
Efficient Web Services Event Reporting and

Notifications by Task Delegation

Aimilios Chourmouziadis, George Pavlou

Centre for Communication Systems Research, School of Electronics

and Physical Sciences, University of Surrey,

GU27XH Guildford, United Kingdom,

{A.Chourmouziadis, G.Pavlou}@surrey.ac.uk

http://www.ee.surrey.ac.uk/CCSR/

Abstract. Web Services are an XML technology recently viewed as capable of being

used for network management. A key aspect of WS in this domain is event reporting.

WS-based research in this area has produced a collection of notification specifications,

which consider even aspects such as filtering to reduce machine and network resource

consumption. Still though, additional aspects need to be addressed if WS event

reporting is to be used efficiently for network management. This paper borrows an idea

in network management that of policy based task delegation and applies it in the context

of WS-based management by using the WS-Notification standard messages, to increase

event reporting efficiency. More specifically, we are adding functionality to the entity

that produces events making it capable of performing a set of tasks apart from simple

ones such as collecting and reporting notification data. This functionality allows an

entity, such as a manager, capable of delegating tasks of various complexities to an

event reporting entity where they can be performed dynamically. As a proof of concept

that the approach is feasible and increases efficiency we analyze a complex event

reporting scenario where task delegation is used. We compare this approach for

performance to a plain WS-based event system and also to simple SNMP traps.

1 Introduction

The growing use of the eXtensible Markup Language (XML) for data representation,

coupled with the development of many XML standards and technologies such as Web

Services (WS), has spurred research in a variety of fields other than the ones these

technologies were originally designed for. One such field is network management.

One significant aspect of network management is event reporting. To use WS for

event reporting two problems have to be addressed (a) asynchronous communication

(push) (b) efficiency. The former is required since the time of the production of an

event is not known and thus synchronous (pull) style communication is not possible.

Efficiency is also an important aspect since for example it does not make sense to

produce events that nobody is interested in receiving, or to produce events that

someone is not interested to receive as this will make unnecessary use of resources.

In order to provide asynchronous communication between WSs, a callback

mechanism is required. A Uniform Resource Locator (URL) is such a mechanism but

is inadequate since (a) it only allows a single protocol to be defined to reach a service,

(b) it can not describe all transport mechanism types, and, (c) it doesn’t necessarily

convey interface information. The proprietary WS-Addressing [1] specification

solved this problem by defining two mechanisms that can be used as an efficient

callback mechanism: (a) endpoint references, (b) message-information headers [2].

Despite its drawbacks [3] this specification has opened the way for three specification

documents to be defined: WS-Events [4], WS-Eventing [5], and WS-notification [6].

In the HP WS-Events specification [4], the consumer of an event can (a) discover

event-types an event producer supports, (b) subscribe to an event, (d) perform data

filtering, (e) define an expiration date for receiving events, and, (f) provide a callback

URL for an event. Filtering mechanisms are not specified in [4] but the means for

unwanted events not to be produced or consumed are provided. In WS-Eventing [5]

things become clearer; this specification supports the XML Path (XPath) for event

filtering and WS-Addressing to provide a better callback mechanism. In WS-

Notification [6] more features are added. [6] allows (a) consumers to receive content

in an application-specific or raw format (b) define several types of expressions for

filtering (XPath etc), (c) define event-types a consumer needs to receive with

expressions called topics, (d) provide support for notification brokering.

All the above standards are on the right track for providing efficient and reliable

event reporting communication. Still WS notifications can be used more efficiently

for network management. Consider the management scenario where a manager has to

be notified when an interface of a Quality of Service (QoS) enabled network fails.

Upon receiving this event, the manager needs to determine the traffic contracts

affected and requests for more data. In cases such as the previous, event reporting

triggers actions at the event receiver which in turn requests for more system data or

performs other changes i.e. configuration. Finding a way to perform a set of actions,

normally performed by the entity receiving an event, in order for the tasks to be

performed by the entity producing them, would make the notification process more

efficient. The process where an entity is given the task to perform a set of actions for

another entity is called task delegation. Task delegation can be used for WS-event

reporting as long as the entity with the responsibility to perform a set of tasks is not a

very resource-constrained system. This is more a reality today [7] (dumb agent myth).

Using WS-based event reporting with task delegation can be important for two

reasons. The first one applies to data retrieval. In many event-reporting scenarios

event data represents a small amount of the data carried over the network in

comparison to the HTTP and the Simple Object Access Protocol (SOAP) header data.

The use of WS notifications is not justified in these cases since WS perform badly

when retrieving small amounts of data [8], [9]. As such, adding additional data,

normally retrieved after the receipt of an event, in the initial report in order to reduce

latency and traffic overhead can be beneficial. Secondly by task delegation a higher

degree of autonomy can be achieved as the manager’s supervision is limited.

A prominent way to perform task delegation for WS-based event reporting is

through policies and the WS-Notification messages support their use. Delegating

tasks though policies to improve the communication between entities in the event

reporting process is not a new idea. Applying it to WSs to check if it is feasible and if

potential benefits can be gained from it, is something that needs to be explored. As

such a WS-based event service has been built supporting task delegation with the use

of WS-Notification messages and policies. To prove the viability and the gains of the

approach, an event reporting scenario is analyzed based on a QoS enabled network.

We analyze the performance of event reporting for three systems: (a) A WS-based

notification system where only event data are reported and then a set of actions

triggered by the event are performed to collect more data (b) A WS-based event

system where event data and data collected from subsequent tasks are gathered and

sent by the entity that produces events in the initial report (c) An SNMP trap system.

The remainder of this paper is structured as follows. In section 2, details of the

event reporting scenario based on a QoS-enabled Traffic Engineered (TE) on which

we will comparing the three systems are provided. Section 3 analyzes the WS-

notification standard messages used for event reporting in our scenario and it is

shown how to use these messages to configure our event service to perform a set of

tasks of varying complexity. Section 4 presents the WS-notification compliant

messages that need to be sent for configuring an event service for handling event

tasks, and the interactions between the different entities of the event reporting

process. Section 5 presents a perfornance evalution between the two WS-based

systems and a system based on SNMP traps. Section 6 presents our conclusions.

2 QoS Event Reporting Scenario

2.1 QoS management system

Providing QoS in a single or across different domains is a widely researched topic.

QoS is currently provided on the basis of Service Level Agreements (SLAs). An SLA

is a set of terms that clients and providers of services have to abide by when they are

accessing or providing a service respectively. The technical part of an SLA is a

Service Level Specification (SLS) and it represents the means to define QoS-based IP

services [10]. IP Differentiated Services [11] (DiffServ) is considered the most

prominent framework for providing QoS-based services. All QoS-based services are

quantified by means of performance parameters such as throughput, delay, loss and

delay variation. One of the means to support the DiffServ architecture is over Multi-

Protocol Label Switching (MPLS) traffic engineered networks.

Monitoring and event reporting of the network status and its resources is an

essential process in order to ensure a QoS network’s operation. To ensure the latter

the use of Traffic Engineering (TE) is required. TE requires the collection of various

data in order to ensure the network’s smooth operation. This is achieved by a suitable

monitoring and event reporting system which is scalable in terms of network size,

customers’ size etc. This constitutes a significant challenge in QoS-networks.

Previous examples of research in monitoring and event reporting has been

performed in the TEQUILA [12], and the ENTHRONE frameworks [13]. These

systems used in these frameworks are mostly based on the Manager-Agent paradigm.

This is the paradigm we also adopted to collect data either with WS or SNMP for

event reporting (Fig. 1). This system performs three kinds of operations: active,

passive measurements and event reporting. Active measurements are performed by

injecting synthetic network traffic. Passive measurements are conducted using

Management Information Bases (MIBs) from SNMP and involve measuring

throughput, load and packet loss at the traffic class (Per Hop Behavior-PHB), traffic

contract (Service Level Specification-SLS) and the path (Label Switched Path - LSP)

level. In Fig. 1, the manager is responsible for configuring software on the agents

attached to the routers it needs to retrieve data from so as to perform active or passive

Fig. 1. Management system for monitoring and

event reporting (manager-agent paradigm)
Fig. 2. WS Notification Subscription

message [6]

<wsnt:Subscribe>

 <wsnt:ConsumerReference>

http://131.227.88.70:8080/

notifications /notifications_

Consumer

 </wsnt: ConsumerReference>

 <wsnt:TopicExpression dialect=

 “http://131.227.88.70/eventTopics”>

 tns:notify-down

 </wsnt:TopicExpression>

 <wsnt:UseNotify> True/False

 </wsnt:UseNotify>?

 <wsnt:Precondition>

 wsrp:QueryExpression

 </wsnt:Precondition>?

 <wsnt:Selector>

 wsrp:QueryExpression

 </wsnt:Selector>?

 <wsnt:SubscriptionPolicy>

 Event-Condition-Action

 Policy-like XML document

 </wsnt:SubscriptionPolicy>?

 <wsnt:InitialTerminationTime>

 2007-03-11T13:00:00

 </wsnt:InitialTerminationTime>?

</wsnt: Subscribe>

measurements or event reporting. The agent operates either on a dedicated PC

attached to a router or, if future routers support such functionality, on the router itself.

To perform measurements for our scenario at the PHB, LSP or SLS level we

selected two of the SNMP MPLS MIBs to represent management data. These are the

Label Switching Router (LSR) MIB [14] and the Forwarding Equivalence Class to

Next Hop Label Forwarding Entry (FEC-To-NHLFE) MIB [15]. The former is used

to perform PHB and LSP measurements and the latter is used for SLS measurements.

For WS, equivalent MIBs had to be built and be deployed as WS interfaces.

2.2 Management Information Retrieval for QoS WS-based event reporting

Retrieving management data from a managed system in our scenario requires

facilities to be able to pick data in a bulk or selective way. This is achieved by the

parser presented in [16]. Selective and bulk retrieval is achieved by dispatching

appropriate queries. The reason behind building our own parser is to keep resource

usage, latency and traffic overhead low. Thus selective retrieval at SOAP level is not

an option since more data than required would have to be retrieved, encoded and

selected. At the same time XPath can be a heavy-weight tool for management tasks

especially if large documents need to be searched or loaded in memory. In addition

processing raw data is less intesive than processing a verbose XML document.

We use our parser in our event reporting scenario to collect management data.

2.3 QoS Event reporting Scenario

We consider an event reporting scenario in which the manager is notified that an

MPLS interface failed in the ingress router. Upon receiving this event the manager

needs to collect more data so as to determine the LSPs and SLSs that are affected by

the failing interface so as to take appropriate measures. To apply this event reporting

scenario, we have built and deployed a WS event service (Fig. 1) at the agent side.

The event service is configured to perform a number of management tasks normally

performed after the receipt of a notification, dynamically before dispatching the event

report to the manager. By having the manager delegate tasks to other management

entities its burden is minimized and the event process becomes more efficient. To

demonstrate the benefits of such an approach, two WS-based event reporting

approaches are considered which are analyzed in section 5. For both approaches WS-

Notification compliant messages are used to configure the event source for

notifications and for event reporting. A comparison to SNMP traps is also provided.

3 WS-Notification messaging for event reporting

The WS-Notification family of specifications defines a system architecture to support

WS-based event reporting. In this architecture a publisher is an entity sending

notifications about a range of events called topics to other entities called consumers.

Brokers are defined as intermediate entities between producers and consumers

controlling the flow of events with filtering. For a consumer to receive events it must

register with the broker or the producer by selecting the appropriate topics.

WS-Notification defines the features and messages exchanged between entities

participating in the event reporting process. In this paper we are only interested in (a)

the request message a consumer sends to a producer to register for an event topic, (b)

the response to the request message, and, (c) the event messages the producer sends to

the consumer. We do not tackle aspects such as brokering, topic filtering, etc, as these

are out of the scope of our scenario. We demonstrate the use of WS-Notification

messages to (a) configure the event service we have built for event reporting and task

manipulation, (b) report events and, (c) investigate potential benefits of adding

varying complexity tasks to the event producer. As such, in the next two sections we

only address WS subscription (request and response) and notification messages.

3.1 The WS Notification Subscription message

The WS-Notification specification defines that in order for an event consumer to

receive a notification from a producer, it has to send a subscription message. The

format of such message is given in Fig. 2. Here, the consumer reference tag is a URL

providing a call-back mechanism for event delivery. The topic expression tag defines

the event topics a consumer can register to receive. Our event service implementation

supports four general topics, (a-b) a threshold is exceeded going upwards-downwards

(notify-high or notify-low), (c-d) the state of a unit has changed to active-inactive

(notify-up or notify-down).The UseNotify tag is used by a consumer to select whether

events will be formatted in an application specific way or in a WS-Notification Notify

message. In addition, the selector and precondition expressions are used for data

filtering. To define the period for which an event consumer registers for events, the

termination time of the subscription has to be specified (InitialTerminationTime).

In the subscription message, the subscription policy element is a component used

to specify application-specific policy requirements/assertions. The semantics on how

an event producer will react to these assertions depends on the application-specific

grammar used. A non -normative way to define policies is the WS-Policy standard.

The greater vision of IBM for using the policy element is to be able to define concrete

policies that allow a service to describe its approaches for subscription management

or to specify directives that the event source must follow.

The response to a subscription may contain lots of data. Primarily though it

contains the address of a WS defining messages that can be exchanged to manipulate

subscription resources and fault information for subscription failure.

The Notify message contains the following: (a) a topic header that describes the

event topic an event consumer subscribed initially to receive (b) a producer reference

element that describes the endpoint of the service that produced the event, and (c)

message elements where the actual payload of a notification is inserted. Our event

service supports both Notify and application specific messages.

3.2 Policy-like configuration of Events for network management

Apart from the IBM specifics on policies, the vision of policies for network and

service management is described in [17]. According to [17] policies are an aspect of

information influencing the behavior of objects in a system. All policies can be

expressed as a hierarchy where a high level policy goal can be refined into multiple

levels of lower level policies. Effectively policies are rules used as the means to

successfully achieve a goal. Furthermore, policies can be broadly classified into (a)

authorization policies that define what is permitted, or not, to be performed in a

system, and, (b) obligation policies that define what must be performed, or not, in

order to guide the decision making process of a system. Both types of policies can be

defined using an event-condition-action model of definition. Thus it is evident that

policies can be reduced to set of rules, actions, utility functions that can be used to (a)

ensure compliance, (b) define behavior, and, (c) achieve adaptability of a system.

In the network management world events are viewed as a state that usually

demands an action to be taken. An event can be comprised of information about (a)

the event itself, (b) the condition that produces it, and, (c) the type of actions to be

performed after event generation. All this information is consistent with the network

management view of policies (event-condition-action). As such, it is possible to use

WS-Policy or any domain specific grammar to configure an event process as a policy.

Thus the subscription policy element and any domain specific grammar can be used

so as to pass to an event service (event producer), data in order to configure the event

information, the event production condition and any event tasks-actions as policies.

In our event service implementation we use the subscription policy element to send

to the event producer an XML document that consists of three sections: (a) general

event data, (b) the conditions that trigger event-production, and, (c) subsequent

actions. This document configures events as policies and its grammar is validated

through an XML schema. Details on this are given in section 4. The grammar

configuring events as policies constitutes by no means a formal policy. Still we can

use it within the WS-Notification subscription policy element so as to be able to

configure an event source to perform a set of varying complexity tasks. This allows

us to delegate a set of tasks that the manager would otherwise perform to other

entities (event service) so that WS event reporting is made more efficient.

4 Event Reporting Scenario Operations

4.1 Event reporting process description

To configure the event service developed for the QoS event reporting scenario that

we presented, the event consumer has to send a subscription message to the event

producer. In reference to Fig. 1, the consumer is the manager and the producer is the

agent. In Fig. 3 these roles are assumed by XML SOAP messaging services and WSs.

An overview of the operations that need to be performed for a receiver of events to

actually start receiving notifications is given in Fig. 3. Here the subscription process

starts by validating the event condition action policy-like document to avoid

subscription request failure. Then the request is compressed and sent to the agent. At

the agent the subscription request is decompressed, the policy-like document is

extracted and split into its event-condition-action sub-parts. After SAX parser

validation of each message part, the XML policy-like document is also searched for

Fig. 3. Components interaction for event reporting

<ns:EventSpec name="" jobid="" date="" time="">

 <ns:OIDsToMonitor>…</ns:OIDsToMonitor> {1}

 <ns:EventTask actionid="">

 <ns:ServiceEndpoint>...

 </ns:ServiceEndpoint> {1}

 <ns:Method namespace="">...</ns:Method> {1}

 <ns:Use>...</ns:Use> {1)

 <ns:Style>...</ns:Style>{1}

 <ns:MethodParams>

 <ns:Param name="" pmid="" namespace=""

 type="">

 <ns:Param> +

 </ns:MethodParams> ?

 <ns:Result resid="" type="" namespace=""

 qname="" name="">

 <ns:ResultParam pmid="" type="">...

 </ns:ResultParam>*

 <ns:ResultFormat forid="" dependsON="">

 <ns:FormatValue>...</ns:FormatValue>?

 <ns:FormatPattern>...</ns:FormatPattern> ?

 </ns:ResultFormat> ?

 </ns:Result> *

 </ns:EventTask> {1}

</ns:EventSpec> +

any discrepancies not captured by XML validation. This is necessary since inter-

dependencies between different elements of the policy-like document exist and cannot

be expressed by an XML schema. If errors are found the manager’s SOAP messaging

service is notified. On the opposite case, the agent’s messaging service adds an event

job to the event service. An event job can still be rejected for various reasons (job

exists etc). Successful or unsuccessful addition of a job is reported to the manager.

Apart from adding a job, the event service supports features such as (a) resume, (b)

suspend, (c) remove, and, (d) update.

Upon successful addition of a job, the event sub-part is processed, and event data are

collected using the Java reflection API to dynamically invoke the appropriate WSs

exposing management data. Selective data retrieval is performed using the parser

developed in [16]. Because we use our parser to filter data when collecting it, the

selector and precondition expressions offered by the WS-Notification standard for

filtering are not used. Following the data collection phase, the condition part of the

policy-like document is processed to determine whether an event has been produced.

If no event is produced the process is repeated according to the granularity of

operations. If an event is produced, the action sub-parts of the policy-like document

are executed. The actions in our event reporting scenario involve tasks to gather extra

data to determine the LSPs and SLSs affected by a failing interface. Calling the

appropriate WSs to gather these data is performed dynamically and any queries to

retrieve management data are formed on the fly using recursive methods since these

queries can contain data not known in advance. When the event data and data from

the configured tasks are collected, an event report is sent to the manager which

confirms its receipt. The event report data is stored in HTML format.

4.2 Policy-like event configuration document

The policy-like document consists

of an event, a condition and an

action part. The event part (Fig. 4)

consists of sections which define (a)

which parameter(s) need(s) to be

monitored (OIDstoMonitor), (b)

how to retrieve the data to be

monitored (EvenTask and its sub-

elements), and, (c) how to handle

and process the retrieved data

(Result and its sub-elements). The

condition part of the document (Fig.

5) contains information to

determine whether an event has

been produced or not, such as (a)

the type of monitor used (mean

monitor, variance monitor, etc), (b)

the measurement granularity, (c) the

smoothing window size, and, (d) the

clearing value that re-enables event

Fig. 4. Event part of the policy like document

<ns:ActionOnEvent jobrefid=""actionid="">

 <ns:ServiceEndpoint>...

 </ns:ServiceEndpoint> {1}

 <ns:Method namespace="">...

 </ns:Method> {1}

 <ns:Use>...</ns:Use> {1)

 <ns:Style>...</ns:Style>{1}

 <ns:MethodParams>

 <ns:Param name="" pmid=""namespace=""

 type="">

 <ns:Param> +

 </ns:MethodParams> ?

 <ns:Result resid="" type="" namespace=""

 qname="" name="">

 <ns:ResultParam pmid=""type="">...

 </ns:ResultParam>*

 <ns:ResultFormat forid="" dependsON="">

 <ns:FormatValue>...</ns:FormatValue>?

 <ns:FormatPattern>...</ns:FormatPattern> ?

 </ns:ResultFormat> ?

 </ns:Result> *

</ns:ActionOnEvent>

<ns:EventCondition jobrefid="">

<ns:MonitoringObjectType monid="">

 <ns:granularity>...</ns:granularity> {1}

 <ns:window>...</ns:window>{1}

 </MonitoringObjectType> {1}

 <ns:Threshold>

 <ns:tType>...</ns:tType> {1}

 <ns:value>...</ns:value> {1}

 <ns:clearvalue> </ns:clearvalue> ?

 </ns:Threshold> {1}

</ns:EventCondition> +

Fig.5. Condition part of the policy

like document

reporting if it has been disabled. The

action part(s) of the document contains

data on how to call the appropriate WS

to perform a task and also on how to

process the result of any WS calls (Fig.

6).

5 Scenario Measurements

5.1 Evaluation Setup

For the evaluation aspects of our scenario, a big number of LSPs need to be setup for

some measurements. As this is difficult in a small test-bed, we resorted to other

means for evaluating the SNMP performance overhead. For traffic overhead, the

average size of each message is calculated by looking into it and analyzing the size of

its subparts. For latency a similar number and type of objects as in the MPLS MIBs

are instantiated and the Advent-Net SNMP v3.3 is used to access a Net-SNMP agent.

For WS, the software used is Apache Axis 1.3, JAXP 1.3, SAAJ 1.3 and JAXM 1.1.

Java’s zip facilities are used to compress/decompress messages and Java’s reflection

API was used to make WS dynamic calls. All MIBs are deployed with literal

encoding so that the verboseness of XML tags is reduced and traffic overhead is

minimized. The manager and agent were deployed on a 1000MHz/256MB RAM and

466MHz/192MB RAM machine respectively running Red-hat Linux 7.3, thus

simulating a lower end system for the agent.

5.2 Measurements

The measurements presented in this section demonstrate the potential benefits of data

filtering and task delegation for event reporting. Two WS-based approaches are

examined. In the first, the manager is notified about a failing interface, and then

queries the agent to determine the affected LSPs and SLSs. In the second approach

the agent is configured by the manager to perform dynamically the set of tasks the

Fig. 6. Action part of the policy like

document

latter would otherwise perform, and sends back all the collected data. The second

approach is more complex since it requires the event service to call the appropriate

WSs to determine the affected LSPs and SLSs at run time. This also requires forming

parser queries to retrieve management data on the fly, since these queries may also

contain data that are not known in advance.Through task delegation and filtering we

show that the second approach is plausible and results in traffic and latency benefits.

SNMP’s, traffic and latency performance was also measured for comparison.

For SNMP traffic overhead measurements we rely on previous research performed

in [8] and [18]. In these papers the traffic overhead for SNMP operations is given by:

)21254(*1 21, LLnL getNextget +++≈ (1)

)6()6(*154 2111 LLnLLgetBulk +++++≈ (2)

)3(*49 2111 LLnLtrapSNMPv +++= (3)

)3(*75 21132 LLnLLtrapSNMPv ++++= (4)

In equations (1), (2), (3) and (4) L1 is the size of the Object Identifier (OID) of a

variable, L2 is the variable value size, n1 is the number of OIDs to retrieve and L3 is

the trap OID. Taking into account the size (Table 1) of the data that needs to be

reported the traffic overhead for SNMP can be computed.

Table 1. Information size in ASN.1 format inside an SNMP message

For the measurements, the ingress router is configured to have 900 and 30 LSPs to

simulate big and small networks respectively, each of which is assigned to a different

customer. The reason behind assigning a different customer to each LSP is to keep

things simple with respect to validity checks to the resulting event data. A further

assumption is the number of LSPs and SLSs affected by the failing interface, which is

considered to be six. Although it is not easy to determine a plausible number of LSPs

assigned to each interface, six is a reasonable number for small networks. This

number may not be realistic for large networks, but the aim is to keep the volume of

data to be retrieved relatively low. This way we can show that WS can benefit from

sophisticated retrieval mechanisms and exhibit superior performance to SNMP even if

a small volume of data is retrieved (not shown in [8] and [9]). Additionally, keeping

the same number of affected SLSs and LSPs for both small and large networks we can

keep the traffic latency comparison between them on the same terms.

For the manager or agent to determine, for each WS approach the affected LSPs

and SLSs, three queries must be sent. These queries: (a) determine the interface

indices of the LSPs associated with this interface, (b) use the previous step indices to

determine the affected LSPs, and, (c) determine the affected SLSs using the LSP IDs

from the previous step. Parts of the three queries are the following:

]} ace[mentInterfmplsOutSeg], ace[mentInterf{mplsInSeg

(5)

]} Id[{mplsXCLsp

} OR mentIndexmplsOutSegxmentXCIndemplsOutSeg

 OR entIndexmplsInSegmxmentXCInde{mplsInSeg

1

1

…=

=

(6)

]} cp[{mplsFTNDs

} ORex SegmentInd.mplsXCOutgmentIndexmplsXCInSe

dex.d.mplsXCInmplsXCLspIrtionPointe{mplsFTNAc

…

=

(7)

The measurements for our scenario are presented in Figures 7, 8, 9 and 10. In Fig.

7 configuration latency for the WS-based event services is quite significant since

(de)compression of the subscription request, and XML validation takes place for both

the first (S) and the second WS-based approach (C) (WS(C)/ WS(S) config).

Configuring the event service though is not a time critical task and happens once for a

specific event-job. Therefore, we do not consider configuration latency in the event

reporting overall latency of the WS approaches since it is not a time critical task.

W
S

(S
)

e
v

e
n

t
re

p
o

rt
W

S
(S

)
q

u
e
ry

1
W

S
(S

)
q

u
e
ry

2
W

S
(S

)
q

u
e
ry

3
W

S
(S

)
to

ta
l

W
S

(C
)

to
ta

l

S
N

M
P

 e
v

e
n

t
re

p
o

rt
S

N
M

P
 G

e
tB

u
lk

 q
u

e
ry

1
S

N
M

P
 G

e
tB

u
lk

 q
u

e
ry

2
S

N
M

P
 G

e
tB

u
lk

 q
u

e
ry

3
S

N
M

P
 t

o
ta

l
W

S
(S

)
c
o

n
fi

g
W

S
(C

)
c
o

n
fi

g

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1Measurement Type

Latency

(ms)

W
S

(S
)

e
v

e
n

t
re

p
o

rt
W

S
(S

)
q

u
e
ry

1
W

S
(S

)
q

u
e
ry

2
W

S
(S

)
q

u
e
ry

3
W

S
(S

)
to

ta
l

W
S

(C
)

to
ta

l
S

N
M

P
v

1
 t

ra
p

S
N

M
P

v
2

 t
ra

p
S

N
M

P
 G

e
tB

u
lk

 q
u

e
ry

1
S

N
M

P
 G

e
tB

u
lk

 q
u

e
ry

2
S

N
M

P
 G

e
tB

u
lk

 q
u

e
ry

3
S

N
M

P
v

1
 t

o
ta

l
S

N
M

P
 v

2
 t

o
ta

l

0

20

40

60

80

100

120

140

160

180

1Measurement Type

L
a
te

n
c
y
(m

s
)

 Fig.7.Latency measurements for SNMP and Fig. 8Latency measurements for SNMP and

 for the two WS based approaches (900 LSPs) for the two WS based approaches (30 LSPs)

Comparing the two WS-based approaches in terms of latency for small networks, it

can be seen that the difference is very small (Fig 8). This occurs because the latency

benefit from performing local WS calls for the WS approach with task delegation is

counter-balanced from the latency incurred from performing dynamic WS calls and

building data queries on the fly. For big networks though, latency decreases by around

ifIndex}valueifIndex,{value ==

75 ms if task delegation is used (Fig. 7). Comparing the WS-based approaches with

SNMP, latency is about the same in the case of small networks (Fig. 8). For big

networks SNMP suffers from a substantial increase in latency (Fig. 7). This occurs for

two reasons, the first one being that SNMP does not offer facilities for task delegation

so that data retrieval operations can be performed locally. The second reason is that

SNMP does not offer filtering capabilities. Therefore determining the LSPs and SLSs

affected from the failing interface requires retrieving more data than required from the

relevant tables in the MPLS MIBs so as to be processed by the manager.

W
S

(S
)

c
o

n
fi

g
W

S
(S

)
e

v
e
n

t
re

p
o

rt
W

S
(S

)
q

u
e

ry
1

W
S

(S
)

q
u

e
ry

2
W

S
(S

)
q

u
e

ry
3

W
S

(S
)

to
ta

l
W

S
(C

)
c
o

n
fi

g
W

S
(C

)
e

v
e
n

t
re

p
o

rt
W

S
(C

)
to

ta
l

S
N

M
P

v
1

 t
ra

p
S

N
M

P
v

2
 t

ra
p

S
N

M
P

 G
e
tB

u
lk

 q
u

e
ry

1

S
N

M
P

 G
e
tB

u
lk

 q
u

e
ry

3
S

N
M

P
v

1
 t

o
ta

l

S
N

M
P

 G
et

B
u

lk
 q

u
er

y
2

S
N

M
P

v
2

 t
o

ta
l

0

20000

40000

60000

80000

100000

120000

140000

1Measurement Type

T
ra

ff
ic

 o
v

e
rh

e
a

d
 (

b
y

te
s

)

S
N

M
P

 G
e
tB

u
lk

 q
u

e
ry

2
S

N
M

P
 G

e
tB

u
lk

 q
u

e
ry

3
S

N
M

P
v

1
 t

ra
p

S
N

M
P

v
2

 t
ra

p
S

N
M

P
v

1
 t

o
ta

l
S

N
M

P
v

2
 t

o
ta

l
W

S
(S

)
to

ta
l

W
S

(C
)

to
ta

l

S
N

M
P

 G
e
tB

u
lk

 q
u

e
ry

1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1
Measurement Type

T
ra

ff
ic

 o
v

e
rh

e
a

d
 (

b
y

te
s

)

Fig. 9 Traffic measurements for SNMP and Fig.10. Traffic measurements for SNMP (30

the two WS based approaches (900 LSPs) LSPs) and total traffic for the WS schemes.

As far as traffic overhead is concerned 2700 bytes are saved by task delegation for

both small and large networks (Fig. 9). This reduction occurs since SOAP and HTTP

header data for the second WS approach are less. For every time an event is

produced, our approach will save more traffic and latency. Therefore in the initial

configuration of the event service we can select to monitor with a small expression all

the interfaces of the ingress (relevant) router. The latter is not possible with SNMP

without increasing traffic overhead since all MIB variables that need to be monitored

must be defined. SNMP’s traffic overhead for big networks is 120 kilobytes more

due to lack of filtering and task delegation facilities (Fig. 10). For smaller networks

SNMP’s traffic overhead is less by 2300 bytes when compared to the WS approach

based on task delegation (Fig 10). If more events are produced though, configuration

traffic overhead included in the total traffic overhead of any WS based approach

(3767 bytes for WS(C)) will not be included again since this happens only once for

each event job. As such SNMP’s traffic overhead becomes worse than the WS event

reporting by task delegation approach by 1467 (3767-2300) bytes for each new event

(Fig 9).

6 Conclusions

In this paper we have shown that facilities such as task delegation for WS event

reporting can lead to significant gains in latency and traffic overhead since many of

the tasks that must be performed upon receipt of an event report can be performed

locally at the agent. We have also shown that such facilities have major performance

gains for WS against SNMP. Offering such facilities is plausible today since the

technical characteristics of devices used for management have increased.

Our work though on event reporting can also be improved by refining our policy-

like grammar to meet closely the requirements of policy management. Currently our

event reporting system is manually configured to perform a set of tasks dynamically

at run-time. The essence of policy-based management for event reporting though

would be to design an event reporting system that will autonomously deduce the

actions to perform. This is in our future goals. Finally it is in our goals to apply our

event reporting system to other fields and more resource constrained environments.

 Nevertheless our event reporting system has great application potential. Through a

realistic scenario we have demonstrated that sophisticated facilities for WS event

reporting can lead to significant gains. Distributing task load for event reporting is

extremely important, resulting in more distributed scalable, self adaptive systems.

References

[1] D. Box et al “Web Services addressing” http://www.w3.org/Submission/ws-addressing/

[2] S. Vinoski, IONA Technologies “Web Services Notifications” IEEE computer society, IEEE

Internet Computing, Volume 8, Issue 2, March-April 2004 pp. 86 - 90.

[3] S. Vinoski IONA Technologies “More Web Services Notifications” IEEE computer society,

IEEE Internet Computing, Volume 8, Issue 3, May-Jun 2004 pp. 90 - 93

[4] N. Catania et al, “WS-EVENTS2.0” HP, http://devresource.hp.com/drc/specifications/wsmf

[5] D. Box et al, “WS-Eventing,” http://www.w3.org/Submission/WS-Eventing/

[6] S. Graham et al , “Web Services Base Notification” http://www-128.ibm.com/

[7] J.P Flattin “Web-Based Management of IP networks and Systems” ©Wiley series 2003.

[8] A. Pras et al “Comparing the Performance of SNMP and WS-Based Management,” IEEE

eTNSM, Vol 1 Number 2 December 2004

9] G. Pavlou, P. Flegkas, and S. Gouveris, “On Management Technologies and the Potential of

Web Services,” IEEE Communications Magazine, Vol. 42, no. 7, pp. 58-66 July 2004.

[10] S. Blake et al., “An Architecture for Differentiated Services,” RFC 2475, Dec. 1998

[11]D. Goderis et al., “SLS Semantics and Parameters,” draft-tequila-sls-02.txt, Aug. 2002.

[12]H. Asgari, R. Egan, P. Trimintzios, G. Pavlou “Scalable monitoring support for resource

management and service assurance”, IEEE Network, Vol 18, Issue 6. 2004 pp.6 – 18.

 [13]ENTHRONE, http://www.enthrone.org/. 2nd phase 1/9/2006

[14]C. Srinivasan, et al, “MPLS Label Switching Router MIB” RFC 3813, June 2004.

[15]T. Nadeau, et al , “MPLS Forwarding Equivalence Class To Next Hop Label Forwarding

Entry MIB” RFC 3814, June 2004.

[16]A. Chourmouziadis, G. Pavlou, “Efficient Information Retrieval in Network Management

Using Web Services” DSOM 2006 Proceedings, October 23-25, 2006, Dublin, Ireland.

 [17]M. Sloman, “Policy Driven management for Distributed Systems,” JNSM Vol.2 No4 1994.

 [18]W. Lima et al “Evaluating the performance of Web Services and SNMP notifications”

NOMS 2006. 10th IEEE/IFIP pp. 546- 556

