
Fault Representation in Case-based Reasoning

Ha Manh Tran and Jürgen Schönwälder

Computer Science, Jacobs University Bremen, Germany
{h.tran,j.schoenwaelder}@jacobs-university.de

Abstract. Our research aims to assist operators in finding solutions for
faults using distributed case-based reasoning. One key operation of the
distributed case-based reasoning system is to retrieve similar faults and
solutions from various online knowledge sources. In this paper, we pro-
pose a multi-vector representation method which employs various seman-
tic and feature vectors to exploit the characteristics of faults described
in semi-structured data. Experiments show that this method performs
well in fault retrieval.

Key words: Case-based Reasoning (CBR), Fault Retrieval, Fault Man-
agement, Semantic Search.

1 Introduction

Fault management involves detecting, reporting and solving faults in order to
keep the communication networks and distributed systems operating effectively.
Managing faults in small and homogeneous networks requires not much effort.
However, this task becomes a challenge as networks grow in size and heterogene-
ity. Proposing solutions for faults not only costs much time and effort but also
degrades related network services. Artificial intelligence methods introduce some
promising techniques for fault resolution.

The Case-based Reasoning (CBR) [1] approach seeks to find solutions for
similar problems by exploiting experience. A CBR system draws inferences about
a new problem by comparing the problem to similar problems solved previously.
The system either classifies a given problem into a group of already known
and already solved problems or proposes new solutions by adapting solutions
for related problems to the new circumstance of the problem. Existing CBR
systems for fault management usually cooperate with trouble ticket systems
to take advantage of the trouble ticket database as the case database. These
systems only function on the local case database, and thus limit the capability of
exploring fault-solving knowledge present at other sites. Using shared knowledge
sources, however, not only provides better opportunities to find solutions but also
propagates updates in case databases that otherwise frequently become obsolete
in environments where software components and offered services change very
dynamically.

Search engines like Google [2] today furnish information search with global
data sources and powerful search techniques. It has become common practice for

2 Tran and Schönwälder

people to “google” for a piece of information. Operators are unexceptional; they
use fault messages or keywords to search for fault resolution in indexed public
archives. Observations have shown that “googling” takes quite some time to find
suitable solutions for a given fault. Furthermore, these solutions are typically
found in indexed discussion forums, bug tracking and trouble ticket systems, or
vendor provided knowledge bases. While some of these data sources maintain
some structured information (e.g., bug tracking and trouble ticket systems), this
information cannot be exploited due to the usage of a generic search engine
which does not understand the meta information readily available.

To deal with this problem, we have proposed

Reasoning

Solution
space

space
Problem

Similar
problems New

problem

solution
Proposed

Fig. 1. Case-based reasoning

a distributed case-based reasoning system [3]
which first exploits various fault knowledge sources
in a distributed environment to discover similar
faults, and then reasons on the retrieved solu-
tions to provide new solutions adapting to the
circumstances of new faults. In this paper, we
focus on a multi-vector representation method
to describe faults as cases in an expressive for-
mat, thus allowing the CBR system to retrieve
more relevant cases. Intuitively, similar faults
can probably be found if they are represented
in comparable formats. The paper is organized
as follows: in Section 2, we provide some background information about CBR sys-
tems and semantics-based search mechanisms. Section 3 explains a novel method
to represent faults for case retrieval in the CBR system. The evaluation of this
method is presented in Section 4. The related work describes the existing systems
in Section 5 before the paper concludes with future work in Section 6.

2 Background

This section provides an overview of the CBR system and the semantics-based
search mechanisms (also known as semantic search). A CBR system basically
contains four processes: case retrieval to obtain similar cases, case reuse to infer
solutions, case revision to confirm solutions and case retaining to update new
cases. The first process concerns case representation and similarity evaluation;
whereas the remaining processes are more related to case reasoning and main-
tenance. The main focus here is on case representation, similarity functions and
semantic search.

2.1 Case Representation and Similarity Functions

A case representation method expresses a case in a formal format to reveal hid-
den properties and to facilitate case evaluation. Moreover, the representation
method also has an influence on the performance of case retrieval. Research in
CBR has proposed several representation methods for various domains. The bag

Fault Representation in Case-based Reasoning 3

of words (BOW) used for law cases tokenizes a text into single words; i.e., a form
of term vectors. The XML-based case representation language (CBML) used for
travel markets describes cases in XML format. A review of these methods has
been reported in [4]. In addition, other proposals [5, 6] in fault management have
explored field-value pairs to present faults; i.e., a form of feature vectors. Note
that the terms “feature vectors” and “field-value vectors” are used interchange-
ably throughout this paper.

The structure of trouble tickets [5, 6] has been used to represent cases in
CBR systems. An example ticket encompasses fields such as “Device name”,
“Device type”, “IP address”, “Trouble”, “Additional data”, “Resolution” plus
other fields used for management purposes (e.g., “Owner”, “Status”, “Time”).
Cases are represented as {field :value} pairs, where value is either numeric or
symbolic. Case similarity is measured by the number of pairs matched.

Knowledge management systems [7, 8] and practical CBR applications [6, 9]
express cases in feature vectors <f1:v1,. . . ,fn:vn>, where n is number of features;
fi is a domain-specific feature pre-defined in knowledge sources; vi is a value of
the respective feature, which avoids using natural language. This representation
not only supports semantic search, but can also be used to represent cases in
CBR systems.

Case similarity is calculated by various methods. The global similarity method
[9, 7] takes the significance of features into account:

sim(q, c) =
n∑

i=1

wisim(qi, ci) (1)

n is the number of features; qi and ci are features of cases q and c respectively;
sim(qi, ci) is the distance between qi and ci, which are expressed in binary, nu-
meric or symbolic values; wi is a weight of the ith feature such that

∑n
i=1 wi = 1

with wi ∈ [0, 1] ∀i. A weight is a user-defined value which exhibits the significance
of a certain feature.

The logical match method [8] uses a logical model to express a case in a set
of predicates <f1=v1,. . . ,fn=vn>, where each predicate {fi=vi} is a field-value
pair. A case Ci matches a case Cj , denoted Ci ⊆ Cj , if Cj holds for all predicates
in Ci:

∀k{fk = vk} ∈ Ci, {fk = vk} ∈ Cj =⇒ Ci ⊆ Cj (2)

This method supports a partial match for the heterogeneous cases that contain
different numbers of features.

The word similarity method [10, 11] compares cases using the hierarchical
word structure, namely the taxonomy tree.

simTopic(q, c) =

{
e−αl eβh−e−βh

eβh+e−βh if q �= c

1 otherwise
(3)

l is the length of the shortest path between the topics of q and c in the taxonomy
tree, h is the depth level of subsumer in the taxonomy tree, and α ≥0 and β >0
are parameters scaling the contribution of shortest path length l and depth h,
respectively.

4 Tran and Schönwälder

2.2 Semantic Search

Resources and queries in semantic search are expressed in formal formats se-
mantically understandable to search engines. Knowledge management systems
describe resources in feature or semantic vectors and evaluate the similarity
between vectors using similarity functions. Existing systems have employed dif-
ferent methods including the schema-based method [11, 12] for resources related
to structured, domain-specific data, and the Latent Semantic Indexing method
(LSI) [13] for resources described textually.

Fulltext-based Search The LSI method brings the essential abstract concepts
of a document or query to a semantic vector. To generate this vector, a docu-
ment or a query is first represented in a term vector. The Vector Space Model
(VSM) [14] weights each term, denoted by w(t), in the term vector by calculat-
ing the appearance frequency of this term in the document and the appearance
frequency of this term in other documents, as follows:

w(t) =
nt∈d

Nd
log

N

nd⊃t
(4)

nt∈d is number of term t in document d; Nd is number of terms in document d;
N is number of documents; nd⊃t is number of documents containing term t. A
high frequency of a term indicates the significance of the term in the document,
but its significance is compensated if the term also appears in many other docu-
ments. LSI deals with noise and synonyms in a document by transforming a term
vector into a semantic vector. To carry out the transformation, LSI represents all
documents and terms in the documents in a t×d matrix A, where each element
aij computed by Eq. 4 denotes the significance of term i in document j. Using
singular value decomposition (SVD) [14], A is decomposed into the product of
three matrices: A = UΣV T , where Σ = diag(σ1, . . . , σr) is an r×r diagonal ma-
trix, r is the rank of A and σi is the singular value of A with σ1 ≥ σ2 ≥ . . . ≥ σr.
LSI eliminates noise and synonyms by picking up the s largest singular values
resulting in reducing the rank of A; e.g., As = UsΣsV

T
s . The optimal value of s

is chosen depending on r; e.g., between 50 and 350. Semantic vectors of docu-
ments in A are indexed by the rows of Vs. Semantic vectors of new documents or
queries are computed by using Us, Σs [14]. The similarity between two vectors is
measured by the cosine of the angle between these vectors. Formally, given two
vectors q = (q1, q2, . . . , qs) and c = (c1, c2, ..., cs) normalized with ‖q‖ = 1 and
‖c‖ = 1, the similarity between q and c is computed by the following equation:

cos(q, c) =
s∑

i=1

qici (5)

Schema-based Search The schema-based method (also known as metadata-
based or ontology-based search) maps the properties of resources in a pre-defined
schema into feature vectors. A schema here denotes the structure of data; e.g.,

Fault Representation in Case-based Reasoning 5

a schema of a digital document consists of title, author, abstract, etc. A query
is also expressed in a feature vector using a schema. Fig. 2 plots the process
of the schema-based search. This method works based on knowledge sources
that globally define concepts and their relationships related to some domain of
interest. These concepts are employed to specify the structured data of resources
or queries in schemas. The similarity evaluation of feature vectors has been
discussed in 2.1.

2.3 Case Reasoning

While case retrieval is only responsible for pro-

Processing

Resources

Queries

Searching Schemas

Fig. 2. Schema-based search

ducing similar cases, case reasoning deduces from
the retrieved cases relevant solutions for the prob-
lem, see Fig.1. The deductive capability of case
reasoning lies upon an intelligent process named
case adaptation. This process basically carries
out two tasks: the first task distinguishes a re-
trieved case from the problem to clarify key dif-
ferences, then the second task modifies the re-
trieved case following the differences. Instruc-
tions from operators take vital roles in these tasks, thus improving the self-
adapting capability is the major challenge of case reasoning. Furthermore, case
reasoning also undertakes the process of case retaining that submits the changes
of the adapted cases to the case base after processing case adaptation. It is
essential that the process of case learning verifies the results of applying the
adapted solutions to a real system before case databases are updated. However,
this process is difficult to be performed because real test systems are sometimes
unavailable in decentralized environments.

3 Fault Retrieval

This section proposes a multi-vector representation method to represent faults.
Evaluating the similarity between faults involves several functions corresponding
to the represented vectors and an aggregation function to calculate the final
similarity value.

3.1 Multi-vector Representation

The heterogeneity of describing cases leads to difficulties in representing cases
resulting in vectors with various dimensions and features. The comparison of
these vectors thus becomes troublesome and imprecise. A feature vector is either
limited by the pre-defined features or composed of the unpredictable user-defined
features. It is also difficult to use this vector to explore the properties of the
textual cases. On the other hand, a semantic vector exploits the textual cases,
but neglects the importance of the case features. This vector only works with

6 Tran and Schönwälder

the local case database; e.g., two cases retrieved from two different case bases
by comparing their vectors are possibly semantically different.

The proposed multi-vector representation method describes cases using a set
of vectors instead of a single vector. This method deals with the above problems
by breaking a case into various semantic and feature vectors resulting in both
expressing cases more effectively and facilitating the comparison of these vectors.
In addition, this method is suitable for faults which usually contain hierarchical
fields, parameters, textual symptoms. The set of vectors takes advantage of these
factors to discover the properties of cases. Nevertheless, introducing several vec-
tors requires an aggregation function to evaluate the similarity between vectors.
A network fault is anatomized by the following concerns:

– Field-value pairs classify a fault into the smaller groups of network faults.
As described in [6], these groups are related to connectivity, communica-
tion performance, authentication service, hardware and software configu-
ration. A case contains several pre-defined field-value pairs such as prob-
lem type and area, hardware, platform, and other user-defined field-value
pairs. To represent n pairs, we employ the field-value vector: vf =<f1:v1,. . . ,
fk:vk,. . . ,fn:vn>, where k is the fixed number of pre-defined pairs.

– Other field-value pairs specify symptoms and typical parameters such as
port number, cache buffer, packet loss, error messages depicted in domain-
specific terminology. These pairs are represented by another field-value vec-
tor vp =<p1:v1,. . . ,pm:vm>, where m is number of symptoms and parame-
ters. Symptoms are either binary, numeric or symbolic values. This vector is
useful for faults with diagnosis information.

– Textual descriptions including effects, symptoms, debugging message and
additional information are represented by the semantic vector vs using LSI.
This high-dimension vector exhumes the properties of a case hidden in the
natural language, thus distinguishing the case from other cases. Indexing
fault cases and generating query vectors only work with local case databases.

A case, in fact, contains problem and solution parts. A set of vectors {vf , vp,
vs} can be used to represent the problem part (of a network fault). It is natural
to extend the set of vectors to the solution part resulting in more vectors added
to the set; the similarity between cases possibly becomes more precise. However,
to make the proposed method simple and feasible, we only insist on using the
vector set of the problem part for retrieving similar faults; the extended vector
set of the solution part related to reasoning the retrieved cases and providing
the best case is not discussed in this paper. The following example is a fault
extracted from a networking forum [15]:

Problem: Hub connectivity not functioning
Description: The WinXP network contains many machines obtaining
an address from a DHCP server. The network is extended to 3 more
machines by unplugging the LAN cable from one of the machine’s and
plugging it to a hub with the intention to add the 3 new machines. From
the hub, none of the machines successfully obtains an IP address from the
DHCP server; an error message shows “low or no network connectivity”.

Fault Representation in Case-based Reasoning 7

To make this fault case understandable and comparable to CBR engines, vector
vf contains <problem type: connectivity, problem area: hardware configuration,
hardware: PC, platform: WinXP>. Vector vp comprises <network: LAN, error-
message: low or no network connectivity, ip-address: false, DHCP: true>. Using
LSI, several terms are considered to build the vector vs.

3.2 Similarity Evaluation

A similarity evaluation function measures the essential properties of cases to
conclude the degree of similarity between cases. This function usually depends
on the representation method, and therefore has an impact on the performance
of case retrieval. For the proposed representation method, the field-value vectors
vf and vp are evaluated by Ordered Weighted Averaging (OWA) [16, 9], which
is an aggregation function for multi-criteria decision making, see Eq. 6. This
function is suitable for a scenario where the information of the importance of
features is unknown, but the order of the importance of features is possibly
exploited. It means that the pre-defined features are considered more important
than user-defined features, thus receiving higher weight values.

sim(q, c) =
n∑

i=1

wisimσ(i)(qi, ci) (6)

where n, qi and ci are already discussed in Eq. 1; simσ(i)(qi,ci) is a distance
between qi and ci expressed in binary, numerical or symbolic values. σ(i) is
a permutation of 1,...,n such that simσ(i)(qi, ci) ≥ simσ(i+1)(qi+1, ci+1) ∀i =
1, . . . , n − 1. We compute a weight value wi using the following function:

wi =
{

2
n+2i if i < n

2
1
2i if i ≥ n

2

(7)

This monotonic function decreases from 2
n+2 to 1

2n , corresponding to the im-
portance of features, as i increase 1 to n; besides, the function guarantees∑n

i=1 wi ≈ 1. The similarity between semantic vectors vs is evaluated by the
inner product of vectors, see Eq. 5. In summary, given a case c, a query q and
the similarity values simvf

(q, c), simvp(q, c), cosvs(q, c) for the corresponding
vectors vf , fp, vs, the similarity S between c and q is measured by the aggrega-
tion function Eq. 1:

S(q, c) = αsimvf
(q, c) + βsimvp(q, c) + γcosvs(q, c) (8)

Parameters α, β and γ specify the significance of vectors provided by users; for
instance: α = 0.4, β = 0.2 and γ = 0.4.

4 Evaluation of Multi-vector Representation

The goal of this evaluation is to show the performance of the multi-vector rep-
resentation method in terms of retrieving relevant documents. We focus on two

8 Tran and Schönwälder

methods: (1) the LSI method using the single semantic vector (lsi for short), and
(2) the combined method using the two semantic and field-value vectors (lsi+fvv
for short). We have used the CISI and MED bibliographic datasets [17] with 1460
and 1033 titles and abstracts (documents for short) respectively. These datasets
provides the textual queries and the corresponding numbers of relevant docu-
ments for evaluating document retrieval; besides, the keyword-based queries are
also included, as the following example:

A textual query: How can actually pertinent data, as opposed to refer-
ences or entire articles themselves, be retrieved automatically in response
to information requests?
A keyword-based query: and (or (“data”, “information”), or (“perti-
nent”, “retrieved”, “requests”, “automatically”, “response”, not (or (“ar-
ticles”, “references”))));

These two queries are the same, but the keyword-based query specifies main
keywords and their importance using operators: and, or, not. Therefore, the
query could be employed as a field-value vector by assigning different weight
values to keywords. Each term possesses a weight value of 1

ηθ , where η is number
of or groups, θ is number of terms in the group containing the term. Terms in
not groups receive negative values. For the above example, “data”, “pertinent”
and “articles” possesses weight values of 0.25, 0.08 and -0.04 respectively. Sum
of weight values for a query is 1 except for queries with not operators.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Recall

CISI

lsi+fvv
lsi

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Recall

MED

lsi+fvv
lsi

Fig. 3. Precision by various recall rates for the CISI and MED datasets

The core component of lsi is to compute SVD for the large term-document
matrix built on the dataset. We have implemented the Jacobi algorithm [18] for
computing SVD. The advantage of this algorithm is high accuracy, which is very
crucial for resolving this large, sparse matrix with small elements. The issue of
lsi+fvv is to determine the importance of specific keywords similar to features
in field-value vectors; we simply use the same method as Eq. 4 for documents
and the additional operators: and, or, not for queries. We experimentally choose
α = 0.4 for semantic vectors and β = 0.6 for field-value vectors in the aggregation

Fault Representation in Case-based Reasoning 9

function Eq. 8; i.e., given a query, the similarity value for each document is
aggregated by cosine and global similarity values.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

R
ec

al
l

Retrieved Documents

lsi+fvv
lsi

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

P
re

ci
si

on

Retrieved Documents

lsi+fvv
lsi

Fig. 4. Recall and precision by various numbers of retrieved documents for the MED
dataset

We have considered two popular metrics to evaluate the performance of doc-
ument retrieval in the experiments: recall rate (rc) and precision rate (rp) [13].
The recall rate is the ratio of the number of relevant documents retrieved to
the pre-defined number of relevant documents. The precision rate is the ratio of
the number of relevant documents retrieved to the total number of documents
retrieved (Rd). Intuitively, the former only concerns the capability of obtain-
ing many relevant documents regardless Rd; whereas, the later involves the ca-
pability of achieving relevant documents in the limited number of documents
retrieved. These two rates are usually opposed as Rd increases.

We have used 40 queries for CISI and 30 queries for MED. The first experi-
ment evaluates the precision of lsi+fvv and lsi over the recall rate; i.e., we keep
retrieving documents until recall rates are reached, then count the number of
documents retrieved and compute precision rates. Fig. 3 shows that rp decreases
as rc (and also Rd) increases. In the CISI plot, both methods perform poorly
for CISI; lsi cannot go over the recall rate of 0.6 because the similarity values
of retrieved documents go down below 0; lsi+fvv performs slightly better. We
found the same performance of lsi for CISI in [13]. According to this paper, the
homogeneous distribution of CISI and the vague description of queries cause the
unreliable judgment of the evaluation function. In the MED plot, both methods
perform better for MED; lsi+fvv slowly reduces the precision rate and remains
0.48 as the recall rate reaches 0.8; whereas, lsi acquires 0.3 at the recall rate of
0.8, which is relatively low compared to the precision of lsi+fvv. An observation
shows that choosing the size of semantic vectors influences the precision of lsi ;
i.e., the reduced rank of the matrix, and choosing the α and β values affects the
precision of lsi+fvv.

Since the MED dataset provides more reliable results, the second experiment
uses this dataset to calculate the accumulative recall and precision rates for

10 Tran and Schönwälder

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

R
ec

al
l

Queries

lsi+fvv 30
lsi+fvv 20

lsi 30
lsi 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

P
re

ci
si

on

Queries

lsi+fvv 30
lsi+fvv 20

lsi 30
lsi 20

Fig. 5. Recall and precision by various numbers of queries for 20 and 30 documents of
the MED dataset

different numbers of retrieved documents; i.e., 10, 20, . . ., 50. Fig. 4 indicates
that lsi+fvv outperforms lsi in both recall and precision. An observation shows
that several relevant documents could be obtained by lsi+fvv, while they possess
low similarity values in lsi ; thus, the field-value vector plays a vital role in lsi+fvv.
Another observation is that lsi tends to be misled by queries with not operators,
while lsi+fvv tends to perform well for queries with distinguished keywords. The
precision rate quickly reduces because some queries possess the small number of
relevant documents compared to 40 or 50 retrieved documents; for example, a
query with 20 relevant documents acquires 16 relevant documents for 40 retrieved
documents and 17 relevant documents for 50 retrieved documents, its precision
reduces from 0.4 (16/40) to 0.34 (17/50).

To further investigate these methods, we choose 20 and 30 retrieved docu-
ments to observe how they perform since the average number of relevant doc-
uments per a query is 23.3. Fig. 5 also displays the accumulative recall and
precision rates for different numbers of queries; i.e., 5, 10, . . . , 30. These rates
are relatively stable, thus all queries acquire the similar ratios of relevant docu-
ments to the number of retrieved documents (precision) and to the pre-defined
number of relevant documents (recall).

5 Related Work

So far several attempts have been given to CBR in fault management. Most of
the existing approaches focus on using trouble tickets to represent cases. The
work in [5] improves fault management by extending the trouble ticket sys-
tem (TTS) to CBR. The proposed system can learn from previous experience
and offer solutions to novel faults. This work employs trouble tickets as cases
for CBR. Likewise, the DUMBO system [6] takes advantage of the knowledge
hoarded in TTS to propose solutions for problems. The system not only con-
tains six types of features to express cases but also provides both similarity and
reliability measurements for evaluating features between cases. However, these

Fault Representation in Case-based Reasoning 11

systems are relatively limited by two aspects: (1) the representation of trouble
tickets is only suitable for simple feature matching mechanisms, thus restrict-
ing the exploitation of features; (2) the knowledge source is limited by using
local case databases. Another interesting work [9] uses sets of pre-defined case
attributes and preferences of users to improve case representation in recommen-
dation systems. This paper involves using the multi-vector representation and
the advanced similarity evaluation to improve fault retrieval, which is the core
component of the proposed distributed CBR system.

Other research activities have concentrated on knowledge management sys-
tems working on both multiple case databases and semantic search on peer-
to-peer (P2P). Shlomo et al. [7] proposes an approach to retrieving cases on a
structured P2P network with the hypercube topology. The approach employs
the schema-based method, namely unspecified ontology, to maintain the case
base on P2P environment. Case retrieval is based on the approximated search
algorithm for feature vectors only, and the focal domain is e-commerce adver-
tisement. The Bibster or SWAP system [11] supports bibliographic data storage
and ontology-based search on a super-peer network. The Piazza system [8] deals
with the problem of sharing semantically heterogeneous data on a P2P network.
These two systems also use the schema-based method to define shared data and
retrieve data by evaluating the similarity between feature vectors. The proposed
distributed CBR system associates the semantics-based search mechanism with
CBR to support not only fault retrieval but also fault-solving capability.

6 Conclusion

Our research aims at building a distributed CBR system to assist operators
in finding solutions for faults. The system is more relevant than general search
engines because it enables not only searching for similar faults described in semi-
structured data but also producing new solutions for new faults. In this paper, we
address the problem of retrieving similar faults in the CBR system. By studying
the description of fault cases, we propose a multi-vector representation method
which uses several feature and semantic vectors to express faults. These vectors
not only exploit better the characteristics of faults described in semi-structured
data but also provide facilities for evaluating the similarity between faults, thus
ameliorating fault retrieval.

We have tested the performance of the proposed method using the CISI and
MED bibliographic datasets whose documents contain semi-structured data. The
evaluation results show that the combination of semantic and feature vectors
outperforms the use of single semantic vectors in terms of document retrieval.
Future work will focus on using real fault datasets whose diversity may demand
various vectors instead of two vectors. In addition, the proposed method will be
extended to case reasoning, which infers the best case from the vector sets of the
retrieved cases.

12 Tran and Schönwälder

Acknowledgement

The work reported in this paper is supported by the EC IST-EMANICS Network
of Excellence (#26854).

References

1. A. Aamodt and E. Plaza. Case-based reasoning: foundational issues, methodolog-
ical variations, and system approaches. AI Communications, 7(1):39–59, 1994.

2. Google search engine. Http://www.google.com/. Accessed in May 2007.
3. H. M. Tran and J. Schönwälder. Distributed case-based reasoning for fault man-

agement. In Proc. 1st Conference on Autonomous Infrastructure, Management and
Security, pages 200–203. Springer-Verlag, 2007.

4. R. O. Weber, K. D. Ashley, and S. Brüninghaus. Textual case-based reasoning.
The Knowledge Engineering Review, 20(3):255–260, 2005.

5. L. M. Lewis. A case-based reasoning approach to the resolution of faults in com-
munication networks. In Proc. 3rd International Symposium on Integrated Network
Management (IFIP TC6/WG6.6), pages 671–682. North-Holland, 1993.

6. C. Melchiors and L. M. R. Tarouco. Fault management in computer networks using
case-based reasoning: DUMBO system. In Proc. 3rd International Conference on
Case-Based Reasoning and Development, pages 510–524. Springer-Verlag, 1999.

7. S. Berkovsky, T. Kuflik, and F. Ricci. P2P case retrieval with an unspecified
ontology. In Proc. 6th International Conference on Case-Based Reasoning, pages
91–105. Springer-Verlag, 2005.

8. I. Tatarinov, Z. Ives, J. Madhavan, A. Halevy, D. Suciu, N. Dalvi, X. Dong,
Y. Kadiyska, G. Miklau, and P. Mork. The piazza peer data management project.
SIGMOD Record, 32(3):47–52, 2003.

9. M. Montaner, B. López, and J. Llúıs de la Rosa. Improving case representation and
case base maintenance in recommender agents. In Proc. 6th European Conference
on Advances in Case-Based Reasoning, pages 234–248. Springer-Verlag, 2002.

10. Y. Li, Z. A. Bandar, and D. McLean. An approach for measuring semantic sim-
ilarity between words using multiple information sources. IEEE Transactions on
Knowledge and Data Engineering, 15(4):871–882, 2003.

11. P. Haase, J. Broekstra, M. Ehrig, M. Menken, P. Mika, M. Plechawski, P. Pyszlak,
B. Schnizler, R. Siebes, S. Staab, and C. Tempich. Bibster — a semantics-based
bibliographic peer-to-peer system. In Proc. 3rd International Semantic Web Con-
ference, pages 122–136. Springer-Verlag, 2004.

12. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér,
and T. Risch. EDUTELLA: a P2P networking infrastructure based on RDF. In
Proc. 11th International Conference on World Wide Web, pages 604–615, New
York, NY, USA, 2002. ACM Press.

13. S. Deerwester, S. Dumais, T. Landauer, G. Furnas, and R. Harshman. Indexing
by Latent Semantic Analysis. JASIST, 41(6):391–407, 1990.

14. M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices, vector spaces, and information
retrieval. SIAM Review, 41(2):335–362, 1999.

15. Networking forum. Http://www.computing.net/. Accessed in March 2007.
16. R. R. Yager. On ordered weighted averaging aggregation operators in multi-criteria

decision making. IEEE Transactions on SMC, 18(1):183–190, 1988.
17. Latent semantic indexing. Http://www.cs.utk.edu/˜lsi/. Accessed in March 2007.
18. J. W. Demmel. Applied numerical linear algebra. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 1997.

