

Detecting Bottleneck in n-Tier IT Applications through

Analysis

Gueyoung Jung1, Galen Swint1, Jason Parekh1, Calton Pu1, Akhil Sahai2

1
CERCS, Georgia Institute of Technology

801 Atlantic Drive, Atlanta, GA 30332
{gueyoung.jung, galen.swint, jason.parekh,

calton}@cc.gatech.edu

2
HP Laboratories

Palo-Alto, CA
akhil.sahai@hp.com

Abstract. As the complexity of large-scale enterprise applications increases, providing
performance verification through staging becomes an important part of reducing busi-
ness risks associated with violating sophisticated service-level agreement (SLA). Cur-
rently, performance verification during the staging process is accomplished through ei-
ther an expensive, cumbersome manual approach or ad hoc automation. This paper de-
scribes an automation approach as part of the Elba project supporting monitoring and
performance analysis of distributed multi-tiered applications that helps in bottleneck de-
tection. We use machine-learning to determine service-level objectives (SLOs) satisfac-
tion and locate bottlenecks in candidate deployment scenarios. We evaluate our tools
with TPC-W, an on-line bookstore, and RUBiS, an on-line auction site.

Keywords: Bottleneck detection, n-tier application, Decision tree, SLOs, Elba.

1. Introduction

The increasing complexity of enterprise applications has emphasized the importance of
verifying and validating the configuration performance prior to production use. While
functional properties are typically verified during system integration and testing, perform-
ance as specified in SLOs of SLA is verified and validated by a pre-production process
referred to as staging. Since a failure to fulfill SLA requirements results in business
losses, staging has the critical role of verifying and validating the deployment plan to
cover a wide range of system configurations and workloads. Current staging processes
have been largely manual, augmented occasionally with ad hoc automation scripts, and
these processes have become increasingly error-prone and costly in terms of time and ef-
fort. To reduce costs and increase the coverage of staging, the Elba project seeks to auto-
mate staging and tuning for n-tier applications in a distributed environment [4]. Auto-
mated staging and tuning uses high-level requirement specifications and translates them
into both staging deployment and workload parameter settings which are then used for
execution in a staging environment. Monitors first collect performance data, followed by
analysis which automatically identifies performance deficiencies. Generating and analyz-

ing performance data to uncover SLOs satisfaction and performance bottlenecks are sig-
nificant challenges to realizing tiered, self-tuning applications.

Our prior work in the Elba project, represented in Figure 1, reported on the challenges
of automatically mapping design specifications into deployment tool specifications for
production and provided a solution using a code generation and translation tool [4][5].

This paper presents our work on collecting data and analyzing bottlenecks for a signifi-
cant number of performance metrics. It helps answers two questions:

• Does the application configuration meet performance requirements? This question is
answered by observing metrics that correspond to policy objectives in SLOs.

• If the requirements are not met, then where in the configuration is the bottleneck? This
question should be answered by examining metrics data establishing, first, what metrics
are relevant, and second, which metrics best represent the bottleneck.

Neither task is trivial, but both are valuable for staging and production. Of course, over-
provisioned systems can meet SLOs, but this entails additional capital outlays, mainte-
nance, and sometimes over-engineering of the software itself [8]. Systematic, automated
staging mitigates the risks of under- and over-provisioning and can provide valuable ap-
plication behavior information applicable to the production application.

The contribution of this paper is an approach to support automated monitoring, analysis,
and reporting by applying machine-learning in the context of staging. This automated ap-
proach will assist service providers in answering the previous two questions while pre-

1 We have slightly improved the figure of Elba used in [4] and [12].

Elba: Automated, Iterative

Staging

Cauldron

Mulini
Staging

Deployment

Redesign/

Reconfiguration

Analyzer

Staging

Environment

Staging

Environment

PoliciesPolicies

Deployment
Deployment

Staging/

Deployment

Code

Staging/

Deployment

Code

Analyzed

results

Analyzed

results

Deployment/

Resource

assignment

Deployment/

Resource

assignment

Analyzed

results

Analyzed

results
(1)

(2) (3)

(4)

(5)

TBLTBL

Elba: Automated, Iterative

Staging

Cauldron

Mulini
Staging

Deployment

Redesign/

Reconfiguration

Analyzer

Staging

Environment

Staging

Environment

PoliciesPolicies

Deployment
Deployment

Staging/

Deployment

Code

Staging/

Deployment

Code

Analyzed

results

Analyzed

results

Deployment/

Resource

assignment

Deployment/

Resource

assignment

Analyzed

results

Analyzed

results
(1)

(2) (3)

(4)

(5)

TBLTBL

Figure 11. Staging in Elba is an automated and iterative process. (1) Cauldron converts the policy
documents into resource and deployment assignments. (2) Mulini re-maps resource assignments
and application staging test guideline (TBL) to generate three types of code: instrumented applica-
tion code, deployment code, and monitoring/analysis code. (3) A deployment tool installs and con-
figures the application and then executes it. (4) Monitoring data is fed into analysis tools, and (5)
the result of the analysis is handed to an engine to generate recommendations for policy changes. In
this paper, we focus on (4), highlighted by black boxes, for the automated monitoring and analysis
using generated code from Mulini code generator. Note that dashed boxes are on progress.

venting resource wastage through over-provisioning. With Mulini code generator im-
proved from [4], our approach uses policy documents to generate metrics monitoring and
performance analysis code and hooks into a machine-learning tool for automated bottle-
neck detection. We compared different classifiers and decided that the decision tree classi-
fier (J48) was more robust in detecting bottlenecks [12]. In this article, we evaluate the
accuracy of our bottleneck detection approach by analyzing two well-known benchmark-
ing applications2 that have differing bottleneck profiles, TPC-W and RUBiS.

The remainder of this paper is organized as follows. Section 2 presents the challenges
and our approach to providing analysis support in the Elba project. Section 3 describes the
evaluation environment, and Section 4 presents evaluation results for TPC-W and RUBiS.
Section 5 discusses related work, and Section 6 presents our conclusions.

2. Automated Staging and Analysis

2.1 Challenges

For a distributed n-tier application, staging is an important, complex task that entails re-
peated tests over an extended period of time; the system and configuration are refined
until they meet performance requirements. If performed early in the application develop-
ment cycle, staging can provide crucial feedback that helps steer application development
by identifying bugs, performance shortfalls, “hotspots,” and resource waste. Increasing
application complexity makes staging worth automating to enable faster, earlier testing.

Staging may share some tools and techniques with production, but three important fac-
tors differentiate application staging from production. First, the hardware available in a
staging environment mirrors but may not replicate exactly the production environment.
Perfect duplication would provide higher application assurance once staged, but involves
high costs in terms of initial expenditures and ongoing maintenance. To best utilize an
approximate environment that minimizes the costs requires staging the application multi-
ple times to establish predictive performance trends. Each staging iteration tests one par-
ticular application configuration and may involve multiple staging trials under varying
staging parameters. A second differentiator is that applications may require additional
fine-grained implementation to ascertain bottlenecks accurately which must be removed
from the production code. Finally, staging requires the generation of synthetic workloads
that stress the application similarly to production environments in a limited time period.

Automated analysis adds challenges to the staging process. First, automated analysis
entails the orchestration of several tasks and may drive multiple executions with slightly
different staging parameterizations. Second, automated analysis requires system and ap-

2
In this paper, they are used as exemplar distributed multi-tiered e-commerce applications with de-

fined metrics rather than as benchmarks; our results can not be used for performance comparisons
outside this paper.

plication instrumentation derived from performance requirements to record metrics data.
Third, it requires the construction of an analysis, decision, and detection process which
can answer the two questions presented in the introduction.

Automated analysis tools must translate policy-level documents into functional artifacts
that become part of the staging process. Service-level indicators (SLIs) are obtained from
the SLA and its components, SLOs; these are translated into metrics and staging parame-
ters. Furthermore, administrator/operator policies that may govern aspects such as accept-
able resource usage must also be mapped into metrics. Test-specific information, such as
machine locations, testing times, and workload, must be incorporated. Once recorded, a
custom analysis engine automatically processes the data and compares its results against
performance goals set forth in policy specifications.

Even automating bottleneck detection from gathered data requires the recognition and
resolution of several problems. First, a single trial may not provide enough information to
determine bottlenecks – a metric may appear “maxed” out even though it really reflects
normal operating levels. In such cases, several trials of varying workloads are required to
establish operating baselines and trends. Interactions between metrics can also make bot-
tleneck detection difficult. For example, CPU usage and network throughput may trend in
parallel, but only the CPU is the bottleneck. Finally, bottleneck detection requires sorting
through copious metrics data. The total number of metrics varies with the number of both
hardware and software components in the system, and they can be categorized generally
as either application-level (e.g., the number of threads, the number of database connec-
tions, and elapsed query time) or system-level (e.g., CPU and memory utilization) metrics.

To detect bottlenecks and sort through the myriad metrics produced during monitoring,
we employ an automated classifier. The input to the classifier is the first derivative of the
metrics, since we are interested in trends. It is first trained by inputting the metrics with
the result of a SLO-evaluator, a tool generated for deciding the violation of the SLOs. The
output of the classifier is metrics whose derivatives correlate strongly to SLOs violation.
From these identified metrics, we discover the bottlenecks of the system.

2.2 Automating Monitoring and Analysis

Our approach to automated staging and analysis occurs within the context of the Elba pro-
ject [4]. The project goal is to first realize iterative staging to determine the inadequacies
of application performance, then evaluate the results, and finally enable automated tuning
of the system to meet the expected performance objectives. In particular, to integrate our
automation for monitoring and analysis, we extended Elba’s Mulini code generator which
employs XML/XSLT techniques with Aspect Oriented Programming (AOP) paradigm to
create the necessary code for monitoring and analysis, including the instrumentation of
source code for application-level metrics, and for the generation of the analysis code. In-
terested readers for code generation and Mulini can refer to [4][9] for more details. The
metrics data can then be fed to a machine-learning tool to identify performance bottle-
necks. The Analysis addresses the two questions posed in the introduction, namely,

Does the application configuration meet its performance requirements?

This must be answered for each trial. Mulini generates an SLO-evaluator with policy-
specific code that computes the individual satisfaction of the component SLOs. The SLO-
evaluator uses data collected by the synthetic workload generators and computes applica-
tion-specific throughput and average response time. Once the SLOs satisfaction is deter-
mined, overall SLA satisfaction can be determined.

If the requirements are not met, then where in configuration is the bottleneck?
This question is answered with aggregated data from multiple trials. If SLA is not met,

the tools begin a three-step bottleneck detection process to correlate performance short-
falls and metrics. The detection process requires performance data from a series of trials.
The first trial subjects the application to a low synthetic workload, and each subsequent
trial increments the workload until consecutive trials fail the SLA. For example, a trial for
a retail store application may begin with 10 concurrent simulated users, and then in each
subsequent trial the number of concurrent simulated users increases by 10 over the previ-
ous trial until the SLA is violated for 70, 80, and 90 users.

In subsequent analysis, the first step is to determine the bottleneck tier. For each tier,
the average duration spent by each service request is computed, and we identify the bot-
tleneck tier as tier with the fastest growing duration (change in duration divided by the
change in synthetic workload). The second step is to select, from the metrics of the bottle-
neck tier, the highly utilized metrics as candidate indicators. The assumption is that high
utilization of a resource implies high demand from the application and a potential bottle-
neck. This also helps distinguish between highly-correlated metrics, such as bandwidth
and CPU usage. To be considered a candidate indicator, a metric must either surpass 90%
utilization or some threshold value as specified by a policy document, heuristic, or system
administrator. The third step in bottleneck detection is to discover the metrics indicating
bottlenecks using the aggregated performance data from all trials. For our applications and
metrics, we have found that using the change in a metric from trial to trial provides a reli-
able indicator for correlating a metric to SLOs violation. The change, effectively a first
derivate of the metric, will drop from some positive factor (utilization increases) towards
around zero (utilization constant) when the underlying resource is fully utilized. In com-
parison, a non-bottleneck metric can continue to increase – constant growth does not cor-
relate a change in SLOs satisfaction. In other words, our bottleneck detection searches out
the metric that best correlates to reduced SLOs satisfaction (i.e., greater SLOs violation).

For the third step mentioned above, we apply machine-learning to form a decision tree
where tree nodes embody if/then decisions based on growth in a metric (the delta metric
value) and whose leaves embody overall SLOs satisfaction. After training, the set of
nodes traced from a leaf (SLOs satisfaction) to the root will be a set of inequalities that is
able to distinguish the leaf prediction attribute from the other prediction attributes. We
categorize the satisfaction levels as quintiles since the decision tree classifier must have
nominal types for prediction attributes. Five categories balance enough categories to allow
correlations with each category to still collect multiple trials from the training set. By in-
specting the generated decision tree, the bottleneck detection process is able to find the
metric that was identified to have the highest correlation to SLOs. In situations where the

decision tree consists of multiple metrics, the metric that appears most often in the tree
will be selected as the highest potential bottleneck. To illustrate the bottleneck detection
process, we present a sample scenario where CPU is the bottleneck metric and memory is
shown to be high but not considered a bottleneck as it is cached data that accounts for
most of the memory (the cached data will be replaced if an application requires additional
memory). In Figure 2 (b), the utilization for both CPU and memory is shown along with
the SLOs satisfaction at each workload trial. The first step for bottleneck detection is tak-
ing the difference of each metric’s utilization across the change in workload trials. The
trends resulting from this are shown in Figure 2 (c) where the delta CPU utilization is
somewhat linear until flattening out at 0% (in which case its utilization reaches 100%),
and the delta memory utilization remains mostly constant around 0%-1%. By feeding this
data to a decision tree classifier, we obtain a sample tree similar to Figure 2 (a). In this case,
the CPU metric was chosen at each node as its delta is most correlated to the different
SLOs satisfaction categories. Memory was not chosen as it is not possible to use the delta
memory utilization to differentiate each of the SLOs satisfaction categories.

3. Evaluation Environment

We evaluated the described automation approach by using TPC-W, an on-line bookstore
application for a transactional web-based e-commerce benchmark [2][3], and RUBiS, e-
commerce application implementing the core features of an online auction site [2]. These
applications have differing performance characteristics, as described in [2]. In both, cus-
tomer interaction is simulated by remote simulated browsers that send and receive HTTP
messages. Each simulated browser starts from a home interaction and executes another
interaction after “thinking” for a random period of time. The visitation path is governed
by a chosen transition matrix which encodes probabilities for visiting the next page ac-
cording to current visiting page. For our tests, we chose shopping transition and bidding

0

20

40

60

80

100

10 30 50 70 90 110

Num of Users

0

20

40

60

80

100

20 40 60 80 100 120

Num of Users

CPU utilization Memory utilization

SLO satisfaction

Change in CPU > 20%

True False

100% SLO

Satisfaction Change in CPU > 1%

25% SLO

SatisfactionChange in CPU > 7%

75% SLO

Satisfaction

50% SLO

Satisfaction

True False

True False

(a)

(b)

(c)

0

20

40

60

80

100

10 30 50 70 90 110

Num of Users

0

20

40

60

80

100

20 40 60 80 100 120

Num of Users

CPU utilization Memory utilization

SLO satisfaction

Change in CPU > 20%

True False

100% SLO

Satisfaction Change in CPU > 1%

25% SLO

SatisfactionChange in CPU > 7%

75% SLO

Satisfaction

50% SLO

Satisfaction

True False

True False

(a)

(b)

(c)
Figure 2. (a) decision tree, (b) metric utilization, and (c) delta graph

transition models for TPC-W and RUBiS, respectively, since these are the most represen-
tatives of the workload of these applications as described in [2][4].

In our evaluation, we used two software architectures common in the e-commerce do-
main: Java servlets for TPC-W and Enterprise Java Beans for RUBiS. A minimum con-
figuration of the TPC-W in our evaluation consists of a web server (Apache), a servlet
engine (Apache Tomcat), and a database server (MySQL) each running on a dedicated
host; a minimal TPC-W installation requires three machines. A minimal RUBiS configu-
ration comprises a web server (Apache), a servlet engine (Tomcat), an EJB server
(JOnAS), and a database server (MySQL). The servlet engine and EJB server (the applica-
tion tier) share a single machine. Beginning with these minimal configurations, we iterate
through more complex configurations by employing higher-performance machines or add-
ing new machines to each bottleneck tier until a configuration satisfies the given SLA.

We employ two classes of hardware in our evaluation. A low-end machine, L, is a Pen-
tium III 800MHz dual-processor with 512 MB memory, and a high-end machine, H, is a
Xeon 2.8GHz dual-processor with 4GB memory. A configuration may combine these two
classes of hardware. For instance, the L/2H/L configuration represents one low-end ma-
chine for a web server, two high-end machines as application servers, and one low-end
machine for a database server. All machines are connected through 100 Mbps Ethernet.
For basic cost accounting of the configurations, we assign low-end machines a cost of
$500 and high-end machines a cost of $3500.

4. Evaluation Results

4.1 Automated Analysis for TPC-W

Consistent with [2], the SLO-
evaluator indicates that the L/L/L
configuration for TPC-W fails the
SLA of 10.7 WIPS with average
response times less than 500 ms at
staging with 150 concurrent simu-
lated users. This triggers the proc-
ess of the automated bottleneck
detection with aggregated monitor-
ing results of the L/L/L configura-
tion, which is adjusted, and then re-
staged iteratively until a configura-
tion satisfies the SLA.

From the first step of the auto-
mated bottleneck detection process,

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Num of Users

T
im

e
 (
m

s
)

Overall Response time Duration in HTTP server

Duration in App. server Duration in DB server
Figure 3. Average response time and duration in each tier

of BestSeller interaction

the automated bottleneck detection identifies the database server tier as the bottleneck tier.
Figure 3 shows the results of application-level monitoring in the L/L/L configuration of
TPC-W. Mulini weaves monitoring code with the TPC-W application source code to re-
cord response times elapsed in database queries and execution for the presentation and
business logic of “BestSeller” interaction, a representative TPC-W interaction. This figure
shows that the duration of the database tier grows fastest. That is, the database server tier
dominates the overall response time of the interaction. In fact, the average duration for
executing database queries is about 89s while the average duration both for executing
presentation and business logic and for executing requests forwarding at web server are
about 1.3s when the synthetic workload generators run 150 concurrent simulated users.
Once the database server tier is identified as a bottleneck, the bottleneck detection pro-
ceeds to the thresholding step, which focuses on metrics that indicate high-resource utili-
zation.

Figure 4 (a) displays each metric as a percentage of its maximum capability. Any metric
not reaching 90% utilization is automatically dropped from bottleneck consideration. We
can see from the figure that the metrics reaching the 90% threshold are the CPU and over-
all memory usage.

The final step of bottleneck detection is training the J48 decision tree classifier (WEKA
toolkit’s implementation of the C4.5 decision tree [6]) to locate metrics that most influ-
ence the SLOs satisfaction. Our classifier is trained with the nine derivative metrics values
and the first order derivatives of the metrics to identify trends rather than the values of
metrics to SLOs satisfaction. In our experience using only metric values can lead to false
conclusions about which metrics are the real bottlenecks as is illustrated in this case by
overall memory utilization. In Figure 4 (a), we see that the overall memory usage value is
about 98% under a load of 100 concurrent simulated users. Note that the memory usage of
database processes is very low. If we turn our attention to the derivatives of the metrics in
Figure 4 (b), our inquiries are guided a different direction. The trend of the memory usage
derivative is nearly constant. In this case, it turns out that memory is not the bottleneck

-40

-20

0

20

40

60

80

100

20 30 40 50 60 70 80 90 100

Num of Users

P
e

rc
e

n
ta

g
e

CPU Overall Memory Process Memory

Memory Page Swap Disk I/O Throughput Network Throughput

SLO Satisfaction

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

Num of Users

P
e
rc

e
n

ta
g

e

CPU Overall Memory Process Memory

Memory Page Swap Disk I/O Throughput Network Throughput

SLO Satisfaction

-40

-20

0

20

40

60

80

100

20 30 40 50 60 70 80 90 100

Num of Users

P
e

rc
e

n
ta

g
e

CPU Overall Memory Process Memory

Memory Page Swap Disk I/O Throughput Network Throughput

SLO Satisfaction

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

Num of Users

P
e
rc

e
n

ta
g

e

CPU Overall Memory Process Memory

Memory Page Swap Disk I/O Throughput Network Throughput

SLO Satisfaction
 (a) (b)

Figure 4. For the TPC-W database tier, (a) metric values and (b) their derivatives

because the high utilization stems from OS caching. Taking the derivative screens out
linearly increasing metrics, which correlate but have adequate headroom for growth. The
metric with the highest correlation to SLOs satisfaction is the CPU usage since the ine-
quality “change in CPU usage > 20” can be used to differentiate the 100% SLOs satisfac-
tion. The decision tree further differentiates the 75% SLOs satisfaction with the inequality
“change in CPU usage > 2 and change in CPU usage < 15”.

Since the CPU of the database server tier limits performance, we set Elba to first in-
crease the number of low-end database server machines. This approach is much cheaper
than the approach employing a few high-end machines in terms of configuration cost. The
results of several iterations are shown in Figure 5. We see that only the L/L/H2L configu-
ration (cost $5500), in which we use one high-end and two low-end machines as database
servers, and the more-costly L/L/2H (cost $8000) configuration satisfy the given SLOs
(configurations arranged by increasing cost). To show that neither the web server nor the
application server is the bottleneck, we set Elba to conduct extra staging with the H/H/H
configuration. Figure 5 shows that the performance results of both the L/L/H and the
H/H/H configurations are almost identical in terms of WIPS and overall average response
time even though we use high-end machines for both the web and the application servers.
Therefore, H/H/H configuration is discovered as an over-provisioning.

Figure 6 breaks performance into per-interaction SLOs which must meet a 90% SLOs
satisfaction level. Configurations that employ only cheap machines like L/L/3L cannot
meet the SLOs in most interactions of the TPC-W. Using a single high-end as database
server, L/L/H, also fails the SLOs for “BestSeller” and “BuyConf”. The L/L/H2L configu-
ration narrowly meets these SLOs, and L/L/2H is clearly sufficient. From this staging
result, the service provider can choose either a configuration at lower cost with less
growth potential (i.e., L/L/H2L) or higher cost with high growth potential (i.e., L/L/2H).

 (a) (b)

 Figure 5. TPC-W iterative staging results (a) WIPS and (b) overall average response time

4.2 Automated Analysis for RUBiS

Our SLO-evaluator indicates the L/L/L fails the target SLA of 25.7 WIPS and overall av-
erage response time of less than 500 ms under a load of 360 concurrent simulated users.
This triggers the process of the automated bottleneck detection just as we have done with
the TPC-W evaluation.
 In the first step with “SearchItemsInCategory” interaction, we found that the applica-
tion server tier dominates the overall response time of the interaction. In fact, the average
duration for executing presentation and business logic (i.e., time spent in servlets and
EJBs) is about 28s while the average duration in database server tier for executing data-
base queries is about 30ms, and web server tier for forwarding requests and responses
104ms with 360 concurrent users.

Figure 6. TPC-W, per-interaction 90% SLOs satisfaction

0

20

40

60

80

100

120

30 60 90 120 150 180 210 240 270 300 330 360

Num of Users

P
e
rc

e
n
ta

g
e

CPU Overall Memory Process Memory

Memory Page Swap Disk I/O Throughput Network Throughput

SLO Statisfaction

-100

-80

-60

-40

-20

0

20

40

60

80

100

60 90 120 150 180 210 240 270 300 330 360

Num of Users

P
e
rc

e
n
ta

g
e

CPU Overall Memory Process Memory

Memory Page Swap Disk I/O Throughput Network Throughput

SLO Satsifaction

0

20

40

60

80

100

120

30 60 90 120 150 180 210 240 270 300 330 360

Num of Users

P
e
rc

e
n
ta

g
e

CPU Overall Memory Process Memory

Memory Page Swap Disk I/O Throughput Network Throughput

SLO Statisfaction

-100

-80

-60

-40

-20

0

20

40

60

80

100

60 90 120 150 180 210 240 270 300 330 360

Num of Users

P
e
rc

e
n
ta

g
e

CPU Overall Memory Process Memory

Memory Page Swap Disk I/O Throughput Network Throughput

SLO Satsifaction

 (a) (b)

Figure 7. For RUBiS app server tier, (a) metric values and (b) derivative values

Figure 7 (a) displays that the only metrics reaching the 90% threshold are the CPU and
overall memory usage. In the final step, the decision tree classifier is trained using eleven
instances. In Figure 7 (a), we see that the overall memory usage value is about 98% under
a load of 360 concurrent users. However, its trend linearly increases. In Figure 7 (b), the
trend of the memory usage derivative is first nearly constant and then erratic. Taking the
derivative screens out the jittery metrics, which have no correlation, and linearly increas-
ing metrics, which correlate but have adequate headroom for growth.

The metric with the highest correlation to the SLOs satisfaction is CPU usage since the
inequality “change in CPU usage > 4” can be used to differentiate the 100% SLOs satis-
faction. The decision tree would be able to further differentiate SLOs satisfaction with a
more fine-grained distinction since the CPU reaches its peak of near-100% utilization and
the derivatives approach much smaller values. The inequality “change in CPU < 1.5 and
change in CPU > -1” distinguishes the 50% SLOs satisfaction.

5. Related Work

Argo/MTE [1] uses automation and code generation via XSLT to evaluate middleware
implementations. The Weevil framework supports the management of testing in widely
distributed systems again using a generative programming approach [11]. Weevil’s focus
has been on automating deployment and workload generation for applications utilizing
overlay networks. Our work targets the enterprise n-tier IT environment and applications
and emphasizes the re-use of existing policy-level specifications for automation of both
performance testing and bottleneck identification with machine-learning technique.

Te-Kai et al. [10] have provided a capacity sizing tool to recommend cost-effective
hardware configuration for integrated business processes; their tool is tailored to the Web-
Sphere InterChange server. It assumes a prototype of the system is not available for sys-
tem staging. Instead, it relies on similar previously benchmarked systems to predict capac-
ity. The Elba project is geared towards staging an application that will be deployed to a
production without pre-existing performance data. Our approach for bottleneck detection
shares similarities with [7], but their work targets production systems to forecast prob-
lems; our work intervenes during application design to locate candidate bottleneck points,
and our system also emphasizes automation support for testing alternative designs.

6. Conclusion

With the increasing complexity of large-scale enterprise applications, effective staging
can ensure the SLA performance goals of complex application configurations. The goal
of the Elba project is to automate iterative staging. The main contribution of this paper is
the automated monitoring and performance analysis of large-scale applications through a

decision tree approach for bottleneck detection assisted by code generation techniques.
From declarative specifications of distributed n-tier applications, we generated the code to
collect, process, and analyze performance data (e.g., SLOs satisfaction levels) to locate
performance bottlenecks in configurations being staged.

Our evaluation results of TPC-W and RUBiS demonstrated the feasibility and effec-
tiveness of automating the monitoring and performance analysis in the staging process.
By generating and running various configurations, our tools analyzed the SLOs satisfac-
tion levels, found potential bottlenecks, and guided the reconfiguration process towards
the lowest cost solution. The analysis tool utilized simple machine-learning techniques to
classify the resource consumption metrics and find potential bottlenecks.

References

[1] Cai, Y., Grundy, J., and Hosking, J.: Experiences Integrating and Scaling a Performance Test
Bed Generator with an Open Source CASE Tool. Int. Conf. on Automated Software Engineer-
ing, Linz, Austria, Nov. 2004.

[2] Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., and Zwaenepoel, W.: Performance Com-
parison of Middleware Architectures for Generating Dynamic Web Content. Int. Middleware
Conf., Rio de Janeiro, Brazil, June 2003.

[3] García, D., and García, J.: TPC-W E-Commerce Benchmark Evaluation, IEEE Computer, Feb.
2003.

[4] Swint, S. G., Jung, G., Pu, C., and Sahai, A.: Automated Staging for Built-to-Order Application
Systems. Network Operations and Management Symposium, Vancouver, Canada, April 2006.

[5] Sahai, A., Pu, C., Jung, G., Wu, Q., Yan, W., and Swint, S. G.: Towards Automated Deploy-
ment of Built-to-Order Systems, Distributed Systems; Operation and Management, Barcelona,
Spain, Oct. 2005.

[6] WEKA distribution. http://www.cs.waikato.ac.nz/ml/weka.
[7] Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., and Chase, J.: Correlating Instrumentation

Data to System States: A building block for automated diagnosis and control. Operating System
Design and Implementation, San Francisco, CA, USA, Dec. 2004.

[8] Sauvé, J., Marques, F., Moura, A., Sampaio, M., Jornada, J., and Radziuk, E.: SLA Design from
a Business Perspective, Distributed Systems: Operation and Management, Barcelona, Spain,
Oct. 2005.

[9] Swint, S. G., Pu, C., Consel, C., Jung, G., Sahai, A., Yan, W., Koh, Y., and Wu, Q.: Clearwater
- Extensible, Flexible, Modular Code Generation. Int. Conf. on Automated Software Engineer-
ing, Long Beach, CA, USA, Nov. 2005.

[10] Te-Kai, L., Hui, S., and Kumaran, S.: A capacity sizing tool for a business process integration,
Int. Middleware Conf., Toronto, Ontario, Canada, Oct. 2004.

[11] Wang, Y., Rutherford, M., Carzaniga, A., Wolf, A.: Automating Experimentation on Distrib-
uted Testbeds, Int. Conf. on Automated Software Engineering, Long Beach, CA, USA, Nov.
2005.

[12] Parekh, J., Jung, G., Swint, S, G., Pu, C., and Sahai, A.: Comparison of Performance Analysis
Approaches for Bottleneck Detection in Multi-Tier Enterprise Applications, Int. Workshop on
Quality of Service, Yale University, New Haven, CT, USA, June, 2006.

