
AURIC: A Scalable and Highly Reusable
SLA Compliance Auditing Framework

Hasan, Burkhard Stiller

Computer Science Department IFI, University of Zürich, Switzerland
[hasan¦stiller]@ifi.uzh.ch

Abstract. Service Level Agreements (SLA) are needed to allow business inter-
actions to rely on Internet services. Service Level Objectives (SLO) specify the
committed performance level of a service. Thus, SLA compliance auditing aims
at verifying these commitments. Since SLOs for various application services and
end-to-end performance definitions vary largely, automated auditing of SLA
compliances poses the challenge to an auditing framework. Moreover, end-to-end
performance data are potentially large for a provider with many customers.
Therefore, this paper presents a scalable and highly reusable auditing framework
and a prototype, termed AURIC (Auditing Framework for Internet Services),
whose components can be distributed across different domains.

1 Introduction

Today, the Internet has become a platform for business. Various services are offered to
enable business transactions to be accomplished. A Service Level Agreement (SLA) is
negotiated between a provider and a customer in order to define a legally binding con-
tract regarding the service delivery. While the TeleManagement Forum defines an SLA
as “a formal negotiated agreement between two parties, sometimes called a Service
Level Guarantee, it is a contract (or part of one) that exists between the service provider
and the customer, designed to create a common understanding about services, priorities,
responsibilities, etc.” [17], in general, an SLA comprises in particular a service descrip-
tion, the expected performance level of the service, the procedure for reporting prob-
lems, the time-frame for response and problem resolution, the process for monitoring
and reporting the service level, the consequences for the provider not meeting its obli-
gations, and escape clauses and constraints [18]. The performance level of a service
committed is specified in a set of Service Level Objectives (SLO). Thus, SLA compli-
ance auditing aims at verifying that these SLOs are met. This task must be automated
in order to be efficient and to enable real-time reactions in case of an SLA violation.

In fact, specifying SLAs on IP-based networks becomes viable through network de-
vice instrumentations for Quality-of-Service (QoS) measurements, not only of transport
but also of application services. However, application service SLAs still pose challeng-
es to their compliance auditing, due to the variety and the potential complexity of SLOs.
An example for a complex SLO is the following detail specification of service availa-
bility: “In most cases, service requests from authorised users will be accepted. If a re-

Hasan and B. Stiller

quest from an authorised user is rejected or not responded within 15 seconds, then the
next request for this service from the same user will be accepted. However, this next
request must be made within the next 5 minutes and 1 minute must have been elapsed
since the rejected or unresponded request.” Thus, an expressive specification language
is beneficial to formally specify such complex relations among various events.

A useful auditing framework must allow for the distribution of auditing load to sep-
arate auditor instances. The time and memory required for auditing may increase only
linearly with an increasing number of audit data. Moreover, the framework must be re-
usable and easily adaptable to audit any complex SLO. Hence, this paper presents a
scalable and highly reusable generic framework, termed AURIC (Auditing Framework
for Internet Services), which supports secure inter-domain interactions and provides all
necessary core functionality to conduct automatically potentially complex audit tasks.

The remainder of this paper is organized as follows. Section 2 discusses related
work. While Section 3 presents the AURIC architecture for SLA compliance auditing,
Section 4 describes its prototypical implementation. An extensive evaluation of AURIC
with respect to its scalability and reusability is presented in Section 5, which is followed
by Section 6, where conclusions are drawn.

2 Related Work

Current approaches in SLA management address the formal specification of a complete
SLA in a specific area, e.g., network or web services, or concentrate on measurements
of a pre-defined set of SLA parameters [1], [6], [8], [10], [12], [13]. Hence, to modify
or to extend an existing solution, particularly a commercial product, for its application
to an SLO with a different logic, a larger effort is needed than if the solution has been
based on a generic framework like AURIC. Moreover, most approaches support only
simple SLO terms and do not consider possible inter-domain auditing interactions and
their security requirements. While [7] discusses all relevant details of related work, the
following paragraphs summarize major issues only.

The Web Service Level Agreement (WSLA) Framework proposes a concept for
SLA management including online monitoring of SLA violation and defines a language
to specify SLAs [13]. However, it focuses on web services and supports only simple
SLO terms. A condition in a WSLA’s SLO is simply a logic expression with SLA pa-
rameters as variables. WSLA does not support conditional expressions for SLO speci-
fications and the framework does not expect to process metered data consisting of more
than one field, e.g., <IPAddress, PacketLossRatio>. Since the timepoint at which the
value of a measured metric is transferred is considered as the measurement timepoint,
batch processing of measured data is not supported.

In the area of Grid services, Cremona [14] is an architecture and library for the cre-
ation and monitoring of WS-Agreements, whose specification is worked out by the Grid
Resource Allocation and Agreement Protocol Working Group (GRAAP-WG) of the
Global Grid Forum. Cremona supports the implementation of agreement management,
however, SLO monitoring is considered application specific, thus, no support to its im-
plementation is available, except an interface to retrieve monitoring results.

AURIC: A Scalable and Highly Reusable SLA Compliance Auditing Framework

The Project TAPAS (Trusted and Quality-of-Service Aware Provision of Applica-
tion Services) proposes SLAng, a language for expressing SLAs precisely [16]. SLAng
is defined using an instance of the Meta-Object Facility model, and its violation seman-
tics is defined using Object Constraint Language constraints. To reduce the possibility
of disagreement over the amount of errors introduced by the mechanism for SLA vio-
lation detection, a contract checker is to be automatically generated by using the meta-
model of the language and associated constraints as inputs for a generative program-
ming tool [15]. However, this approach leads to performance problems. Thus, in order
to eliminate various drawbacks mentioned above, this paper presents an architecture for
SLA compliance auditing as described in the next section.

3 AURIC SLA Compliance Auditing Architecture

Based on the generic model and architecture for automated auditing [9], the AURIC ar-
chitecture for SLA compliance auditing has been implemented, which covers three
main functions: metering, accounting, and auditing, as depicted in Fig. 1.

Metering and Accounting: The quality level of a service being delivered must be me-
tered to allow for the auditing of its SLA compliance. Metered data are collected and
aggregated by accounting components to generate accounting data (termed Facts). Ac-
counting data are passed to the non-repudiation (NR) module to generate evidence of
service consumption. Generation and transfer of evidences require interactions between
NR modules from both sides. Accounting data and evidences are stored in the account-
ing database and the respective Fact server is notified, so that they are transferred to the

Fig. 1. AURIC SLA Compliance Auditing Architecture

SLA
Server

SLA AS

Provider
Acctg DB

Audit Task Planner

SLA Management
Unit

Service
Consuming

Entities

M Service
Provisioning
Entities

M

M

Accounting Unit

Consumer
Acctg DB

M

Service Consuming Domain Service Provisioning Domain

Service Delivery (Transport) Infrastructure

Internet

M
et

er
in

g
A

cc
o

u
n

ti
n

g

Auditing

Consumer
NR Module

Consumer
Accounting

Accounting Unit

Provider
NR Module

Provider
Accounting

Fact
Server

Fact
Server

Report
Handling
Unit

Audit
Reports

Audit
Report
Server

Audit
Manager

Other SLA
Information

Auditing Unit

Control
Module

SLA
Client

SLA Compliance
AuditorCompliance

Evaluator

Fact
Client

Audit
Report
Client

FT

AM

ST

RT

Acctg
DB
NR

M Metering and Logging

= Accounting
= Database
= Non-repudiation

Legend:

SLA
SLA AS

= Service Level Agreement
= SLA Audit Specification

Control
Data (SLA AS, Facts, or Reports)
User Data
Interface

AM
FT
RT
ST

= Audit Management
= Fact Transfer
= Report Transfer
= SLA AS Transfer

SLA
Server

SLA AS

Provider
Acctg DB

Audit Task Planner

SLA Management
Unit

Service
Consuming

Entities

M Service
Provisioning
Entities

M

M

Accounting Unit

Consumer
Acctg DB

M

Service Consuming Domain Service Provisioning Domain

Service Delivery (Transport) Infrastructure

Internet

M
et

er
in

g
A

cc
o

u
n

ti
n

g

Auditing

Consumer
NR Module

Consumer
Accounting

Accounting Unit

Provider
NR Module

Provider
Accounting

Fact
Server

Fact
Server

Report
Handling
Unit

Audit
Reports

Audit
Report
Server

Audit
Manager

Other SLA
Information

Auditing Unit

Control
Module

SLA
Client

SLA Compliance
AuditorCompliance

Evaluator

Fact
Client

Audit
Report
Client

FT

AM

ST

RT

SLA
Server

SLA AS

Provider
Acctg DB

Audit Task Planner

SLA Management
Unit

Service
Consuming

Entities

MM Service
Provisioning
Entities

MM

MM

Accounting Unit

Consumer
Acctg DB

MM

Service Consuming Domain Service Provisioning Domain

Service Delivery (Transport) Infrastructure

Internet

M
et

er
in

g
A

cc
o

u
n

ti
n

g

Auditing

Consumer
NR Module

Consumer
Accounting

Accounting Unit

Provider
NR Module

Provider
Accounting

Fact
Server

Fact
Server

Report
Handling
Unit

Audit
Reports

Audit
Report
Server

Audit
Manager

Other SLA
Information

Auditing Unit

Control
Module

SLA
Client

SLA Compliance
AuditorCompliance

Evaluator

Fact
Client

Audit
Report
Client

FT

AM

ST

RT

Acctg
DB
NR

M Metering and Logging

= Accounting
= Database
= Non-repudiation

Legend:

SLA
SLA AS

= Service Level Agreement
= SLA Audit Specification

Control
Data (SLA AS, Facts, or Reports)
User Data
Interface

AM
FT
RT
ST

= Audit Management
= Fact Transfer
= Report Transfer
= SLA AS Transfer

Acctg
DB
NR

MM Metering and Logging

= Accounting
= Database
= Non-repudiation

Legend:

SLA
SLA AS

= Service Level Agreement
= SLA Audit Specification

Control
Data (SLA AS, Facts, or Reports)
User Data
Interface

AM
FT
RT
ST

= Audit Management
= Fact Transfer
= Report Transfer
= SLA AS Transfer

Hasan and B. Stiller

SLA compliance auditor. If non-repudiation is not required, an NR module simply acts
as a proxy between the accounting component and the database or the Fact server. The
architecture and protocols for non-repudiation of service consumption supporting fair-
ness and identity privacy in a mobile environment are available [7], [11].
Auditing: The main interactions between AURIC’s components are for auditing. The
auditing unit provides an auditing service through the Audit Management (AM) inter-
face. The audit manager waits for audit requests and forwards each audit task received
to an auditor. It also accepts requests relating to an audit task being conducted, e.g., re-
quests on its status and requests to stop an audit task. An audit task planner represents
an entity which requests an auditing service from an auditing unit. An auditor retrieves
data to be processed from various sources: accounting units, SLA management units,
and Report handling units. Each of these components provides for a service to access
its data through a data server component, namely a Fact server, an SLA server, and an
Audit Report server respectively. Note that an Audit Report server also receives re-
quests to store Audit Reports. All SLOs committed are assumed to be specified in a lan-
guage, which allows for an automated auditing. The resulted specifications are called
SLA Audit Specifications (SLA AS). Other SLA information, e.g., user profile, service
profile, are not relevant at this stage, and thus, are not explicitly listed in the figure.

To communicate with various data servers, an auditor must contain the correspond-
ing clients. The communication happens via the respective interface: SLA AS Transfer
(ST), Fact Transfer (FT), or Report Transfer (RT) interface. The auditor must also con-
tain a compliance evaluator to examine accounting data and Audit Reports based on the
SLA AS obtained from the SLA client through the control module. The control module
configures and controls other components in carrying out their functions. The Fact cli-
ent retrieves accounting data and delivers them to the compliance evaluator. If needed,
the Audit Report client retrieves and delivers Audit Reports to the compliance evalua-
tor. Finally, this client sends Audit Reports obtained from the compliance evaluator to
a Report handling unit. Table 1 briefly discusses suitable protocols for those interfaces.

Security Considerations: Multi-domain support requires secure interactions and ac-
cess control. Since in an SLA all parties involved are known in advance, security asso-
ciations among those components can be established before interactions take place.

Table 1. Auditing Interfaces

Interface Description

AM A new protocol for this interface is needed, however, following two communication patterns
are sufficient to enable management interactions in normal and erroneous situations: Request-
Answer and Notification pattern. A request message is used to initiate or terminate an audit task
or to obtain its status information. An answer is sent as a response to a request message and it
may contain error description, if any. A notification can be sent at any time to inform the re-
spective audit task planner of completion of an audit task or any error occured during an audit.

ST A URL is used to locate a particular SLA AS. Existing protocols such as HTTPS and SSH File
Transfer Protocol are very well suited to be used to transfer SLA AS securely from an SLA
manager to the auditing unit.

FT For the purpose of transferring Facts, Diameter [2] protocol is very well suitable. The Base Ac-
counting message pair is sufficient. However, to allow for selection of Facts a new Diameter
command must be defined.

RT Diameter is also suitable here, since the types of interactions are the same as for FT interface.

AURIC: A Scalable and Highly Reusable SLA Compliance Auditing Framework

Having these security associations in place, authentication and authorization (AA) can
be accomplished. As an example, suppose that accounting unit and auditing unit are lo-
cated in different administrative domains. There are several ways of doing access con-
trol, e.g., based on Authentication, Authorization, and Accounting (AAA) architecture
[3]. In Fig. 2 (a), an AA server is contacted by the accounting unit to authenticate and
authorize the auditing unit before it is allowed to send data to the auditing unit.

Access control can also be provided without intervening auditing functionality as
shown in Fig. 2 (b). An auditor proxy is inserted between audit task planner and audit-
ing unit. The proxy analyses audit tasks and requests access to the relevant accounting
unit from the AA server of the respective domain. If there is a security association be-
tween the two domains, the access request is accepted and the firewall is configured to
allow data flows between the auditing unit and the accounting unit. On receipt of a pos-
itive response from the AA server, the proxy forwards the audit task to the auditing unit.
Finally, if necessary, a secure communication channel can be established to transfer
data confidentially, based on security associations between those domains.

4 Implementation

Based on the proposed architecture, a prototypical implementation of an SLA compli-
ance auditing framework in C++ is provided. The implementation aims at showing that
developing an auditor can be done basically through specialization of a set of base class-
es to implement the SLO specific application logic. Fig. 3 depicts the implementation
architecture of a specific SLA compliance auditor. The auditor is specific, since the ap-
plication logic to audit a specific SLO is implemented as an integral part of the auditor.
Thus, the auditor does not require an SLA client component to retrieve the SLA AS (cf.
Fig. 1). However, various application logic corresponding to different SLOs can be im-
plemented at compile time before one is chosen to be applied through a configuration
file at run time. Thus, the need of a parser.

Each Fact and Audit Report is represented as a list of attribute-value-pairs (AVPs).
Diameter [2] is chosen as the protocol for transferring Facts and Audit Reports due to
its extensibility and the capability of its accounting message to carry a list of AVPs.
Thus, the functionality of a Fact client and a Report client (cf. Fig. 1) is merged into a
single entity called a Fact and Report client, which consists of a Fact and Report transfer

Fig. 2. Examples of Secured Access to Accounting Data

Auditing
Unit

Accounting
Unit

Data

AA Server

Firewall

Auditor
Proxy

Audit Task
Planner

Auditing
Unit

Accounting
Unit

Data

AA Server Audit Task
Planner

(a) Tightly coupled with security mechanism (b) Loosely coupled with security mechanism

Control DataLegend: Domain boundary AA = Authentication Authorization

Auditing
Unit

Accounting
Unit

Data

AA Server

Firewall

Auditor
Proxy

Audit Task
Planner

Auditing
Unit

Accounting
Unit

Data

Accounting
Unit

Data

AA Server

Firewall

Auditor
Proxy

Audit Task
Planner

Auditing
Unit

Accounting
Unit

Data

AA Server Audit Task
Planner

Auditing
Unit

Accounting
Unit

Data

Accounting
Unit

Data

AA Server Audit Task
Planner

(a) Tightly coupled with security mechanism (b) Loosely coupled with security mechanism

Control DataLegend: Domain boundary AA = Authentication AuthorizationControlControl DataDataLegend: Domain boundaryDomain boundary AA = Authentication Authorization

Hasan and B. Stiller

module implemented on top of the Open Diameter framework. The description of the
Open Diameter implementation is given in [5]. Furthermore, to obtain a modular de-
sign, the author proposes to decompose an audit task into a sequence of subtasks:

1. Facts filtering: Only Facts which are relevant for the SLO being audited are to
be further processed. The filtered Facts are named related Facts.

2. Facts grouping: Related Facts must be grouped, since they result from different
service settings or observation periods. A group of Facts from a particular set-
ting or period is named a Fact-List. A Fact-List being built is called an open
Fact-List, whereas a Fact-List ready for auditing is called a complete Fact-List.

3. Property values calculation: Each performance parameter of a service is char-
acterized by a set of properties, whose values are calculated from the complete
Fact-List examined in order to determine the compliance with the SLO.

4. Compliance calculation: The degree of compliance with the SLO is calculated
by applying the SLO specific compliance formula to the property values.

5. Report AVPs calculation: The values for the report AVPs are calculated from
various sources: the Fact-List, property values, and the compliance value.

6. Report generation: As a result, a report is composed from the report AVPs.

Based on this decomposition, the compliance evaluator is developed, which con-
sists of two parts: a sequence of subtask modules and a set of application logic. While
the application logic implements SLO specific subtask functions, the subtask modules
implement functionality which is common to all auditing applications, namely, man-
agement of Facts, Fact-Lists, and property values, as well as transfer of data between
two subtask modules. The interface between a subtask module and its application logic
is defined by the AURIC Application Programming Interface (API).

Fig. 3. Implementation Architecture of an SLA Compliance Auditor

AURIC: A Scalable and Highly Reusable SLA Compliance Auditing Framework

4.1 AURIC API

The auditing framework API provides five base classes to implement application logic
(cf. Fig. 4). The parent class SubtaskFunc provides methods to parametrize the appli-
cation specific subtask function derived, which are invoked by the auditing framework
after the creation of the function based on the configuration file. Each base class offers
a method Process(), whose purpose is described in Table 2 and which should be im-
plemented by the developer of the auditing application.

4.2 Development of a General SLA Compliance Auditor

A general SLA compliance auditor is an auditor which can be used to audit any SLO
without the need to modify and recompile the application logic. To implement a general
SLA compliance auditor, following items must be available: an audit specification lan-
guage to define in detail how an SLO is to be audited and an implementation of those
five application specific classes as an interpreter of the audit specification language
used. An audit specification language, named Sapta, has been developed [7].

A Sapta specification for auditing an SLO consists of a set of function definition
subspecifications and a set of function invocation subspecifications. Each set of func-
tion definition subspecifications defines the application logic corresponding to those
five functions defined in Section 4.1 to audit a specific SLO, whereas each set of func-
tion invocation subspecifications defines which function definition subspecifications
are to be invoked and with which values for their parameters. The function invocation
subspecifications in Sapta is usable as a configuration file for auditing, which consists
of a ComplianceCalculation subspecification and a ReportComposition subspecifica-
tion. Furthermore, the following principle is followed in the design of Sapta: The man-
agement (storage and transport) of Facts and Fact-Lists should be transparent to a pro-

Table 2. The Purpose of the API’s Process() Methods.

Class The Purpose of Process() Method

Filter-
Function

To examine the accounting record encapsulated in the Fact object and return true or
false to denote whether the record is related to the SLO being audited.
A Fact object provides for methods to get information about the accounting record
encapsulated in the object, e.g., the value of a particular attribute.

Grouping-
Function

To examine the accounting record encapsulated in the Fact object and assign the
record to one or more Fact-Lists with the help of OpenFactLists object.
An OpenFactLists object provides for methods to manipulate open Fact-Lists
managed by the auditing framework, e.g., to add a Fact into an open Fact-List and to
close an open Fact-List.

Property-
Function

To calculate a property value from the list of related accounting records encapsulated
in the FactList object. A FactList object provides for methods to manipulate
and to access information about accounting records encapsulated in the object, e.g., the
number of records, the sum of the value of a particular field of the records.

Compliance-
Function

To calculate a compliance value from the list of property values encapsulated in the
PropertyValues object.
A PropertyValues object provides for methods to access property values.

Attribute-
Function

To calculate a report attribute value from the list of related accounting records (encap-
sulated in FactList object), the list of property values (encapsulated in the Prop-
ertyValues object), and the compliance value.

Hasan and B. Stiller

grammer of an audit specification. Accesses to and manipulations of Facts and Fact-
Lists are to be supported through specific language constructs. Thus, in addition to con-
ventional language constructs such as iteration and conditional branches, Sapta defines
constructs which allow for a convenient specification of audit subtasks, e.g., time
schedule to evaluate completeness of a Fact-List (cf. Chapter 4 in [7] for further details).

5 Evaluation

The AURIC framework is evaluated with respect to its key requirements defined in
Section 1. The scalability of the architecture is analyzed with respect to the number of
SLOs, while the load scalability of its implementation, in terms of processing delay and
memory requirements, is evaluated with respect to the number of Facts to be processed.

5.1 Scalability of Auditing Framework

Suppose that there are p parties in a multi-domain environment and two SLAs are ne-
gotiated between any two parties (in one SLA a party takes the role of a service provid-
er, in the other SLA the role of a customer). This full mesh relationship results in p*(p-
1) SLAs. However, from the point of view of each party only 2*(p-1) SLAs are relevant.
Unlike other approaches which use an auditor instance per SLA, AURIC defines an au-
ditor instance per SLO. The number of SLOs (nSLO) does not depend on the number of
SLAs (nSLA), but on the number of services (nsvc). Assuming that each service has a
maximum of c SLOs, then nSLO is bound by c*nsvc. Table 3 compares the scalability of
AURIC architecture with the other approaches, where nA is the number of auditor in-
stances required and nA,max is its upper bound. Although all approaches show a linear
scalability, AURIC does have an advantage over the other: the number of services and
SLOs grows much slower than the number of customers (SLAs).

Fig. 4. AURIC API

class SubtaskFunc {
public:
virtual ~SubtaskFunc() {}
virtual bool SetStringParam(
unsigned int paramNo,
const string& paramVal) {return false;}

virtual bool SetNumberParam(
unsigned int paramNo,
float paramVal) {return false;}

virtual bool SetBooleanParam(
unsigned int paramNo,
bool paramVal) {return false;}

};
class FilterFunction : public SubtaskFunc {
public:
virtual ~FilterFunction() {}
virtual bool Process(
const Fact& currentFact) = 0;

};
class GroupingFunction : public SubtaskFunc {
public:
virtual ~GroupingFunction() {}
virtual void Process(const Fact& currFact,
OpenFactLists& ofl) = 0;

};

class PropertyFunction : public SubtaskFunc {
public:
virtual ~PropertyFunction() {}
virtual prop_value_t* Process(
FactList& currentFactList) = 0;

};

class ComplianceFunction: public SubtaskFunc {
public:
virtual ~ComplianceFunction() {}
virtual float Process(
const PropertyValues& propertyValues) = 0;

};

class AttributeFunction : public SubtaskFunc {
public:
virtual ~AttributeFunction() {}
virtual void Process(string& attrValue,
FactList& currentFactList,
const PropertyValues& propertyValues,
float complianceValue) = 0;

};

AURIC: A Scalable and Highly Reusable SLA Compliance Auditing Framework

With respect to the load scalability of an auditor, the number of Facts to be audited
is crucial. There is a limit to the processing speed of an auditor, which determines the
amount of Facts allowed per time unit. The amount of Facts can increase due to, e.g.,
more sessions, which are generated. By scaling up the auditor, more Facts can be audit-
ed. However, this problem can also be solved by scaling out the auditor, since account-
ing data for the same SLO can be partitioned (e.g., based on CustomerID) and delivered
to several instances of auditors, all responsible for the same SLO.

Auditor Processing Time: To evaluate the processing time, three SLO specific audi-
tors are implemented based on the AURIC framework. Each auditor is responsible for
auditing one of the three SLOs: Service Breakdown SLO, Service Request SLO, and
Downlink Throughput SLO. The measurement of the processing time is done on a host
with a Pentium 4 CPU 1.80 GHz, 512 MB main memory. Facts to be processed are de-
livered at once in a single batch to the auditor, and experiments are carried out with dif-
ferent numbers of Facts. In each experiment the time needed by those Facts to pass pro-
cesses from the first to a certain subtask module is measured. Each experiment is run 10
times with the same configuration to obtain an average value of the processing time. For
example, results show that it takes in average 7.94 s (with a standard deviation of 0.16
s) to process 100,000 Facts delivered at once through the sequence of all subtask mod-
ules in auditing the service breakdown SLO.

Fig. 5 (a) depicts as an example the average processing time per Fact in each sub-
task module for auditing service breakdown SLO. Other use cases see similar results.
The time required by an auditor to accomplish its task is determined by the total number
of Facts to be processed, the number of related Facts after being filtered, the number of

Table 3. Scalability Comparison

Approach nA nA,max Order of nA

WSLA Framework, Cremona, TAPAS SLAng nSLA 2 * (p-1) O(n)

AURIC nSLO c * nsvc O(n)

(a) Average Processing Time per Fact
Fig. 5. Load Scalability

(b) Heap Memory Usage

Hasan and B. Stiller

Fact-Lists after being grouped, and the complexity of the SLO defined. In all use cases,
for a large number of Facts the processing time per Fact in each subtask module exhibits
a relative constant value as expected. Thus, AURIC shows a scalable implementation.
Auditor Heap Memory Usage: Memory requirements of the auditor are important, es-
pecially in relation to the number of Facts. Hence, for those three use cases the memory
usage is obtained from /proc files [4]. The virtual memory usage of the heap determines
the dominating aspect, thus, all other memory usage is omitted. If all Facts are delivered
at once to the auditor, a linear increase of heap memory usage with an increasing num-
ber of Facts is expected, since more memory will be needed to store more Facts. This
behavior is shown in Fig. 5 (b), showing that the AURIC implementation scales.

5.2 Reusability of Auditing Framework

High reusability is a very important property to be fulfilled by an auditing framework.
AURIC’s reusability is shown by demonstrating that most of the auditing components
do not need to be adapted or replaced, when developing a new auditing application
based on the framework. Assuming the example of the following application logic to
determine compliances of Facts with a certain SLO:

• If a Fact belongs to the SLO to be audited then ff1(Fact) is true.

• The value of gf1(Fact, OpenFactLists) identifies the FactList to which the
Fact belongs (e.g., all accounting records about (un)availability of service S with-
in a month are to be grouped in order to decide on SLO compliance). If a
FactList is complete, then gf2(FactList) is true.

• A FactList complies with the SLO if the value of
cf1(pf1(FactList), pf2(FactList)) is 1 (e.g., if service S may down at most
3 times which are longer than 5 minutes, and the total downtime may not exceed
30 minutes, then pf1() would count the number of breakdowns longer than 5
minutes and pf2() would calculate the total downtime).

• If a FactList does not comply with the SLO a report consisting of
pf1(FactList), pf2(FactList), af1(FactList), and
cf1(pf1(FactList), pf2(FactList)) is to be generated.

This logic is easily implemented into AURIC by writing those five application-spe-
cific functions. Fig. 6 depicts the simplified code snippets. Having defined these sub-
classes, the programming job is done and an executable auditor for this specific SLO
can be compiled. All other functionality is provided automatically by the framework,
e.g., interactions with Fact/Report servers to obtain Facts and to deliver Audit Reports,
management of Facts, Fact-Lists, property values, and execution of methods invoked
by audit subtasks, as well as transfer of data between audit subtasks.

Before invoking the newly developed auditor, a configuration file written in Sapta
needs to be created. The framework consults this file to determine, which subclasses are
to be used by each audit subtasks and to determine the composition of an Audit Report.
For the example above, the content of the configuration file is shown in Fig. 7. Further-
more, it is likely that several SLOs share the same application logic for specific func-
tions, e.g., a PropertyFunction to determine the average value of a certain field in the

AURIC: A Scalable and Highly Reusable SLA Compliance Auditing Framework

accounting records. This subclass needs to be coded once and can be used for various
SLOs through auditor configurations. Thus, the framework also supports reuse of ap-
plication logic without code duplication in addition to the reuse of its own components.

6 Summary and Conclusions

Existing approaches in SLA compliance auditing lack a general applicability and con-
centrate on formal specifications of SLAs rather than on the auditing of SLOs. These
pure specification approaches lead to the potential unawareness of system designers on
how manifold and complex an SLO for application services can be beyond a guarantee
of traditional QoS parameters. Thus, AURIC has been designed based on a generic
model and architecture. Since the architecture neither assumes specific services nor
specific SLOs, it is general and applicable to the full range of Internet service types.
Furthermore, AURIC architecture is shown to be linearly scalable with respect to the
number of SLOs due to the possibility to employ an auditor per SLO and to divide the
load. The framework implementation also shows a linear scalability of the processing
time and memory usage with respect to the number of Facts to be audited.

AURIC framework’s functionality is highly reusable, which is achieved through
the functional decomposition of an audit task into a sequence of subtasks to allow for a
modular specification, and through the separation of common audit functionality from
SLO-specific auditing logic, as well as a formal language Sapta to specify complex au-

Fig. 6. Deriving Application Specific Functions

class FF_SLO1 : public FilterFunction {
public:
bool Process(const Fact& currentFact)
{return ff1(currentFact);}

};
class GF_SLO1 : public GroupingFunction {
public:
void Process(const Fact& currentFact,

OpenFactLists& ofl) {
thisFactListId = gf1(currentFact, ofl);

ofl.Assign(thisFactListId, currentFact);
if (gf2(ofl.GetFactList(thisFactListId)))

{ofl.CloseFactList(thisFactListId);}
}

};
class PV_SLO1 : public prop_value_t {
// define variables to store a property value
};
class PF_1_SLO1 : public PropertyFunction {
public:
prop_value_t* Process(FactList& currFL) {
PV_SLO1* pv = new PV_SLO1;
// assign pf1(currFL) to variables in pv

return ((prop_value_t*)pv);
}

};

class PF_2_SLO1 : public PropertyFunction {
public:
prop_value_t* Process(FactList& currFL) {

PV_SLO1* pv = new PV_SLO1;
// assign pf2(currFL) to variables in pv

return ((prop_value_t*)pv);
}

};
class CF_SLO1 : public ComplianceFunction {
public:
float Process(const PropertyValues& pVal) {

PV_SLO1& pv1 = (PV_SLO1&)
pVal.GetPropertyValue(1);

PV_SLO1& pv2 = (PV_SLO1&)
pVal.GetPropertyValue(2);

return (cf1(pv1, pv2));

}
};
class AF_SLO1 : public AttributeFunction {
public:
void Process(string& attrValue,

FactList& currentFactList,
const PropertyValues& propertyValues,
float complianceValue) {

attrValue = af1(currentFactList);

}
};

Fig. 7. Example Configuration in Sapta

ComplianceCalculation CC_SLO1 {
FF_SLO1
>> GF_SLO1
>> PF_1_SLO1, PF_2_SLO1
>> CF_SLO1

}

ReportComposition RC_SLO1 {
[Field1 eq GF_SLO1 >> AF_SLO1],
[Field2 eq PF_1_SLO1],
[Field3 eq PF_2_SLO1],
[Field4 eq CF_SLO1]

}

Hasan and B. Stiller

dit tasks in full detail. The framework implements the required common audit function-
ality and offers an API to implement the application logic for auditing a specific SLO.
Using AURIC framework, a developer does not need to be concerned about the control
of data flow, management of audit data, and data transport. Therefore, the efforts to de-
velop an auditing application based on AURIC framework are largely reduced.

Acknowledgments
The work has been performed partially in the framework of the EU IST Project Akogri-
mo (IST-2004-004293), the EU IST Project Daidalos II (IST-2005-026943), and the
EU IST Network of Excellence EMANICS (IST-NoE-026854).

References
1. Agilent Technologies: Measuring Web Quality of Service with the New HTTP Test in Fire-

Hunter 4.0; White Paper, Agilent Technologies Inc., November 2002.
2. P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J. Arkko: Diameter Base Protocol; IETF,

RFC 3588, September 2003.
3. C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, D. Spence: Generic AAA Architecture;

IETF, RFC 2903, August 2000.
4. S. Duddi: Demystifying Footprint; mozilla.org, March 2002.
5. V. I. Fajardo: Open Diameter Software Architecture; 2004.
6. G-NE GmbH: Konzeptionsansatz: Qualitätssicherung in IT-Outsourcing-Projekten mittels

einer unabhängigen Prüfinstanz; Confidential Document, 2002.
7. Hasan: A Generic Auditing Framework for Compliance Verification of Internet Service Level

Agreements; ETH Zürich, Switzerland, PhD Thesis, Shaker Verlag GmbH, Aachen, 2007.
8. Hasan (Editor): A4C Framework Design Specification; Deliverable D341, Sixth European

Union Framework Programme, IST Project “Daidalos”, September 2004.
9. Hasan, B. Stiller: A Generic Model and Architecture for Automated Auditing; 16th IFIP/

IEEE International Workshop on Distributed Systems: Operations and Management
(DSOM’05), Barcelona, Spain, October 24-26, 2005.

10. Hasan, B. Stiller: Auditing Architecture for SLA Violation Detection in QoS-Supporting Mo-
bile Internet; IST Mobile and Wireless Comm. Summit 2003, Aveiro, Portugal, June 2003.

11. Hasan, B. Stiller: Non-repudiation of Consumption of Mobile Internet Services with Privacy
Support; IEEE International Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob’05), Montreal, Canada, 2005.

12. Itellix Software: Wisiba; Datasheet, 2003.
13. A. Keller, H. Ludwig: The WSLA Framework: Specifying and Monitoring Service Level

Agreements for Web Services; Journal of Network and Systems Management, Vol. 11,
Issue 1, pp. 57-81, March 2003.

14. H. Ludwig, A. Dan, R. Kearney: Cremona: An Architecture and Library for Creation and
Monitoring of WS-Agreements; International Conference on Service Oriented Computing,
New York, USA, November 2004.

15. J. Skene, W. Emmerich: Generating a Contract Checker for an SLA Language; EDOC 2004
Workshop on Contract Architectures and Languages, Monterey, California, 2004.

16. J. Skene, D. Davide Lamanna, W. Emmerich: Precise Service Level Agreements; 26th Inter-
national Conference on Software Engineering, Edinburgh, UK, May 2004.

17. Telemanagement Forum: SLA Management Handbook; V1.5. GB917, 2001.
18. D. C. Verma: Service Level Agreements on IP Networks; Proceedings of the IEEE, Vol. 92,

Issue 9, September 2004.

