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Abstract. There have been several attempts in the past to secure the
Simple Network Management Protocol (SNMP). Version 3 of the SNMP
protocol introduced a User-based Security Model (USM) which comes
with its own user and key-management infrastructure. However, many
operators are reluctant to introduce a new user and key management
infrastructure just to secure SNMP. This paper describes how the Secure
Shell (SSH) protocol can be used to secure SNMP and it provides a
performance analysis of a prototype implementation which compares the
performance of SNMP over SSH with other secure and insecure versions
of SNMP.

1 Introduction

Network devices maintain large amounts of management data. Management data
can provide insights as to how the network is performing or which abnormal
events have been observed. Moreover, management data can be used to under-
stand how a device is configured and to change the configuration of that device.
The Simple Network Management Protocol (SNMP) [1] allows both for manage-
ment data to be collected remotely from devices and for devices to be configured
remotely. It was first published in August 1988 and since then it has been widely
used in network management.

There was no security implemented in SNMP version one (SNMPv1) and
the attempts to add security to SNMP version two (SNMPv2) lead to failure as
well. Version 3 of the Simple Network Management Protocol (SNMPv3) added
security to the previous versions of the protocol by introducing a User-based
Security Model (USM) [2]. The USM was designed to be independent of other
existing security infrastructures, to ensure it could function when third party
authentication services were not available, such as in a broken network. As a
result, USM utilizes a separate user and key management infrastructure.

Network operators have reported that deploying another user and key man-
agement infrastructure introduces significant costs and hence the USM design
is actually a reason for not deploying SNMPv3. To address this issues, a new
security model is currently being defined by the Integrated Security Model for
SNMP (ISMS) working group of the Internet Engineering Task Force (IETF)
which leverages the Secure Shell (SSH) [3] protocol. It is designed to meet the



security and operational needs of network administrators, maximize usability in
operational environments to achieve high deployment success and at the same
time minimize implementation and deployment costs to minimize the time until
deployment is possible.

This paper describes the SSH security model for SNMP and provides a per-
formance evaluation of a prototype implementation. It is structured as follows:
Section 2 describes the extensions of the SNMP architecture that are needed
to support security models where security services such as authentication and
encryption are provided by the message transport rather than the SNMP proto-
col itself. Section 3 introduces the SSH security model for SNMP. A prototype
implementation of SNMP over SSH is described in Section 4 and some perfor-
mance figures are presented in Section 5. Section 6 discusses related work before
we conclude our paper in Section 7.

2 Extensions of the SNMP Architecture

The SNMP architecture [4] was designed to be modular in order to support
future protocol extensions such as additional security models. The architecture
defines several subsystems and interfaces between subsystems that should remain
unchanged when subsystems are extended. The goal was to reduce side effects
that can occur without such an architectural framework when the protocol is
extended.
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Fig. 1. Structure of an SNMP entity according to the SNMPv3 architecture

According to the SNMP architecture, an SNMP engine consists of a message
processing subsystems, a security subsystem, an access control subsystem, and a
single dispatcher (Fig. 1). Each subsystem can contain multiple concrete models
that implement the services provided by that subsystem. The interfaces between
subsystems are defined as Abstract Service Interfaces (ASIs). The dispatcher is



a special component which controls the data flow from the underlying transports
through the SNMP engine and up to the SNMP applications1.

As of today, most SNMPv3 implementations support three message process-
ing models for SNMPv1, SNMPv2c, and SNMPv3 and two security models,
namely the User-based Security Model (USM) (used by the SNMPv3 message
processing model) and the Community-based Security Model (CSM) (used by
the SNMPv1 and SNMPv2c message processing models). There is only a single
View-based Access Control Model (VACM) so far.
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Fig. 2. Structure of an SNMP engine that supports transport mapping security models.
The Transport Mapping Security Processor (TMSP) and the Security Model Security
Processor (SMSP) communicate via a shared cache

The design of the SNMP architecture assumes that security services (authen-
tication, data integrity checking, encryption) are provided as part of the SNMP
message processing. If, however, the security services are provided by the trans-
port over which SNMP messages are exchanged, the architecture does need some
extensions. The approach followed by the ISMS working group of the IETF [5]
is to split a transport mapping security model (TMSM) into two parts (Fig. 2):

– The Transport Mapping Security Processor (TMSP) is the portion that is
part of the message transport and performs the actual security processing.

– The Security Model Security Processor (SMSP) is the portion that realizes
the appropriate security model required by the SNMPv3 architecture. In
order to provide the required services, it has to interact with the TMSP.

The TMSP and the SMSP need to exchange information (e.g., the name
name of the authenticated SSH user). While this exchange can be realized in
different ways, the simplest and most efficient scheme is to establish a cache
which maintains relevant information and to pass a handle between the TMSP
and SMSP by extending the ASIs.

1 The SNMP architecture should actually have a separate transport subsystem with
proper ASIs to cleanly model the fact that SNMP supports multiple transport mod-
els. The introduction of a transport subsystem has recently been proposed to the
ISMS working group.



Transport security protocols are typically session-based. They usually have
a session establishment phase where a session key and some shared state is
established followed by the secured data exchange. This is very different from the
message-based approach used by USM where all security information is carried
in every single message exchanged between two SNMP engines and there is no
notion of a session or a session key.

3 SSH Security Model for SNMP

The Secure Shell (SSH) protocol [3] is a protocol for secure remote login and
other secure network services over an insecure network. It consists of three major
components:

– The Transport Layer Protocol provides server authentication, confidentiality,
and integrity. It may optionally also provide compression. The transport
layer protocol typically runs over a TCP/IP connection, but might also be
used on top of any other reliable data stream. It uses public-key cryptography
to authenticate the server to the client and to establish a secure connection
which then uses a session key and a symmetric encryption algorithm to
protect the connection.

– The User Authentication Protocol authenticates the client-side user to the
server. It runs over the transport layer protocol. SSH supports several differ-
ent user authentication mechanisms such as password authentication, public-
key authentication, and keyboard-interactive authentication (which supports
challenge-response authentication mechanisms).

– The Connection Protocol multiplexes the encrypted connection into several
logical channels. It runs over the transport layer protocol after successful
completion of the user authentication protocol. Every channel has its own
credit-based flow control state in order to deal with situations where channels
are connected to applications with different speeds.

Note that SSH authentication is usually asymmetric: An SSH server authen-
ticates against an SSH client using host credentials (host keys) while the user
authenticates against the SSH server using user credentials (user keys or pass-
words).

The SSH Security Model (SSHSM) for SNMP [6] is an instantiation of a
TMSM which uses SSH, a protocol already widely deployed to secure access
to command line interfaces on network elements. The specification details the
elements of procedure for the TMSP and the SMSP portions of the SSHSM.
It also deals with details such as engineID discovery and the handling of no-
tifications. Notification delivery is not straight forward due to the asymmetric
authentication provided by SSH and the requirement to exercise access control
in a consistent way for read, write, and notify access. The details are still being
discussed in the ISMS working group of the IETF at the time of this writing.

With the SSHSM, no security parameters are conveyed in SNMPv3 messages.
Accordingly, the msgSecurityParameters field of SNMPv3/SSH messages car-
ries a zero length octet string and the implementation of the security model



portion of the SSHSM simply retrieves the necessary information by accessing a
cache which is shared between the transport mapping porting and the security
model portion of the SSHSM.

4 Implementation

The prototype implementation of SNMP over SSH developed at IUB is an exten-
sion of the widely used open source Net-SNMP SNMP implementation. For the
SSH protocol, the libssh library was used, an open source C implementation
of SSH. The libssh library contains all functions required for manipulating a
client-side SSH connection and an experimental set of functions for manipulating
a server-side SSH connection.

The implementation does not implement the SSHSM as it is currently dis-
cussed in the IETF since the details of the SSHSM were not worked out when
the implementation work was done. The prototype only supports the TMSP part
of SSHSM plus a slight modification of the Community-based Security Model
(CSM) which passes the authenticated SSH user identity as the security name
to the access control subsystem. This basically gives us SNMPv1/SSH and SN-
MPv2c/SSH while the ISMS working group defines SNMPv3/SSH.

The implementation itself consists of a new transport module which is in the
order of 1200 lines of C code. The Net-SNMP internal API for adding transports
worked well and did not require any changes. The fact that Net-SNMP already
supports stream transports was convenient. For password authentication, the
prototype calls the Linux Pluggable Authentication Modules (PAM) [7] library
to make it runtime configurable how passwords are checked.

Most of the development time was spend on optimizing the performance of
the implementation since the overall latency initially was surprisingly high. In
order to optimize the performance of the SSH transport domain, we investigated
the influence of TCP’s Nagle algorithm as well as the windowing mechanism of
the SSH protocol.

4.1 TCP Nagle Interactions

During our initial measurements, we observed that the execution of a snmpget
operation over the SSH transport domain required approximately 800ms. This
surprisingly large delay was introduced by TCP’s Nagle algorithm which essen-
tially delays the sending of a TCP segment until either a segment has been
filled or the previous segment has been acknowledged. We therefore disabled
the Nagle algorithm by setting the TCP NODELAY flag on the agent and on the
manager side of the connection. This lead to a significant improvement in the
performance of the SSH transport domain as the time required for the execution
of a snmpget operation went down to 56.5ms. We further modified the libssh
library to disable the Nagle algorithm immediately after establishing the TCP
connection between the agent and the manager and before any SSH exchanges.
This further reduced the time required for a snmpget operation to 16.17ms on
our fast machines.



4.2 SSH Window Adjustments

The SSH windowing mechanism is used to specify how much data the remote
party can send before it must wait for the window to be adjusted. In the
OpenSSH implementation such window adjustment messages are only exchanged
periodically. During our initial observations we noticed that each message ex-
changed between the agent and the manager was followed by a window ad-
justment message. These additional messages introduced significant bandwidth
overhead as well as latency overhead for long sessions. As a result the SSH trans-
port domain performed worse than the USM transport domain with respect to
latency and bandwidth. In order to optimize the performance, we modified the
libssh library to send window adjustment messages only when necessary. This
improvement lead to better bandwidth and latency performance of the SSH
transport domain when compared to the USM transport domain as explained
below.

5 Performance Analysis

The performance of our SNMP over SSH prototype has been evaluated by com-
paring it against SNMPv3/USM with authentication and privacy enabled, run-
ning over both TCP and UDP. In addition, to establish a baseline, the perfor-
mance of plain SNMPv2c over both TCP and UDP was measured. The following
sections first describe the experimental setup and then discuss the session estab-
lishment overhead and the performance for walks of different sizes without and
with packet loss. Finally, the bandwidth used by the different SNMP transports
is compared and the memory requirements for keeping open SSH sessions on a
command responder is discussed.

5.1 Experimental Setup

The experiments were performed on three Debian GNU/Linux machines (see
Table 1). The machines were connected via a switched Gigabit Ethernet with
sufficient capacity.

Table 1. Machines used during the measurements

Name CPUs RAM Ethernet Kernel

meat 2 Xeon 3 GHz 2 GB 1 Gbps 2.6.16.14
veggie 2 Xeon 3 GHz 1 GB 1 Gbps 2.6.12.6
turtle 1 Ultra Sparc IIi 128 MB 100 Mbps 2.6.16.14

The SNMP command responder was running on meat and turtle for the
measurements without packet loss and veggie was acting as a command gen-
erator. Under the condition of packet loss, the command responder was run-
ning on turtle while the command generator was running on meat. For the



SNMP/USM measurements, we used the authentication plus privacy security
level with HMAC-MD5 as the authentication algorithm and AES-128 as the en-
cryption algorithm. The libssh library was configured to also use the HMAC-
MD5 authentication algorithm and the AES-128 algorithm for encryption and
null compression.

We instrumented the snmpget, snmpwalk and snmpbulkwalk programs (part
of the Net-SNMP package) to measure the latency by calling gettimeofday() be-
fore opening a session (but after parsing of MIB files) and after closing the session
and computing the time difference. The output was directed to /dev/null and
each experiment was repeated 100 times. The tcpdump tool was used to calcu-
late the number of bytes exchanged and the pmap tool was used to measure the
memory sizes of the processes. Packet loss was simulated by using the netem
network emulation queuing discipline of the Linux kernel on meat and turtle.

The object identifier (OID) used for snmpwalk and snmpbulkwalk measure-
ments was the interface table ifTable [8]. The object identifier used for snmpget
measurements was the scalar sysDescr [9]. The number of rows in the ifTable
was manipulated by creating virtual LAN (VLAN) interfaces.

5.2 Session Establishment

Table 2 shows the result of performing snmpget requests on the scalar sysDescr
using different transports. There is a significant cost associated with the estab-
lishment of SSH sessions. This is, however, not surprising since the SSH protocol
establishes a session key using a Diffie-Hellman key exchange (using public-key
cryptography) before the user authentication protocol is executed and the SSH
channel is established. Since the cryptographic operations are CPU bound, the
session establishment times increases significantly on our slow test machine.

Table 2. Performance of snmpget requests (sysDescr.0)

Protocol Time (meat) Time (turtle) Data Packets

SNMPv2c/UDP 1.03 ms 0.70 ms 232 byte 2
SNMPv2c/TCP 1.13 ms 1.00 ms 824 byte 10

SNMPv3/USM/UDP 1.97 ms 2.28 ms 668 byte 4
SNMPv3/USM/TCP 2.03 ms 3.03 ms 1312 byte 12

SNMPv2c/SSH 16.17 ms 91.62 ms 4388 byte 32

Table 2 also shows that there is an clear difference in the amount of data
(total size of the Ethernet frames) and the number of IP packets exchanged
between UDP and TCP transports. While this overhead is usually not a big
issue on a well functioning local area network, it might be an issue in networks
with large delays or high packet loss rates.



5.3 Latency without Packet Loss

Figure 3 shows the latency for the retrieval of the ifTable [8] with different
sizes using snmpwalk. The difference between the transports UDP and TCP
seems marginal compared to the difference caused by enabling authentication
and privacy. The performance of the SSH transport is interesting. Initially, the
costs of establishing an SSH channel with a new session key cause the SSH
transport to perform worse than SNMPv3/USM. However, there is a break-
even-point after ≈ 500 SNMP interactions where the SSH transport becomes
more efficient than SNMPv3/USM. This observation seems to be independent
of the speed of the machine hosting the command responder.
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Fig. 3. Latency comparison of SNMP getnext walks (ifTable) without packet loss
with a command responder on a fast machine (left plot) and on a slow machine (right
plot)
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5.4 Latency with Packet Loss

Figure 4 shows the latency of the same snmpwalks on the ifTable with 0.1%
and 0.5% packet loss using the slow command responder running on turtle.
The surprising result is that the TCP-based transports all clearly outperform
the UDP-based transports. It turns out that Net-SNMP has a very simple re-
transmission scheme with a default timeout of 1 second and 5 retries. TCP
reacts much faster to lost segments in our experimental setup and this explains
the bad performance of the UDP transports in the plots of Figure 4. Note that
this result cannot be generalized since other SNMP implementations may have
other retransmission schemes. However, simple statements that UDP transports
outperform TCP transports in lossy networks are questionable as long as the
application layer retransmission scheme is not spelled out.

5.5 Bandwidth

Figure 5 shows the amount of data exchanged during the snmpwalk experi-
ments without packet loss. It can be seen that the amount of data exchanged
increases when switching from UDP to TCP due to larger TCP headers. Fur-
thermore, SNMPv2c/SSH requires less bandwidth than SNMPv3/USM/UDP
and SNMPv3/USM/TCP. Even though the SSH connection protocol adds a tiny
header, it seems that this header is significantly shorter than the space needed
for the SNMPv3/USM header.
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Table 3 indicates that the change from SNMPv2c to SNMPv3/USM costs
approximately 90 bytes of overhead per packet while the SNMPv2/SSH proto-
type adds approximately 40 bytes of overhead per packet to the SNMPv2c/TCP



Table 3. Packet sizes for the snmpwalk with 2354 getnext operations. The ’range’
column shows the dominating packet size range and the ’packets’ column the number
of packets in that range; the column ’total packets’ indicates the total number of packets

Protocol Range Packets Total Packets

SNMPv2c/UDP 80-100 4710 4710
SNMPv2c/TCP 110-130 4709 4712

SNMPv3/USM/UDP 170-190 4710 4712
SNMPv3/USM/TCP 200-220 4709 4714

SNMPv2c/SSH 150-170 4711 4742

transport. While the SNMPv3 message header is slightly larger than the SN-
MPv2c header we have used in our implementation, we believe that also an SN-
MPv3/SSH implementation will consume less bandwidth than SNMPv3/USM
when many packets are exchanged. As can be seen from the total number of
packets, the piggy-backing of TCP ACKs worked nicely for all TCP transports.

5.6 Memory Usage

Figure 6 shows the amount of virtual memory used by the command responder
process for an increasing number of concurrently open sessions. Initially, the pro-
cess needed 9312 KByte of memory. The memory consumption grows linearly
with the number of concurrently open sessions. The measured memory overhead
per session is approximately 7 KByte. Note that the sessions were only estab-
lished but not used during these measurements. Some additional memory might
be dynamically allocated by the SSH library once data exchanges take place.
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number of open sessions



6 Related Work

SSH is already widely used to secure the access to command line interfaces on
network elements. Accordingly, SSH credentials (keys, passwords) are readily
available in many environments. This availability of credentials in many opera-
tional networks has been the main motivation for considering SSH as a secure
transport for SNMP.

The obvious alternative to SSH is the widely used Transport Layer Security
(TLS) protocol [10]. An implementation of SNMP over TLS has been analyzed
in [11]. Although the authors used a very different setup, some key results are
similar to the results reported in this paper. The authors of [11] also observed
that SNMP over TLS is more efficient in terms of latency than SNMPv3/USM
for longer sessions.

The short-coming of the work done on SNMP over TLS back in 2001 was that
architectural questions were not considered and it thus remained unclear how
model independent values such as the SNMP security name or security level are
determined and passed around. These architectural questions have meanwhile
been addressed in the IETF as described in [5] and summarized in Section 2.

The work reported in [12] compares the costs of using SNMPv3/USM with
different security levels with SNMPv1 and SNMPv2c. While some of the mea-
surements reported in this paper are comparable with results reported in [12]
(e.g., the network capacity consumed for snmpget), the results are not identical
and differ slightly. In particular, the overhead of SNMPv2/USM with authentica-
tion and privacy seems to be generally higher compared to SNMPv1/SNMPv2c
in our measurements. This may be explained by the fact that the SNMP en-
gines used in both studies are different as well as the operating system and
hardware platform used. In addition, different MIB objects were fetched in both
experiments: This study uses the sysDescr scalar, a DisplayString of ≈ 60
characters, while an 4 byte IpAddress object was used in [12].

7 Conclusions

The ISMS working group of the IETF is working on new security models for
SNMP which leverage a secure transport. One crucial question is how the per-
formance of this new approach compares to the existing security solution for
SNMP (SNMPv3/USM) and to the still widely deployed insecure versions of
SNMP (SNMPv1/SNMPv2c).

The measurements presented in this paper try to give answers to some of
these questions. In particular, we quantified the session establishment overhead
for SNMP over SSH. For simple one-shot SNMP requests, SSH seems to be a
rather costly solution since the costs for establishing a session and associated
session keys is significant. For sessions that carry multiple SNMP interactions
(e.g., table walks), the costs for the initial session setup are amortized and there
is a break-even-point where SNMP over SSH starts to become more efficient
than SNMPv3/USM with authentication and privacy enabled.



The answer to the question whether SNMP over SSH is a viable alternative
to SNMPv3/USM therefore depends on the SNMP usage pattern and the typ-
ical session length. While SNMP traditionally has no concept of a session, it
is possible to approximate session life times by analyzing SNMP traffic traces.
Work is underway in the Network Management Research Group (NMRG) of
the Internet Research Task Force (IRTF) to collect SNMP traffic traces from
different operational networks [13]. These traces are expected to give insights in
which environments SNMP over SSH is likely to be a viable alternative.
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