
Self-Organizing Monitoring Agents for
Hierarchical Event Correlation

Bin Zhang, Ehab Al-Shaer

School of Computer Science, Telecommunications and Information Systems
DePaul University, USA

{bzhang, ehab}@cs.depaul.edu

Abstract. Hierarchical event correlation is very important for distributed
monitoring network and distributed system operations. In many large-
scale distritbuted monitoring environments such as monitions senor net-
works for data aggregation, battlefield compact operations, and secu-
rity events, an efficient hierarchical monitoring agent architecture must
be constructed to facilitate event reporting and correlation utilizing the
spacial relation between events and agents with minimum delay and cost
in the network. However, due to the significant agent communication
and management overhead in organzine agents in distributed monitoring,
many of the existing approaching become inefficient or hard to deploy. In
this paper, we propose a topology-aware hierarchical agent architecture
construction technique that minimizes the monitoring cost while consid-
ering the underlying network topology and agent capabilities. The agent
architecture construction is performed in a purely decentralized fashion
based on the agents’ local knowledge with minimal communication and
no central node support.

1 Introduction

A Distributed network monitoring (DNM) system has become an indispensable
component for current enterprise network. The high speed and large scale proper-
ties of enterprise network have imposed new requirements on DNM system. The
DNM system should not only detect and transfer the network events efficiently,
but also limit event propagation to save computing and network resources. A
DNM system is composed of a set of distributed monitoring agents which coop-
erate together to fulfill the monitoring tasks. These agents form an architecture
which determines the event delivery and aggregation path in the network. So
DNM architecture is crucial to the system performance. Many DNM systems
have been proposed in the past [15, 7, 8]. These works focus mainly on the net-
work events detection and correlation models, dynamic monitoring job update
and programmable action interface. However, the mechanism of constructing and
maintaining the monitoring agent architecture was insufficiently addressed. In
many DNM systems, the agent architectures are static and sometimes manually
constructed and maintained. In other DNM systems, the agent architectures are
constructed based on the logical relations between agents, which may not re-
flect the underlying network topology or agents’ capabilities. These limitations

impose long construction time, low efficiency and unbalance monitoring task
distribution in DNM systems.

In this paper, we introduce distributed self-organized topology-aware agents
for constructing a hierarchical distributed monitoring architecture. We describe
a number of algorithms and management protocols that enable agents to co-
operate together to build a hierarchical architecture in a decentralized fashion.
Agents work collaboratively but based on their local knowledge to select the
most suitable set of leaders in each level in the hierarchy such that the monitor-
ing information delivery cost is minimized. No central node or global knowledge
is assumed in this work and the number of messages exchanged between agents
is minimized by using scope-controlled multicast. Our proposed work takes into
consideration of spacial event correlation which is important for many distributed
applications such as security alarm correlation and sensor network data aggrega-
tion. In addition, topology-aware hierarchical correlation does not only restrict
event propagation but it also allows sensors to save energy in transmitting events
during the correlation/aggrtegation operation.

This paper is organized as follows. In section 2, we describe and formalize
the problem that we address in this work. Section 3 describes our heuristic
algorithm to develop hierarchical monitoring architecture using decentralized
self-organizing agents. In section 4, we evaluate this approach and show the
simulation results. Section 5 compares our work with related works. In section
6, we give the conclusion and identify the future work.

2 System Model and Problem Definition

A large number of monitoring agents might be distributed in a large-scale en-
terprise network. To address the scalability problem of having a large amount of
agents in the distributed monitoring system, hierarchical monitoring structure is
used. Agents are organized into different layers such that each layer contains a set
of agents that are selected as leaders to which other agents report their events.
Each leader filters and aggregates the incoming event and reports to higher level
agent. In order to improve the system performance and reduce events propa-
gation, the agent architecture should not only consider the underlying network
topology and agent processing capability, but also the event traffic rate gener-
ated by each agent. Thus, in each layer, we want to find the optimal subset of
agents as leaders and assign each non-leader agent to the most suitable leader.
The assignment of an agent to a leader is associated with a communication
cost, that is equal to the traffic rate of that agent multiplied by the distance
(e.g., number of hops) from that agent to its leader. Our objective in each layer
is to find the optimal subset of leaders and the assignment that can minimize
the total communication cost while respecting the leaders’ processing capability.
Thus, the hierarchical agent architecture construction can be viewed as a set
of recursive solutions to the Leader Selection and Assignment Problem (LSAP)
described above.

Suppose we have a set of n monitoring agents in one layer. Let dij denote the
distance between agent i and agent j. Let ci denote the processing capability of

agent i, which is decided based on the CPU speed and memory. Let bi represent
the event rate of agent i, which is defined by bi = θµi + σi. Here, µi and σi

denote the mean and standard deviation of event rate of node i respectively.
The LSAP at each layer can be formalized as an integer linear program:

minimize

nX
i=1

nX
j=1

dijxijbi (1)

subject to:

nX
i=1

bixij < cj (2)

nX
j=1

xij = 1 (3)

xij ≤ yj (4)
nX

j=1

yi ≤ d
Pn

i=1 biPn
i=1 ci/n

e (5)

xij ∈ {0, 1} (6)

yj ∈ {0, 1} (7)

The binary variable xij represents whether agent i treats agent j as its leader.
The binary variable yj represents whether agent j is selected as a leader. The
objective function (Eq.1) is to minimize the communication cost between agents
and their leaders. The constraint in Eq.2 guarantees that each leader will not
receive events more than a fraction of its capacity. The constraint Eq.3 restricts
that each agent can report to one leader only. The relation between variable xij

and yj is defined by Eq. 4, which means if agent i report to agent j, then agent
j must be a leader. The constraint Eq.5 is to specify that the total number of
leaders in each layer can not be greater than the maximum number of agents
required to accommodate all the event traffic coming from the this layer when
using the average agent capacity (

∑N
i=1 ci/n). We use this constraint to limit

the depth of the monitoring hierarchy and thereby reduce the monitoring delay.

3 Optimal Self-organizing Monitoring Agents

Traditionally, to find a solution for this kind of optimization problem, we need
one central agent that has the global knowledge of the network. When the net-
work topology changes due to the nodes or network devices failure, the recon-
struction has to be performed by the central node. This can easily causes a bot-
tleneck in the monitoring system and creates a single point failure. In addition,
to measure the distance between each agent pair and aggregate this information
to the central node, a large number of probe messages (O(N2)) should be ex-
changed. To overcome these shortcomings of using a centralized approach, we
propose a decentralized agent architecture construction technique. The hierar-
chical structure is built in a bottom-up fashion such that all agents join the first

layer and then the optimal subset of leaders are collaboratively discovered and
selected based on agents’ local knowledge. The rest agents are assigned to these
leaders. Then, the leaders from lower layer form the higher layer (ex. leaders of
layer 1 form layer 2) and the leader selection and agent assignment process will
be repeated at each layer till the agents at certain layer detect that there are no
enough agents left and it is not necessary to further build the hierarchy, then
these agents will directly report to the manager.

Based on the definition in section 2, we can see that the agents’ architecture
construction in each layer is an instance of the LSAP problem. So in this paper,
We will focus the discussion on our distributed solution to LSAP. The LSAP
can be proved to be NP-hard by a mapping from capacitated P-median problem
(CPMP) [13]. Many approximation algorithm have been proposed for CPMP
[14], but these approaches require a central node with global knowledge. So they
are not suitable to large-scale monitoring architecture.

In the following section, we introduce our distributed solution for LASP and
show how this algorithm can be repeatedly used to construct the hierarchical
agent architecture. Our solution targets the monitoring architecture in large-
scale enterprise network, where multicast and broadcast are normally available.
Also, it is commonly known that in enterprise network, the hop counts relatively
indicates the network delay between two nodes [5]. Our solution is totally dis-
tributed and efficient in terms of processing complexity and message exchange.

3.1 Distributed Leader Selection and Assignment Algorithm

Because the data from different monitoring nodes are often correlated and the
correlation is usually stronger between data from nodes close to each other, we
should select agents which have a small average distance to their members with
high processing capacity as leaders. Thus, all data from nodes which share the
same leader can be filtered, aggregated and correlated locally by the leader.
Two tasks need to be accomplished in order to solve LSAP problem: (1) se-
lecting the optimal subset of leaders, and (2) assigning each agent to the most
suitable leader. Our algorithm combines these two tasks together into one step.
The operation of our algorithm is divided into rounds and the length of round
is represented by T . Before the agent architecture construction, each agent i
computes its initial potential to become a leader (represented by Pi) based on
its processing capability ci. The Pi can be computed as Pi = η ci

cmax
. cmax is a

constant which represents the maximal processing capability and η < 1 is used
to control the initial value of Pi.

We assume agents can synchronously start the hierarchy construction about
the same time based on a specific broadcast or control message sent by the system
manager. At the beginning of each round, each agent sends out multicast search
messages with limited scope as discussed below to inform other agents about its
existence and status. The scope is used to control the distance the search message
can travel in the network. We limit the scope to control the message propagation.
The scope is implemented by setting the time-to-live (TTL) field in IP header of
the search message equal to the scope value. The scope is increased by 1 at each

searching round. In the search message, each agent embeds its unique ID, event
traffic rate bi, and current scope. When one agent receives a search message
from another agent, it computes the distance (i.e., number of hops) from the
source by subtracting the TTL value in the IP header of received search message
from the scope value in that search message. At the end of each round, each
agent first updates its member list based on the search messages received so far.
Because of the processing capacity limitation, each agent chooses its members
based on the ascending order of distance, and at the same time the total traffic
rate of its members should respect its capacity. Assume set Mi represents agent
i’s potential members, dji represents the distance between node i and j. The
communication cost of agent i can be computed as follows: costi =

∑
j∈Mi

djibj .
Based on updated member list and communication cost, Pi value can be updated
as follows:

(Pi)new = (Pi)old(1 + α1
si

smax
+ α2(1− costi/si

λ
)) (8)

Here the parameter si represents the selected member list size of agent i, si =
|Mi|. Smax is a constant which represents the maximal number of members any
node can possibly have. And λ is a constant and used to normalize the average
communication cost. In above equation, α1 and α2 are used to control how
many percent each term contributes to Pi increase, α1 + α2 = 1. From equation
8, we can see that Pi value will increase inevitably at the end of each searching
round. But how fast the Pi value increase is different for each agent. As member
list size si increases (first term in Eq. 8), its contribution to Pi increase, and
as the average communication cost costi/si increases (second term in eq. 8),
its contribution of it to Pi decreases. The more the members, the smaller the
average communication cost, the faster the Pi value increases. Since the increase
of Pi reflects both agent’s processing capability and its distance to other agents,
Pi is used as primary factor to decide whether an agent should become a leader.
The agents with high Pi value has more possibility to become a leader.

3.2 Node Status

In this approach, each node has five status which can change based on its Pi

value and its local knowledge.

– Unstructured: It means the agent doesn’t belong to any leader’s member list.
– Structured: It means the agent is included in some leader’s member list.
– Leader candidate: The agent can be a leader candidate if the Pi value is

larger than certain threshold PT and less than 1.
– Leader: An agent becomes a leader if its Pi value reach 1.
– Isolated leader: An agent becomes an isolated leader when after RT rounds

it still can not become a leader or a member, or its Pi = 1 but it has no
members.

In our algorithm, the initial status of all agents is unstructured. As the agent’s
Pi value increases at each search round, the agent status changes accordingly.

When an agent changes its status to a leader candidate or a leader, it sends out a
multicast announcement to the selected members to make them stop searching.
The leader candidate announcement is sent out periodically till this node be-
comes a leader. Leader node sends out beacon message (leader announcement)
to its members periodically. The current members of a leader candidate or a
leader are embedded in these announcements. If an unstructured agent receives
a leader candidate announcement that includes its ID in the member list, it stops
searching. If unstructured agent receives leader announcement that includes its
ID, it change its status to structured and start membership determination.

The agent’s status can also be changed reversely from a leader candidate to
unstructured when it receives a leader candidate announcement from other agent
which is more suitable to become a leader. Then how two leader candidates can
compete with each other to determine which one is more suitable to become a
leader? According to the definition of Pi, the node with higher Pi value is more
suitable to become a leader. However, this is only true if they are closely related
to make them competitors. The relation Lij used to measure the competition
relation between two candidate agents i and j can be computed as follow:

Lij = β1
|Mi ∩Mj |
|Mi ∪Mj | + β2(1− dij

dmax
) (9)

Mi and Mj is the member list in agent i and j respectively, and dij is the
distance (number of hops) between the agents i and j. Here dmax is a constant
which stands for the largest distance in the network. β1 and β2 are used to control
how many percent each term contributes to Lij , β1 +β2 = 1. Intuitively, we can
see that the more members these two leader candidates share, the smaller the
network distance between them, the higher the competition relation value. Only
when the relation Lij between two agents i and j is larger than certain threshold
LT , these two agents become competitors. In this case, the agent with larger Pi

prevails and keep its status as leader candidate. The other competitor changes
its status to unstructured. The complete algorithm for leader selection can be
found in [2]. This approach favors those agents which have small distances to
their members and sufficient processing power to become leaders. To control the
convergence speed, we set the threshold RT as the maximal number of searching
round for each node in the construction of one layer. After RT round, if an agent
still can not become a leader or a member, it will stop sending search message
and declare itself as an isolated leader as will be discussed in section 3.3.

3.3 Agent Membership Determination

For unstructured node, member determination phase is the phase where the
agent decides which leader to join in. When receives and included in a leader
announcement, an unstructured agent waits for a short time Td to see if other
agents become leaders and include itself as member during that period. If it
appears in multiple leaders’ member list, the agent always chooses the closest
leader by sending a multicast membership confirmation message with TTL equal

to the distance to the farthest leader. This message causes other leaders or leader
candidates to remove this agent from their member lists. If a leader doesn’t
receive anything from its member, it assumes that agent agrees to be its member.
For leader candidate, the member determination phase is the phase where the
leader candidate decides whether it should become a leader. A leader candidate
can reach Pi = 1 without any member, this means either no other leader agent
is willing to accept this agent or all its potential members already join other
leaders. In this case, this leader sends join request to all of its known leaders
to see if any leader will accept its traffic at this phase. If it still can not get
accepted, it promotes itself as an isolate leader. The algorithm for agent member
determination can be found in [2].

3.4 Resilience of The Agent Hierarchical Architecture

Resilience to Message Loss The message exchange between agents in our
distributed approach is through multicast. Multicast is not a reliable protocol,
packets can be lost during the operation of our algorithm. But due to the period-
ically sending of search message, leader candidate and leader announcement, this
approach can tolerate message loss and still construct the complete agent archi-
tecture. The search message loss of an unstructured agent can be compensated
by the next round message. The unstructured agent will keep sending till it is
covered by a leader candidate or reach maximal round RT . The loss of leader can-
didate announcement only causes the unstructured agents sending more search-
ing messages. The loss of leader announcement can cause unstructured agents
join suboptimal leader. In extreme case where all leader announcements to an
agent get lost, that agent can still send join request during the member determi-
nation phase or become an isolate leader which can join higher level or directly
report to the manager. So, the packet loss can influence the result architecture,
make some agents join suboptimal leaders. But our algorithm guarantees that
each agent will find a leader or become a leader, no agent will be isolated from
the resulting architecture, this will complete the architecture.

Resilience to Nodes Failure and Topology Change When network topol-
ogy changes or agents fail to perform its monitoring tasks, the hierarchical ar-
chitecture should be reconstructed to reflect these changes. In our proposed al-
gorithm, the distributed leader selection and assignment component contributes
significantly to the resiliency of the monitoring infrastructure as the topology
changes can be accommodated locally in the affected areas without globally im-
pacting the rest of the architecture. Each leader monitors the topology change
in the area it controls and keeps the statistical record of its members’ average
communication cost. If an abnormal average communication cost lasts for more
than a certain period, the leader can assume topology change happens in the
network. Then the leader sends out a reconstruction notification message to its
members to trigger the selection of new leader. The reconstruction only hap-
pens within the scope of old leader and its members such that other areas are

not effected. As for agent failure, the normal agent failure will not influence the
monitoring architecture. The architecture only need be changed when a leader
node fails. Since each leader node periodically sends out beacon message to its
members, when the member agents lose contact from their leader for certain
time, they set its status back to unstructured and restart the leader selection.
The new selected leader promotes itself to higher level to receive leader beacon
messages at that level, so it can select the best leader to join at that level.

3.5 Dynamic Parameters Selection

The proposed distributed algorithm is significantly impacted by two important
thresholds: leader candidate threshold PT and competition relation threshold
LT . In order to make this approach suitable for different networks and agent
distributions, these parameters should be dynamically chosen to reflect the tar-
get system properties. Since the construction of agent hierarchy structure is
totally distributed without any central node assistance, and there is no agent
has global knowledge, we propose the following technique for parameters selec-
tion. At the beginning of architecture construction, each agent randomly send
out a multicast search message (TTL = 255) with probability p, which is a small
value to limit only a small fraction of agent sending out messages. Upon receives
these messages, each agent can calculates the distance to other agents and sends
these information to the agent with smallest ID. So the agent with smallest ID
has a sample of global knowledge. It then calculate the mean and standard de-
viation of agent capability, distance, and event rate for the sample agents set.
Based on these information, it estimate how many search rounds needed for an
agent with average capability and average distance to make its Pi value reach
1. Because the agents need some time to resolve the competition between leader
candidates, so the PT value is set as Pi value of the estimated agent at third last
round. And the LT value is set as the estimated Lij value between two leader
candidates share half of their members with average distance. The details of how
these thresholds are calculated are shown in [2]. After calculation, the agent with
smallest ID will multicast these thresholds to all other agents.

4 Evaluation

In this section, we evaluate the performance of our distributed agents hierarchical
architecture construction algorithm using networks with various topologies and
sizes. Our simulation focuses on studying the accuracy, scalability and efficiency
of our heuristic distributed approach to the LSAP problem and compare the
results with the optimal centralized approximation algorithm [12].

Because the target of this approach is enterprise network, so we assume that
the network links for each agent have enough capacity to accommodate the event
traffics to and from that agent. Agents have different processing capabilities
and event traffic rates. The distances between agents are network distances. We
assume no path restriction in our model, which implies that each agent can send

(a) (b)

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

100 1000 10000

Number of Agents

C
o
s
t
In
c
re
a
s
e

uniform normal sd =3
normal sd =4 normal sd =5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

100 1000 10000

Number of Agents

T
o
ta
l
M
e
s
s
a
g
e
s

uniform normal sd=3

normal sd=4 normal sd=5

Fig. 1. Performance evaluation (a) Total cost increase ratio (b) Total messages change
as agents number changes

a message to any other agent. Based on these assumptions, we construct many
network topologies for our evaluation study by distributing agents randomly into
a two-dimensional graph. The geometry distance between agents symbolize the
network distance. The coordinates of agents are generated with uniform and
normal distribution. We use the following performance metrics in our study:
(1) total transferring cost which is the summation of the communication cost
for each agent,(2) total messages which is the summation of the messages used
between agents during the construction,(3) finishing round which represents how
long it will take for each agent to finalize its status.

4.1 Accuracy

Recall that the objective of our distributed agents structure construction algo-
rithm in each layer is to find the best subset of agents as leaders and assign
member agents to these leaders to achieve minimal total communication cost.
We apply our algorithm to several network topologies with agents number varies
from 80 to 4000 and compare the total transferring cost (Costdist) with the re-
sult of the centralized local search approximation algorithm (Costcent). We use
the increase ratio (IR) represent the difference between these two results which
is calculated as follows: IR = (Costdist − costcent)/Costcent. The IR value for
different network topologies is shown is in Fig. 1.a. From this graph, we can
see that IR value increases slowly as agents number increases dramatically. Our
approach uses the hop counts as the distance between agents/nodes, which is
obtained by rounding up the geometric distance divided by the predefined dis-
tance of one hop. This may lose precision when compared with the centralized
approach that uses network distance without rounding. From this figure we can
see that, for network generated based on normal distribution, higher standard

0

1

2

3

4

5

6

7

8

9

10

100 1000 10000

Number of Agents

F
in
is
h
 T
im
e
(T
)

uniform

normal sd=3

normal sd=4

normal sd=5

Fig. 2. Average finish time changes as agents number changes

deviation network gets lower IR value in our approach. This means our approach
can achieve better results when agents are widely distributed.

4.2 Scalability

Scalability is another very important criteria to evaluate our distributed agents
structure construction algorithm. We want to prevent the search messages from
flooding the network. Our objective is to use the minimal number of messages
to finish the construction. We evaluate the scalability of our work by applying
it on different network topologies and calculate the total messages used for the
construction. The result is shown in Fig. 1.b. From this graph we can observe
that the total number of messages increases almost linearly as the number of
agents increases, make our approach suitable to large-scale networks.

4.3 Efficiency

How fast the agent architecture can be built is crucial to the performance of the
distributed monitoring system. Slow construction implies slow detection and re-
action to network events. In each level of the agent hierarchy, each agent finishes
the construction of the current level (finalize its status) when it becomes a leader
or a member of another leader. So different agents might finish the construction
at different search round. We evaluate the efficiency of our approach by studying
the average finishing time of agents in different network topologies. We set the
threshold RT = 20 to terminate the construction for some agents with small
processing power and far from rest agents. Fig. 2 shows the average finishing
round of agents at different network topologies. We can see that the finish time
keep in certain range regardless the network topology changes. Also, as the num-
ber of agents increases, each agent receives more search messages during each
round. So the Pi value will also increase faster. This is why we can see that as
the number of agents increases, the average finishing time decreases.

5 Related Work

To our best knowledge, there is no prior work which addresses the problem of how
to construct the agent architecture in a complete distributed and autonomous
fashion in large-scale enterprise network based on network topology and nodes
capacity. Our related work study will focus on those works address the agents
structure of large-scale monitoring and management system. HiFi [1] is a hierar-
chical events monitoring systems for large-scale network. In HiFi, the monitoring
agent architecture has to be manually configured, which limits its fast deploy-
ment in large-scale network. Grid resource and application monitoring tools have
been proposed in [4] and [10]. Although these system adopt hierarchical archi-
tecture, none of these architectures consider the underlying network topology,
nodes traffic and capability.

A topology-aware overlay construction technique was proposed in [11]. In
this approach, every overlay node will independently pings a set of predefined
landmarks. Each node will sort the set of landmarks Based on the Round Trip
Time (RTT) to them. Thus, each node will have a landmark order vector, which
reflects the topology position of that node. All nodes with same landmark order
will independently join the same group. This approach can cluster large amount
of agents in distributed fashion, but the accuracy of the result depends on the
selection of landmarks. It can only sparsely cluster the nodes, and it may create
nodes unevenly distribution problem. LEACH [9] proposes a distributed cluster
algorithm for sensor networks. Nodes in LEACH make autonomous decisions
to become cluster head based on energy consumption without any centralized
control. But LEACH doesn’t guarantee good head selection and distribution, its
objective is to evenly distribute the energy load among all the nodes. On the
contrary, in our approach, agents compete with each other to become leaders.

6 Conclusion and Future Works

In this paper, we have addressed the problem of automatic construction of
topology-aware hierarchical agent architecture for large-scale event monitoring
and correlation systems. Our distributed approach overcomes the shortcomings
of centralized approaches and provides a scalable mechanism that can accommo-
date topology changes. The agent architecture is built in a bottom-up fashion
and no central manager is required to organized the agents. We show how to build
an optimal architecture based on the network topology and agents’ capabilities.
The possibility of one agent to become a leader in the hierarchy is determined
by its processing power and proximity to other agents. In our approach, the
agents compete with each other to become leaders but our algorithm favors the
agents with high processing power and more close agents. The simulation results
show that this approach can construct the agent architecture efficiently with
reasonable communication cost for a large distributed monitoring system.

Our future work will focus on two tasks. First, we will improve dynamic
parameters selection algorithm, analyze the influence of different threshold cal-
culation methods and sample size to the accuracy of our approach. Also, we will

study the impact of the proposed recovery and reconstruction technique on the
optimality of the agent architecture.

References

1. Ehab Al-Shaer, Hussein Abdel-Wahab, and Kurt Maly. HiFi: A New Monitoring Ar-
chitecture for Distributed System Management. Proceedings of International Con-
ference on Distributed Computing Systems (ICDCS’99), pages 171-178, Austin, TX,
May1999.

2. Bin Zhang, Ehab Al-Shaer. Self-Organizing Monitoring Agents for Hierarchical
Monitoring Architecture. Technical Report, multimedia research lab, Depaul Uni-
versity, 2007

3. Antonio Carzaniga, David S. Rosenblum Alexander L. Wolf: Design and evaluation
of a wide-area event notification service. ACM Transactions on Computer Systems
(TOCS), Volume 19, Issue 3, August 2001

4. Mark Baker and Garry Smith. GridRM: An Extensible Resource Monitoring Sys-
tem. Proceedings of the 5th IEEE Cluster Computing Conference (CLUSTER2003),
Hong Kong, December 2003.

5. A. Fei, G. Pei, R. Liu, and L. Zhang, Measurements on Delay and Hop-Count of
the Internet, Proc. IEEE GLOBECOM 98Internet Mini-Conf., 1998.

6. Robert E. Gruber, Balachander Krishnamurthy and Euthimios Panagos: High-level
constructs in the READY event notification system. Proceedings of the 8th ACM
SIGOPS European workshop on Support for composing distributed applications
1998, Sintra, Portugal.

7. Antonio Carzaniga, David S. Rosenblum and Alexander L. Wolf. Design and eval-
uation of a wide-area event notification service. ACM Transactions on Computer
Systems (TOCS) Volume 19, Issue 3, August 2001

8. Robert E. Gruber, Balachander Krishnamurthy and Euthimios Panagos. High-level
constructs in the READY event notification system. Proceedings of the 8th ACM
SIGOPS European workshop on Support for composing distributed applications,
Sintra, Portugal, 1998.

9. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, An Application-Specific
Protocol Architecture for Wireless Microsensor Networks, IEEE Transactions on
Wireless Communications, vol. 1, no. 4, pp. 660C670, October 2002

10. Hong-Linh Truong and Thomas Fahringer. SCALEA-G: a Unified Monitoring and
Performance Analysis System for the Grid. Technical report, Institute for Software
Science, University of Vienna,October 2003.

11. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-aware Overlay
Construction and Server Selection. In INFOCOM, 2002.

12. M. R. Korupolu, C. G. Plaxton and R. Rajaraman. Analysis of a Local Search
Heuristic for Facility Location Problems, Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1-10, 1998.

13. Osman, I.H.; Christofides, N. Capacitated clustering problems by hybrid simulated
annealing and tabu search. International Transactions in Operational Research 1994;
1: 317- 336.

14. K. Jain and V. Vazirani. Primal-dual approximation algorithms for metric facility
location and k-median problems. Proceeding of the 40th Annual IEEE Symposium
on Foundation of Computer Science,1-10, October 1999

15. S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie: High Speed and Robust
Event Correlation. IEEE Communication Magazine, pages 433-450, May 1996.

