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Abstract. With many organizations now employing multiple data cen-
tres around the world to share global traffic load, it is important to
understand the effects of geographical distribution on service quality.
The Domain Name Service is an important component for global load
balancing. Using controllable simulations, we show that wide area shar-
ing can play an important role in optimization of response times when
traffic levels exceed that which can be supplied by a local infrastruc-
ture. We compute the probability of being able to meet Service Level
Objectives as a function of DNS caching policy (Time To Live), so that
service providers can account for DNS error margins in Service Level
Agreements.

1 Introduction

Meeting Service Level Objectives (SLO) is a crucial goal for online businesses,
especially in the application services sector. Even if no formal Service Level
Agreement (SLA) has been made, Service Level Objectives (SLO) are set by
clients’ demands: users will typically defect from a slow web-site after only a few
seconds of waiting in order to look for an alternative[1], hence performance is
directly related to profit.

One of the benefits that networking offers is the ability to use distributed
resources to one’s advantage. When local resources fail to cope with demand,
external resources can be brought into play simply by redirecting requests to
another location. That location could be a few centimetres away, or several thou-
sand kilometres across a wide area network. However, in wide area, globalized
services there are more links in the chain between server and customer where
uncertainties and delays can creep in, and each of these components becomes a
focus of independent interest for the performance analyst.

The role of the Domain Name Service (DNS) has been of particular interest
in the matter of load sharing and redirection of traffic. On the one hand, this is
an obvious place to overload existing functions for the purpose of load balancing;
on the other hand it is a fragile bottleneck in Internet services with low security
properties and relatively poor performance. Ten years ago, network service ca-
pacities were orders of magnitude poorer than today so the delays incurred by
DNS lookups was less noticeable. Today, the DNS appears as a key bottleneck
which contributes a significant fraction to service round-trip times.



In this paper, we examine the predictability of wide area load-sharing, based
on the Domain Name Service, and attempt to identify strategies for minimizing
its impact on Service Level Objectives.

2 Global network services

Global load sharing is a subtle topic, because it makes cost trade-offs based on
quite different currencies. Many layers are involved in directing a service across
the globe, and each of these can add to the uncertainty in response time, and
to the delay experience by the end user. One must therefore try to unravel the
various components.

Why would we not simply centralize a service for easy management? The
reasons for this include security, fail-over redundancy, traffic congestion man-
agement or even power saving (or cost saving under different tariffs)[2]. The
inhomogeneity of load that occurs during the course of a day often makes night-
time processing favourable in a data centre[3], thus it might be a reasonable
strategy to divert traffic to a geographically remote location (on the other side
of the planet) in order to balance a heavy day-time load – this would assume
that the routing and transport cost were acceptable[4, 5]. In other work, we have
looked at how local methods can be used to predict the scaling of application
services in a data centre. The ability to respond to a request depends on both
the nature of demand[6] and the availability of supply[7].

There is a need then to be able to predict the performance of wide area
redirections for coping with server traffic, and study them in relation to the ben-
efits of more local strategies. We approach the question of application service
performance by asking a simple question: how does the use of wide area meth-
ods for network redirection affect application services levels? i.e. What level of
uncertainty does globalized load balancing add to service response times?

There is a large literature on application service modelling. Much of it is now
five to ten years old, and some is contradictory. We consider the situation today.

3 DNS

The Domain Name System (DNS) is the global name lookup service in the
Internet. It is a distributed, hierarchical and redundant database running on
many thousands of servers world-wide, each responsible for one or more DNS
zones. When a client issues a request for a URL, the browser will first try to
resolve the hostname in the URL into an IP address, so that it knows where to
send the request. This is where it is possible for a DNS server to influence the
outcome of a query, effectively directing the client to a desired or lightly loaded
site. However, the DNS approach to load balancing is not without challenges, as
will be discussed shortly.

DNS servers come in a variety of flavours all of which allow the service to act
as multiplexers, serving different looked-up values for incoming requests in a one-
to-many mapping. The approaches differ in their ‘back-ends’, i.e. the amount of



internal processing they use to adapt to their situation. We shall consider both
static and adaptive ‘back-ends’ in this paper.

Consider a single DNS query, and assume that its return value has not pre-
viously been cached anywhere. The following sequence of events ensues:

1. A client program passes a partially qualified hostname to a system interface,
(normally called gethostbyname().

2. The operating system qualifies the name by adding a local domain name, if
none was specified, and redirects the request to the local resolver (typically
a local DNS nameserver), asking for the A-record (or AAAA-record in IPv6)
for the fully-qualified name – an A-record is a standard hostname-to-IP map-
ping. The request to the resolver is recursive, which enables a flag meaning
“I only want the final answer.”

3. If the local resolver does not have the answer, it performs iterative queries
through the DNS hierarchy. First it asks one of the thirteen root DNS servers.
These know which servers control the top-level domains like com, org and
net. The local resolver caches the response.

4. Further, the resolver asks one of the top level DNS servers for further direc-
tions to the domain. Again, it caches the response.

5. When the iteration process reaches one of the lookup domain’s DNS servers,
this server will know the answer to the query, and reply with an IP address,
e.g. 192.0.34.166. Yet again, the resolver caches the response.

6. The response is sent back to the client operating system, which also caches
the response.

7. The IP address is returned to the browser, which in turn can contact the
server and retrieve the content. In addition to the operating system caching
the response, many clients will do so as well.

Note how this rather simple example introduces at least five levels of caching,
not counting potential intermediate http proxies.

Consider a query to a balanced web site. A typical response could be as in
this example:

;; QUESTION SECTION:

;cnn.com. IN A

;; ANSWER SECTION:

cnn.com. 300 IN A 64.236.29.120

cnn.com. 300 IN A 64.236.16.20

cnn.com. 300 IN A 64.236.16.52

cnn.com. 300 IN A 64.236.16.84

cnn.com. 300 IN A 64.236.16.116

cnn.com. 300 IN A 64.236.24.12

cnn.com. 300 IN A 64.236.24.20

cnn.com. 300 IN A 64.236.24.28

;; AUTHORITY SECTION:

cnn.com. 600 IN NS twdns-04.ns.aol.com.



The nameservers return multiple A-records for the ‘cnn.com’ hostname – this
list is known as a Resource Record Set (RR set). The addresses appear to be
within the same provider network. This does not mean however that they are
geographically close to each other. Clients typically traverse the RR set sequen-
tially, starting from the top. That is, if the first address on the list does not
work, the client tries the next one, and so on. This is a decision that the client
makes.

The numbers in the second column of the response show the Time-To-Live
integer value (TTL) in seconds. This value governs how long the answer can
reside in a cache in any of the intermediate nodes. Once this value has expired,
the cache discards the value and the client must obtain an ‘authoritative’ answer
by iterative querying once again. This is a traditional strategy for off-loading
DNS servers and reduce lookup latency by caching the IP address value of a
DNS lookup for the specified lifetime. The relevance of this mechanism must be
reevaluated in light of performance improvements over the intervening decades.

As long as the TTL is greater than zero, queries will be answered from a
cache instead of being redirected to other servers. In the example, the A-records
have a TTL of 5 minutes. A low TTL ensures that DNS servers are queried
often, and hence are given the possibility to obtain fresh, up-to-date information
about a domain which is making changes over relatively small time intervals.
Low TTLs mean frequent repetition of the arduous look-up process and hence
come at the cost of adding a considerable delay to the total service response
time.

For example, the DNS can consume a significant part of the time it takes to
fetch a web page, which might have several in-lined objects, including pictures
and advertisements from many source domains. Shaikh et al note: “25% of the
name lookups (with no caching) add an overhead of more than 3 seconds for the
ISP proxy log sites, and more than 650 ms for the popular sites. respectively. It
is interesting to observe that nearly 15% of the popular sites required more than
5 seconds to contact the authoritative nameserver and resolve the name. This
is likely to be related to the 5-second default request timeout in BIND-based
resolvers”[9].

As we shall see, caching alleviates this problem considerably (indeed, the
question of caching versus non-caching leads to a strongly bimodal behaviour),
but with a different potential cost: global congestion.

From the above, we note that DNS can employ two basic mechanisms in
multiplexing: it can cyclicly permute the RR set so that each new query is
ordered differently. Since clients normally pick the first element from the list,
this amounts to a continual Round-Robin shuffling of the server set. Second, the
TTL value must be chosen to be a relatively low value to avoid too much re-use
of old data which would bias the fair-weighted Round-Robin distribution.

Clearly, these methods are unreliable. There is much uncertainty. If we have
three servers in the RR set and only every third query from a given client contains
a service request, then all the traffic goes to the same server after all. We are
also trusting clients to act predictably and not try to second guess the results



from the DNS server by performing their own shuffling: DNS implementations
are not required to preserve the order of resource record sets. As for TTL values,
multiple levels of caching make it a challenge to predict and control the actual
TTL observed by the end user. The TTL policy is only a polite request to caches,
not an enforcable mechanism.

A problem with low TTL values is in so-called sticky sessions in which a user
is connected to a particular instance of a network service with a cookie of session
identifier that is unique to one server (e.g. in a net bank or online retailer). If
the next request to a persistent session were directed to a different server, the
session would be lost. We shall not discuss this particular issue here, since its
resolution is a story in its own right.

4 DNS latency

Service Level Objectives are performance wishes often set informally by clients
and estimated by engineers. The service provider wants to guarantee that users
will gain access to their services within a Service Level Objective. Users are
known to give up on slow services within just a few seconds and take their
custom elsewhere[1].

The uncertainty is the response time is rightfully a combination of the uncer-
tainty margins in each of the independent causal factors between the client and
the server. This includes the identification of the appropriate server through the
DNS service. One would like to write:

∆t =
√

(∆tDNS)2 + (∆tRouting)2 + ... (1)

Since the DNS is a network service, it is itself dependent on all of the other
uncertainties in a network, so each DNS query invokes all of the latencies in the
system even before a service has commenced. Alas, the inter-dependencies of a
network make the Pythagorean formula above difficult to implement.

A data centre engineer would like to attempt to compensate for the lookup
delay, or at least account for it in service promises to clients. Let us consider
then, how much DNS server redirection could add to the margins needed for the
‘over-provision’ of services, according to this study? On a global scale there are
more sources of possible delay which could add to the overall response time. It
is plausible that the worst bottleneck would be shifted to some other component
in the supply chain. Hence it seems possible that one might win performance
improvements by making a more informed choice based upon monitoring of the
available capacities along different alternative paths.

Consider the scenario in figure 1. We imagine a global organization with al-
ternative data centres at different locations. Redirection to the appropriate data
centre will occur by DNS multiplexing. There are two competing mechanisms in
such a load sharing scheme: the desire to avoid bottlenecks at the dispatcher and
the desire to avoid congestion at the servers themselves. If the dispatcher does
not share efficiently, there might be congestion, but if the dispatcher struggles
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Fig. 1. A schematic illustration of the DNS load sharing scenario..

to share the load it could add to the service time itself. This is a classic problem
in inventory management[10].

The DNS Time To Live is key here, since a high TTL lowers the load on
the DNS as a dispatcher, but at the same time increases the congestion on the
servers. It behaves as a slider-knob trading off these two effects. Figure 2 shows
what one might expect for the relationship between the TTL value set in the
authoritative nameserver and the round-trip time of fetching web-objects from
a hostname that is registered with several IPs in the authoritative nameserver.
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Fig. 2. Hypothesized cost of a DNS based load balancer at high traffic levels. The cost
rises for low TTL as the load on the DNS server increases. The cost rises for long TTL
as the individual servers start to become loaded inefficiently due to unfair weighting.

What is interesting about this form is the possibility that there exists an
optimal value for the TTL parameter (the inventory re-order time). In previous
work this TTL parameter has been set essentially by hand, without much insight
into its functional role[8, 11]. We would like to investigate this causal role of



the TTL value more carefully below by testing DNS implementations against
simulated traffic patterns.

5 Empirical study

Our experiments investigate the policies that can minimize DNS induced latency.
Such latency can come from the inefficiency of the DNS service itself, from
the relative congestion of alternative servers, and from transport uncertainties
(which are unrelated to the DNS). We arrange for the latter to disappear by
isolating a DNS load balancing scenario in the lab. Hence we are left with the
interplay between dispatcher (the DNS response time) and server congestion
(determined by the algorithm used by the dispatcher) which yields a final service
time.

We deploy a client, the client’s local resolver with cache (representing a local
domain nameserver), and the remote domain’s authoritative DNS server. We
also have six web-servers, all configured similarly to answer requests for a single
hostname, e.g. www.example.net. Wide-area network emulation is provided by
the NetEm facility in the 2.6.16 linux kernel[13]. This is a part of the QoS
framework there, and it allows us to specify delays and delay distributions for
outgoing queues to simulate load. In the experiments on TTL vs RTT, the cache
has a mean delay of 20ms, the authoritative has 300ms.

5.1 Effect of TTL on round-trip time, homogeneous servers

Running the flood tool to test DNS server response allows us to test our hypo-
thetical inventory processing model for the combined lookup and service time.
For the initial test, we make all of the servers identical in capacity and latency.

The plot in figure 3 shows the effect of TTL on static DNS server response-
time for a full page load, that is, a DNS request for the hostname, TCP connec-
tion setup, sending HTTP request and finally receiving HTTP reply (connection
tear-down is not included). The HTTP request used is trivial to serve and re-
quires few CPU cycles per request.

For TTL 0, there is little variance in the results. We found that it was es-
sentially impossible to overload a DNS server running on modern hardware with
realistic traffic intensities. The uncertainty bars corresponds exactly to a con-
trolled delay distribution which we specified for the authoritative nameserver
(using NetEm). For TTL 1 and beyond, DNS requests are served both by the
authoritative and caching nameserver. Since these two servers have very different
delays set up for their outward queues, a request would either be served by the
cache or the authoritative server. As TTL increases, the chance for a cache hit
in the caching server increases proportionally. We see a flattening out of the tail
for large TTL and no apparent rise in server congestion, since the load presented
by our test page was low. Thus, this data represents primarily the behaviour of
the dispatcher.
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Fig. 3. Cost of lookup as a function of TTL for a ‘static backend’ DNS server. To be
compared with the hypothesized form. Rather than rising at the end, it flattens out..
The second graph has no low TTL lookup cost up shows a rising inefficiency cost as
server balancing fails..

Figure 4 shows how the DNS response time distribution is strongly bi-modal,
clearly showing the influence of caching. The figure is dislocated so we can view
the two peaks in more detail. We see that for TTL 0, there are no cache-hits on
the caching server. But as TTL increases, so does the cache-hit rate. For TTL
100, we see a very high number of cached replies, and a close to zero amount of
time-intensive authoritative requests.
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The above experiment was repeated for a dynamic back-end DNS server:
PowerDNS (with PostgreSQL as back-end). Here the database is loaded with
the zone-data containing the resource records. PowerDNS is set up to query
the database using a simple query, and appending "ORDER BY random() LIMIT



1", which returns one random IP address when requesting the hostname. The
linearly increasing uncertainty in second figure 3 can be attributed to server load-
ing due to poor entropy. Requests are queued and the system enters a thrashing
phase. It increases with the TTL since a low TTL spreads the requests very effi-
ciently among the servers, avoiding overload. As TTL increases, the probability
of server load does too, and thus also the uncertainty. Thus we have measured
both tails of our hypothetical curve for different traffic regimes.

5.2 Distribution entropy

The plot in figure 5 shows the cumulative frequency distribution of overall re-
sponse times. What we observe is that for a zero TTL, most requests (90%) lie
within the range of 0 to 1000 milliseconds per request. For TTL 9, we can see
that approx 60% of the requests lie within the range of 0 to 2000 milliseconds
per request. Also for TTL 9, we see that approx 90% of the requests lie within
the range of 0 to 6000 milliseconds per request. Note that a long TTL seems to
imply a longer wait, which warns against the very large TTL values suggested
by authors several years ago. These results are of great interest to the Service
Level Agreement architects. The efficiency of the load scheduler itself also de-
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pends on the TTL. Ideally a load balancer will maximize the entropy of the
connections histograms[14]. Figure 6 shows how well BIND distributes requests
evenly among servers in a resource record set for a single client.

In the“Cyclic B” case, with a TTL of three seconds we see a more uneven
response caused by BIND resetting the order of the resource record set each time
the TTL expires. This causes a greater uncertainty which the simple round-robin



algorithm does not cope well with: an unfair weighting is induced on the server
record distribution.
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Fig. 6. Entropy of load balancing by DNS for one client..

The variations are very small, however, and do not pose any risk of over-
utilisation for server ‘www1’ unless there is critically high traffic, in which case a
non-linear instability could be seeded by this lack of parity. However, seen in the
context of requests arriving from a source of many clients in diverse domains,
there could be sufficient entropy of clients to even out this behaviour.

6 Comparable work

Several researchers have examined load balancing using DNS with varying con-
clusions. Cardellini et al survey proposed and commercially available balancing
schemes, including constant and adaptive TTL schemes for DNS, dispatcher-
based packet rewriting, and server-based mechanisms[8]. They find that both
constant TTL with server and client state information, and the adaptive TTL
scheme perform better than stateless round-robin approach.

Bryhni et al also compare a set of load-balancing implementations, with a
focus on dispatcher-based systems[11]. The round-robin DNS is discussed with
TTLs of 1 and 24 hours. Their trace-driven simulation results show that a
dispatcher-based design running a round-robin algorithm yields the best distri-
bution of load and amongst the lowest response times observed for that particular
scenario.

In another paper Cardellini et al present a more thorough examination of
web-server load balancing using DNS, and introduce HTTP redirection as a
potential remedy for the otherwise coarse-grained nature of DNS[15]. They claim
superior performance of redirection mechanisms over classic DNS-only balancing.

Shaikh et al, show that lowered TTL values must be carefully chosen to
balance page responsiveness against excessive latency observed by the client[9].



The authors recognise that, to allow a fine-grained and responsive DNS-based
server selection scheme, the TTL should be set to zero or a very low value,
however this can lead to two orders of magnitude of extra delay, according to
the paper. Other authors also explore the effectiveness of lowered TTL values.
Jung et al [16], Teo [17], Park [18].

7 Discussion and Conclusions

DNS load balancing is a somewhat controversial topic. We have examined the
behaviour of the DNS implementations with regard to their caching policy in
order to find the expected uncertainty in meeting Service Level Objectives.

We find that today’s DNS servers easily cope with high request volumes,
in high levels (notwithstanding denial of service attacks). Caching policy does
not impact directly on performance from the viewpoint of the server. However,
the response time of the DNS service is relatively high by comparison to other
services, due to the iterative nature of queries.

Round robin load balancing in DNS service works adequately with high levels
of entropy, but are more likely to become unstable under high traffic conditions
for low TTL. Low level load balancers favour simple round-robin load-sharing
at low to medium intensity[7]; there one has very low latency routes between
the dispatcher and server and the cost of looking for improvements outweighs
any benefits. In global routes, a DNS server can benefit from a knowledge of
the round-trip time when load balancing. Unfortunately, there is not a clear
correlation between the time measured by the client, and that measured by the
DNS server load balancer, so this does not work well.

The uncertainties inherent in wide area load sharing mean that a DNS load
balancing strategy is not a substitute for low level load-sharing mechanisms.
Failover redundancy is a main reason for having multiple data centres, but this
is not the same as load balancing by DNS. Cumulative frequency plots indicates
the additional round-trip time with corresponding uncertainties for requests.
This shows us what one can expect to achieve in an agreement 80% or 90% of
the time. Pre-sorting sites, e.g. by ‘picking the site in your country’ etc preempts
DNS weaknesses.

DNS cannot be avoided, but is it the right tool for load balancing? Clearly it is
not. However, it is nearly the only viable interface for load-balancing on a global
scale (IPv4 anycast is another). DNS, with the solid backing of a dynamical
back-end (based on a database with state-information gathered from the servers,
maybe proximity information from ARIN’s IP-to-country mappings, time zone
info, etc), is a very powerful tool for global server load balancing.

We are grateful to Jon Henrik Bjørnstad and Gard Undheim for helpful
discussions. This work is supported by the EC IST-EMANICS Network of Ex-
cellence (#26854)
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