configure a network monitoring platform on Server4, and the other to install and
configure an authentication server on Server3. The fourth RFC comprises the
migration of the entire system installed on Server3 to Server4. Finally, the fifth RFC
consists in updating software packages installed in 47 out of the 65 stations that
compose the IT infrastructure (typical procedure in several organizational contexts).

A partial view of the actionable workflow generated from the first RFC is
presented in Fig. 5. Decision structures within the workflow were omitted for the sake
of legibility. Observe that the linkage between the activities present in the workflow
reflect the dependencies between the installed packages. For example, the e-
Commerce Web application depends on services provided by the SQL Server 2005
Database Management System and Internet Information Server 5.1. SQL Server 2005,
in its turn, depends on the previous installation of the .Net Framework 3.5.

The reader may also note that implementing this actionable workflow requires,
considering the information in Table 2, about 4,596 MB of disk space, and a
minimum of 1,168 MB of available physical memory, from Server1. Since this server

1 Source: http://www.microsoft.com
2 The e-Commerce Web Application system requirements were estimated

has sufficient disk space for the installation procedures present in the workflow, the
implementation of this RFC is likely to succeed. Moreover, all the installed software
should execute normally, given that the target server has sufficient physical memory.

Fig. 5. Partial view of the actionable workflow for the installation of WebApp.

An alternative plan to the one present in Fig. 5 is the one in which SQL Server
2008 is installed instead of SQL Server 2005, and Internet Information Server 7.0,
instead of IIS 5.1. As a consequence, Windows Vista and Windows Vista Service Pack
1 would be installed as well, instead of Windows XP Service Pack 2 and Windows XP,
due to the pre-requisite information. For the same reason, the installation of .Net
Framework 3.5 would not be present in this alternative plan. This plan would require
22,496 MB of available disk space from Server1 to be executable, amount beyond the
20,480 MB currently available. Therefore, it would not be generated by our solution,
since it is impractical considering the imposed resource constraints.

Table 3. Complexity of the change scenarios considering the number of activities and affected
configuration items (pre and post refinement).

Scenario
Preliminary plan Refined plan

Activities Affected
Stations

Affected
OSes

Affected
Software Activities Affected

Stations
Affected

OSes
Affected
Software

1 1 1 0 1 19 1 1 6
2 1 1 0 1 23 1 1 22
3 4 2 0 2 30 2 1 26
4 46 3 0 5 182 3 1 47
5 235 47 0 6 613 47 2 29

Table 3 presents, synthetically, the computational processing spent by the
CHANGELEDGE system to refine and generate actionable workflows for the five RFCs.
We highlight Table 3 the number of activities, as well as the number of computer
systems (stations), operating systems, and software affected in both the preliminary
(specified by a human operator) and refined plans (generated by the system). Taking
scenario 4 as example, one may note that the final change plan has 182 activities,
automatically refined from a 40% smaller plan.

The performance of the CHANGELEDGE system to generate the actionable
workflows characterized above is presented in Table 4. Our experiments were
conducted on a computer equipped with a Pentiumtm Centrino processor, 1.7 GHz of
CPU clock, 2,048 KB of cache, and 512 MB of RAM memory. The system has
performed satisfactorily, demanding from a few hundreds of milliseconds (544) to a
few dozens of seconds (57) to generate the aforementioned plans. We have also
calculated a confidence interval of 95% for the measured times, considering 10

Activity
Download
Service
Pack 2

Activity
Invoke SP
2 Installer

Activity
Invoke
.Net 3.5
Installer

Activity
Insert SQL
Server
2005 CD

Activity
Invoke SS
05 Installer

Activity
Configure
Domain
Password

Activity
Download
.Net 3.5

Activity
Invoke IIS
5.1
Installer

Activity
Download
Internet
Explorer 7

Activity
Invoke IE
7 Installer

Activity
Modify IIS
5.1 Cfg for
WebApp

Activity
Modify SS
05 Cfg for
WebApp

Activity
Invoke
WebApp
Installer

Activity
Reboot
Computer

Activity
Insert
Windows
XP CD

Activity
Invoke
WinXP
Installer

Activity
Reboot
Computer

Activity executed automatically

Activity executed by a human operator

repetitions of the refinement process for each change document. As shown in Table 4,
we expect the refinement time to vary minimally, for each scenario. The results show
that our solution not only generates complete and correct plans, but has potential to
reduce, in a significant way, time and efforts demanded to this end.

Table 4. Refinement processing time.

Scenario Refinement Time (ms) Confidence Interval of the Refinement Time
Lower Bound (ms) Upper Bound (ms)

1 544 535 552
2 942 937 947
3 1,754 1,736 1,771
4 3,879 3,811 3,947
5 57,674 57,482 57,866

6 Conclusions and Future Work

Change design is an undoubtedly fundamental building block of the IT change
management process. However, existing computational solutions to help the
generation of consistent, actionable change plans are still maturing and need more
work so as to eliminate some usual simplification assumptions. In this paper, we have
proposed a solution to automate the generation of change plans that take into account
runtime resource constraints. This is a very important aspect to be considered in order
to compute feasible plans, i.e., plans in which no technical or human resource
constraint is going to be violated during the execution of the plan.

The obtained results, although not exhaustive, were quite positive. The actionable
workflows generated automatically from preliminary plans (designed by human
operators) have respected the restrictions imposed by the target environment (e.g.,
memory and disk space constraints). Furthermore, the refinement of change plans ran
on the order of hundreds of milliseconds to dozens of seconds. This time is certainly
of lower magnitude than the time that would be required by an experienced operator
to accomplish the same task.

As future work we intend to investigate decision support mechanisms to help
operators understand the trade-offs between alternative change designs. In addition,
since our problem of IT change design concerns the realization of action sequences
from a description of the goal and an initial state of the IT environment, we plan to
explore how IT change design can take advantage of AI planning techniques [13].
There may be techniques from this field that our approach could benefit from,
whether they are on the topic of knowledge representation, planning algorithms, or
the integration of planning and scheduling.

References

1. Information Technology Infrastructure Library. Office of Government
Commerce (OGC), 2008. http://www.itil-officialsite.com.

2. IT Infrastructure Library: ITIL Service Transition, version 3. London: The
Stantionery Office, 2007, 270 p.

3. Keller, A.; Hellerstein, J.L.; Wolf, J.L.; Wu, K.-L.; Krishnan, V.: The
CHAMPS system: change management with planning and scheduling, In:
IEEE/IFIP Network Operations and Management Symposium. vol.1, pp. 395-
408 Vol.1, 19-23, 2004.

4. Oppenheimer, D.; Ganapathi, A.; Patterson, D. A.: Why do internet services
fail, and what can be done about it? In: 4th Usenix Symposium on Internet
Technologies and Systems, Seattle, USA, 2003.

5. Cordeiro, W.; Machado, G.; Daitx, F. et al.: A Template-based Solution to
Support Knowledge Reuse in IT Change Design. In: IFIP/IEEE Network
Operations and Management Symposium, Salvador, Brazil, pp. 355-362, 2008.

6. Dumitraş, T.; Roşu, D.; Dan, A.; Narasimhan, P.; Ecotopia: An Ecological
Framework for Change Management in Distributed Systems. In: Lecture Notes
in Computer Science. 2007: Springer Berlin/Heidelberg, Vol. 4615, pp. 262-
286, 2007.

7. Trastour, D.; Rahmouni, M.; Bartolini, C.: Activity-based scheduling of IT
changes. In: First ACM International Conference on Adaptive Infrastructure,
Network and Security, Oslo, Norway.

8. Sauvé, J.; Santos, R.; Almeida, R.; Moura, A.: On the Risk Exposure and
Priority Determination of Changes in IT Service Management. In: Distributed
Systems: Operations and Management, San José, CA, pp. 147-158, 2007.

9. Machado, G.; Cordeiro, W.; Daitx, F. et al.: Enabling Rollback Support in IT
Change Management Systems. In: IFIP/IEEE Network Operations and
Management Symposium, Salvador, Brazil, pp. 347-354, 2008.

10. Distributed Management Task Force: Common Information Model.
http://www.dmtf.org/standards/cim.

11. The Workflow Management Coalition Specification: Workflow Process
Definition Interface - XML Process Definition Language.
http://www.wfmc.org/standards/ docs/TC-1025_10_xpdl_102502.pdf.

12. Cormen, T.; Leiserson, C.; Rivest, R.; Stein, C.: Introduction to Algorithms,
2nd edition, MIT Press and McGraw-Hill, 2001. ISBN 978-0-262-53196-2.

13. Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J.; Wu, D.; Yaman, F.:
SHOP2: An HTN Planning System. In: Journal of Artificial Intelligence
Research, v. 20, pp. 379-404, 2003.

