
Decentralized Computation of
Threshold Crossing Alerts

Fetahi Wuhib1, Mads Dam1, Rolf Stadler1, and Alexander Clemm2

1 KTH Royal Institute of Technology,
Stockholm, Sweden

{fzwuhib,mfd,stadler}@kth.se
2 Cisco Systems

San Jose, California, USA
alex@cisco.com

Abstract. Threshold crossing alerts (TCAs) indicate to a management system
that a management variable, associated with the state, performance or health of
the network, has crossed a certain threshold. The timely detection of TCAs is
essential to proactive management. This paper focuses on detecting TCAs for
network-level variables, which are computed from device-level variables using
aggregation functions, such as SUM, MAX, or AVERAGE. It introduces TCA-
GAP, a novel protocol for producing network-wide TCAs in a scalable and robust
manner. The protocol maintains a spanning tree and uses local thresholds, which
adapt to changes in network state and topology, by allowing nodes to trade un-
used “threshold space”. Scalability is achieved through computing the thresholds
locally and through distributing the aggregation process across all nodes. Fault-
tolerance is achieved by a mechanism that reconstructs the spanning tree after
node addition, removal or failure. Simulation results on an ISP topology show
that the protocol successfully concentrates traffic overhead to periods where the
aggregate is close to the given threshold.

1 Introduction

Threshold crossing alerts (TCAs) indicate to a management system that some monitored
MIB object, or management variable, has crossed a certain preconfigured value - the
threshold. Objects that are monitored for TCAs typically contain performance-related
data, such as link utilization or packet drop rates. In order to avoid repeated TCAs in
case the monitored variable oscillates, a threshold is typically accompanied by a second
threshold called the hysteresis threshold, set to a lower value than the threshold itself.
The hysteresis threshold must be crossed, in order to clear the TCA and allow a new
TCA to be triggered when the threshold is crossed again (Fig. 1).

TCAs represent an important mechanism in proactive management, as they allow
for management that is event-based and does not need to rely as much on centralized
polling.

Today, TCAs are generally set up per device, e.g., for monitoring packet drop rates
on a particular link. In addition, Service Level Agreements (SLAs) are often articulated
similarly, on a per-device basis, reflecting the limitations of today’s technology. How-
ever, there is a definitive need for management functionality that provides cross-device
TCAs, which are applied to parameters that are aggregated across the network. Exam-
ples include management applications that alert an operator whenever (a) the average
link utilization in a domain rises above certain threshold, or (b) whenever the number



Fig. 1. Threshold Crossing Alerts: an alert is raised when a network-wide variable, the aggregate,
exceeds a given global threshold T

+
g . The alert is cleared when the aggregate has decreased below

a lower threshold T
−

g .

of currently active voice calls on a network, as aggregated across IP PBXs or voice
gateways, exceeds a given value.

This work focuses on supporting TCAs for thresholds on network-wide manage-
ment variables, which are computed by aggregating local variables across many devices.
We will refer to such TCAs as network TCAs (NTCAs) and to network-wide manage-
ment variables as aggregates. Typical NTCAs involve aggregates that are computed
from device variables, using functions, such as SUM, AVERAGE, COUNT, MAX, or
MIN. (For a discussion on the practical relevance of NTCAs, see [1].)

The hard part in determining when to trigger NTCAs is to ensure scalability and
fault-tolerance of the approach. Traditionally, the aggregation of local variables from
different devices has been performed in a centralized way, whereby an application,
running on a management station, first retrieves state variables from agents in network
devices and then aggregates them on the management station. Such an approach has
well-known drawbacks with respect to scalability and fault tolerance.

We propose that NTCAs be computed in a distributed way. To this end, we assume
that each network device participates in the computation by running a management pro-
cess, either internally or on an external, associated device. These management processes
communicate via an overlay network for the purpose of monitoring the network thresh-
old. Throughout the paper, we refer to this overlay as the network graph. A node in this
graph represents a management process together with its associated network device(s).
While the topology of this overlay can be chosen independently from the topology
of the underlying physical network, we assume in this paper, for simplicity, that both
topologies are the same, i.e., that the management overlay has the same topology as the
as the underlying physical network.

A straightforward solution to the NTCA problem can be constructed by using a
protocol for distributed state aggregation, such as [2,3]. These protocols provide a con-
tinuous estimate of the network-wide aggregate on a dedicated root node, by setting up
a spanning tree on the network graph, along which updates are reported. NTCAs can be
detected by a filter on the root node. However, such a solution is inherently inefficient
in terms of traffic overhead on the network graph and processing load on the manage-
ment nodes. For the purpose of triggering NTCAs, we are not interested in receiving
estimates about the dynamically changing aggregate, but only in receiving alarms when
it crosses certain thresholds. For instance, no estimate of the aggregate is needed if its
value is well below a threshold.



In this paper, we present TCA-GAP, a novel protocol for computing NTCAs in a
scalable and robust manner. The protocol is based on the Generic Aggregation Protocol
(GAP), which provides support for creating and maintaining a spanning tree on the
network graph and for distributed aggregation of local variables [3]. The basic idea
behind our protocol is the use of local thresholds that control whether a node reports a
change in aggregate of its subtree. These thresholds are locally recomputed whenever
local threshold rules are violated, which can be triggered, e.g., by a “significant change”
in a device variable or a node failure. Scalability is achieved through computing the
thresholds locally and through distributing the aggregation process across all nodes of
the spanning tree. Fault-tolerance is achieved by a mechanism that reconstructs the
spanning tree after node addition, removal or failure. We evaluate the protocol on an
ISP topology and compare its performance to a naı̈ve solution to the NTCA problem
and to a centralized scheme for NTCA detection proposed by Dilman and Raz [4].

The paper is organized as follows. Section 2 reviews related work. Section 3 for-
mally defines the NTCA problem. Section 4 provides GAP in a nutshell, and section
5 presents our protocol. Section 6 gives simulation scenarios, simulation results and a
discussion of those results. Finally, section 7 provides some additional comments to the
results and gives an outlook on further work.

2 Related Work

Dilman and Raz [4] study the NTCA problem for a centralized management system,
where the management station communicates directly with the network elements. The
authors assume that the aggregation function is sum and that a single global threshold T
is given. In one solution, which the authors call ‘simple-value’, local threshold value of
T/n where n is the number of nodes in the network is assigned to all nodes. Whenever
the local weight becomes larger than this threshold, the node sends a trap with the
current weight to the management station. Periodically, if the management station has
received traps during the previous period, it polls all nodes that did not send a trap for
their local weights. Then, it aggregates the local weights of all nodes and determines
whether the global threshold has been crossed. This scheme performs well for “small”
networks, where polling is feasible, where weights are evenly distributed, and where the
likelihood of a node exceeding its threshold is small. In 6 we compare the performance
of TCA-GAP to this simple-value scheme for a specific scenario. In the same paper, the
authors propose a second scheme, called ‘simple-rate’, which assumes an upper bound
on ∆w/∆t, the range of change of weights per unit time. This assumption leads to an
upper bound on the aggregate and thus allows nodes to be sampled less frequently.

Decentralized solutions for problems closely related to the NTCA problem have
been proposed by Breitgand, Dolev and Raz in the context of estimating the size of a
multicast group [5]. There, the task is to determine whether the group size is within a
prescribed interval for which pricing is constant. Several schemes are proposed, based
on the concept that nodes intercept traps generated by their children, in order to suppress
false alerts.

Outside the specific domain of TCA generation, the problem of distributed state
aggregation has recently received considerable attention (cf. [2, 6–9]). An approach
common to several authors (ourselves including) is to reduce traffic load by installing
filters at each node of the aggregation tree. Olston et al. [10] propose a scheme whereby
filters installed at each node continually shrink, leaving room for a central processor



to reallocate filter space where needed most. This scheme was later refined in [11],
by using statistics on the local aggregates held at each node, in order to allow filters
to dynamically adjust to the data sources. One drawback of this approach is that it is
not temporally local, because the criteria for setting the filters depend on the histories
of previously sampled values. This makes the approach vulnerable to failures and dy-
namic changes, since these can affect the shape of the aggregation tree in unpredictable
ways. (This approach though is spatially local, since each node makes local decisions
to set the filters for its children.) By way of comparison, the solution we propose is
both spatially and temporally local and applies a rather simple, history-free scheme to
transfer threshold space between siblings in an aggregation tree.

3 The NTCA Problem

We are considering a dynamically changing network graph G(t) = (V (t), E(t)) in
which nodes i ∈ V (t) and edges/links e ∈ E(t) ⊆ V (t) × V (t) may appear and
disappear over time. To each node i is associated a weight, wi(t) ≥ 0. The term weight
is used to represent a local state variable or a device counter that is being subjected to
threshold monitoring. For the main part of the paper we assume that weights are integer
valued quantities, aggregated using SUM. In section 7 we discuss extensions to support
other aggregates such as those mentioned in section 1.

The objective is to raise an alert on a distinguished root node, the management
station, when the aggregate weight Σiwi(t) exceeds a given global threshold T +

g , and
to clear the alert on the root when the aggregate has decreased below a lower threshold
T−

g .
The design goals for the protocol are as follows:

– Scalability: the protocol must scale to networks of very large size. To this end,
the protocol must ensure that the load on nodes and links is small and evenly dis-
tributed. In addition, for practical network topologies, the maximum processing
load on each node and the maximum traffic load on each link should increase sub-
linearly with the network size.

– Accuracy:the accuracy requirement is subdivided into the following
• (Soundness) An NTCA is raised only if the aggregate crosses T +

g , and cleared
only if the aggregate falls below T−

g ;
• (Accuracy) An NTCA is raised if the upper threshold T +

g is exceeded for a cer-
tain minimal duration ∆talert. For clearing the NTCA, the condition is sym-
metric;

• (Timeliness) If an NTCA is raised (cleared), then it is raised (cleared) within
some given minimal time tdelay after the relevant threshold crossing.

– Robustness: the protocol must adapt gracefully to changes in the underlying net-
work topology, including node and link failures. This means that, for practically
relevant scenarios involving node failures and/or topology changes, the protocol
must produce output that is of practical use.

The ∆talert condition is needed in order to adequately disregard transient behavior.
A strict solution that does not allow for some such form of temporal imprecision can-
not in fact be realized (cf. [12]). The soundness and timeliness conditions need to be
interpreted in a similar way. We turn to this issue in section 7.



4 The GAP Protocol

The TCA-GAP protocol introduced in this paper is based on an earlier protocol, GAP
- Generic Aggregation Protocol [3], for building and maintaining aggregation trees.
GAP is a modified and extended version of the BFS (Breadth First Spanning) tree con-
struction algorithm of Dolev, Israeli, and Moran [13]. The protocol of [13] executes in
coarsely synchronized rounds, where each node exchanges with its neighbors its belief
about the minimum distance to the root and then updates its belief accordingly. Each
node also maintains a pointer to its parent, through which the BFS tree is represented.

The above work by Dolev et al. [13] exhibits similarities to the 802.1d Spanning
Tree Protocol (STP) [14, 15]. STP is a distributed protocol that constructs and main-
tains a spanning tree among bridges/switches, in order to interconnect LAN segments.
Similar to [13], a node in STP chooses its parent, such that its distance (measured in ag-
gregate link costs) to the root node is minimized. The initialization phase though is very
different between the two protocols. While STP uses broadcast in LAN segments and
a leader election algorithm to determine the root node, [13] assumes a given root node
and an underlying neighbor discovery service. Also the failure discovery mechanism is
very different in both protocols.

GAP extends [13] in a number of ways. First, GAP uses message passing instead
of shared registers. Second, in GAP, each node maintains information about its children
in the BFS tree, in order to compute the partial aggregate, i.e., the aggregate value of
the weights from all nodes of the subtree where this node is the root. Third, GAP is
event-driven. That is, messages are only exchanged as results of events, such as the
detection of a new neighbor, the failure of a neighbor, an aggregate update, a change in
local weight or a parent change. Fourth, since a purely event-driven protocol can cause
a high load on the root node and on nodes close to the root, GAP uses a simple rate
limitation scheme, which imposes an upper bound on message rates on each link.

In GAP, each node maintains a neighborhood table shown in Fig. 2(a), associating
a status, a level, and an (aggregate) weight to each neighboring node. The status field
(with values self, child, parent and peer) defines the structure of the aggregation tree.
The value peer denotes a neighbor in the network graph that is not a neighbor in the
aggregation tree. The level field indicates the distance, in number of hops, to the root.
It is used to construct the BFS aggregation tree, whereby each node chooses its parent
in such a way that its level is minimal. The weight field refers to the cached partial
aggregate for a neighboring node and to the local weight for the local node.

(a) Sample neighborhood table for GAP (b) Local hysteresis mechanism in TCA-GAP that decides
whether a node is active or passive.

Fig. 2. The GAP neighborhood table and the local hysteresis mechanism in TCA-GAP



GAP relies on underlying failure and neighbor discovery services, which are as-
sumed to be reliable.

5 TCA-GAP: A Distributed Solution to the NTCA Problem

TCA-GAP assumes a designated root node to report NTCAs. Upon starting the proto-
col, the root node will map the global thresholds into local thresholds for its children
on the aggregation tree, and each child will then, recursively, assign local thresholds to
its own children. During the operation of the protocol, each node that has an aggregate
far below (or above) the local threshold will enter a passive state, where it refrains from
forwarding changes of its aggregate to its parent. Once a node’s aggregate gets close
to its local threshold, it will become active and start reporting changes of the aggre-
gate to its parent. A passive node will adapt to changes in network state and to failures,
by dynamically recomputing the local thresholds of its children. In the following, we
describe the main features of TCA-GAP in more detail.
Local hysteresis mechanism: a local hysteresis mechanism determines whether a node
sends updates of its aggregate to its parent. A node that sends updates is called active.
One that does not send updates is called passive. The local hysteresis mechanism is
similar to the global hysteresis mechanism (see Fig. 1), but it serves a different purpose,
namely, to correctly sample the aggregate when the global threshold is crossed. The
local threshold assigned to node i is T +

i . From T+

i the upper and lower local hysteresis
thresholds T+

i,u and T+

i,l are computed, such that T +

i,u = k1T
+

i and T+

i,l = k2T
+

i . Here,
k1 and k2 are some global control parameters. Using these threshold values, a node will
decide when to send its aggregate value as shown in Fig. 2(b). The transition between
active and passive states occurs as follows. When the local aggregate of a passive node
grows beyond the upper threshold T +

i,u, the node becomes active. It will stop performing
threshold recomputations (see below), start sending aggregate updates (just as in the
GAP protocol), and reset the thresholds of its children to 0. When the aggregate of
an active node decreases below T +

i,l, then the node becomes passive and recomputes
the thresholds of its children. The threshold of child j with aggregate aj will be set to
T+

i ∗ (aj/ai), where ai is the aggregate of the local node.
Threshold rules: the (local) threshold rules guarantee that, if a global threshold is
crossed, then there is at least one node, for which these rules are violated. They are:
(1) T+

i ≥ Σj∈JT+

j where J is the set of children of node i;
(2) If J ′ is the set of active children, then Σj∈J′T+

j ≥ Σj∈J′aj where aj is the local
aggregate reported by child j.

As long as these two rules remain valid on a node, it stays passive. Once one of them is
violated, the node will recompute the thresholds of its children.
Threshold recomputation: threshold recomputation allows an active node to “receive
threshold space” from one or more passive siblings. The purpose of this is to reinstate
the threshold rules on the node.

It is generally difficult to recompute thresholds with a small overhead. For in-
stance, a greedy approach to threshold recomputation will attempt to give an active
child enough threshold space to make it passive. Such a solution, however, is prone
to oscillation, since it can lead to two children alternately borrowing threshold space
from each other. For this reason, we take a conservative approach that allows an active
child of a passive node, under certain conditions, to remain active, without threshold
recomputation having to occur.



Recomputation of local thresholds can happen for two reasons:
– Event #1: a node receives from its parent a new, lower threshold T ′, causing thresh-

old rule (1) above to fail;
– Event #2: a child reports an increased aggregate, causing threshold rule (2) to fail.

These events can have several causes. For instance, the change of a local weight in some
subtree can cause event #2 at the root of that subtree. When a device fails or is removed
from the network, the topology of the aggregation tree may change, which in turn may
cause events #1 or #2 to occur at different nodes in the network. The same can happen
in the case where a device recovers from failure or is added to the network.

As a reaction to one of the above events, a node recomputes the local thresholds as
follows:

i. For event #1, we reduce the threshold of one or more passive children by Σj∈JT+

j −

T ′, where J is the set of children of the current node. Observe that, if such a reduc-
tion is not possible, then T ′ will be less than the sum of the thresholds of the active
children, and, therefore, has reverted to active state.

ii. For event #2, we reduce the threshold of one or more passive children by some
value δ > Σj∈J′aj − Σj∈J′T+

j , where J ′ is the set of active nodes, and increase
the assigned threshold value of an active child by the same amount.

In case [ii.], there is some freedom in choosing δ and the child j whose threshold we
increment. However, δ should not exceed aj

k2

− T+

j , since, as we noted, there is risk

for oscillation. For our protocol, we choose j such that aj − T+

j is maximized, and we
choose δ =

aj

k1

−T+

j . Observe that, since the threshold rules are evaluated at the end of
each protocol cycle, only an aggregate update from a single child can have caused event
#2. Therefore, some j can be found, such that the resulting δ will satisfy [ii.]. To reduce
the threshold of the passive children by δ, the threshold of each passive child is reduced,
in turn, in the order of decreasing thresholds. This solution attempts to minimize the
threshold updating overhead at the cost of a substantial risk that at least one child will
become active in the next round.
Topology changes and failures: when a node is removed or fails, the protocol follows
the GAP design, i.e., the failure detector informs all neighbors, and, as a result, the
parent updates its neighborhood table by removing the failed node and recomputing its
aggregate accordingly. When a new node is discovered, or a failed node recovers, the
protocol again follows the GAP design by attaching it to a suitable parent. The parent
receives an update message from the new node, creates an entry for the node in the
neighborhood table, and updates the aggregate accordingly. In all of the above cases,
the threshold rules are evaluated at the end of the protocol cycle, which may include
threshold recomputation, etc., as described above.
Symmetric modes: once the aggregate exceeds T +

g , then all nodes will have become
active, and the overhead of TCA-GAP increases to that of GAP. To a large extent, this
problem of a large overhead can be addressed by exploiting the inherent symmetry in
the NTCA problem: detecting an upwards crossing of an upper threshold level is not
different from detecting a downwards crossing of the lower one. In the first case, nodes
will be passive on small aggregates and set to trigger when aggregates become large. In
the second case, nodes will be passive on large aggregates and trigger when aggregates
become small. Reflecting this, the protocol can work in one of two symmetric modes,
positive or negative, depending on which threshold and which direction of threshold
crossing it is set to trigger. The switch between modes is done at the root, as a result
of global threshold crossings, and propagated down the aggregation tree, by adding the



mode to the update messages exchanged between neighbors. Locally, each node i is
assigned either an upper threshold T +

i or a lower threshold T−

i . In positive mode, the
objective is to detect upwards crossings of T +

i . In negative mode, the objective is sym-
metric, i.e., to detect downwards crossings of T−

i . The local hysteresis thresholds in the
latter case are computed as T−

i,u = T−

i /k1 and T−

i,l = T−

i /k2. Note that, for simplicity
of presentation, the discussion in the previous subsections refers to the positive mode.
The extension to negative mode is straightforward.
Initialization: the protocol initializes in the same way as GAP, which constructs the
BFS spanning tree and populates the local neighborhood table [3]. As part of this initial-
ization process, the local thresholds in all nodes are set to 0 in positive mode, causing
weight changes to be reported up the aggregation tree to the root node. In the sec-
ond phase of the initialization process, the root node sets its two global thresholds as
instructed by the management station, which causes the recomputation of local thresh-
olds to be propagated from the root down the aggregation tree. As a result, nodes start
filtering weight and aggregate changes.
Code: the main data structure manipulated by TCA-GAP is the neighborhood table,
which, in addition to the four columns of Fig. 2(a), contains a fifth column for thresh-
olds. All numerical fields in the neighborhood table are arbitrarily initialized to 0. The
update vector in TCA-GAP serves a similar purpose as in GAP, namely, informing a
neighbor of a node about changes in the node’s neighborhood table. This vector is a tu-
ple of the form (update,From,Weight,Level,Parent,ThresholdList,
Sign) where ThresholdList is a list of (node, threshold) pairs, and Sign is the
mode. The protocol assumes an external, virtual root with level 0. Further, it assumes
underlying services for failure detection and neighbor discovery. Local weight changes
are handled by assuming that two instances of TCA-GAP run on every node, one, a leaf,
for local weight changes, and one for aggregation. The main operation embodying the
TCA-GAP semantics is the function restoreTableInvariant, which is respon-
sible for maintaining the TCA-GAP invariants. These invariants ensure, for instance,
that each node has a unique parent, and that the local threshold rules hold. In case the
invariants are violated, actions are performed, such as selecting a new parent, switching
between passive and active operation, or recomputing thresholds. The pseudo code for
TCA-GAP can be found in [1].

6 Experimental Evaluation

We evaluated the functionality and performance of TCA-GAP through simulation, un-
der varying topologies, thresholds, weight change and node failure models. The main
hypotheses we wanted to test were:

– At low aggregate/threshold ratios the TCA-GAP scheme produces a management
traffic overhead several orders of magnitude below that of a scheme for continuous
monitoring such as GAP;

– The performance of TCA-GAP degrades gracefully as the aggregate/threshold ratio
approaches 1.

The simulation results we have obtained are very encouraging. In the paper, we show
results for two scenarios using an ISP network as the underlying topology. The first
scenario involves several sinusoidal threshold crossings and shows how TCA-GAP suc-
cessfully manages to reduce traffic when the aggregate is far from the thresholds. The
second scenario shows the behavior of TCA-GAP at a low static aggregation level.



For the simulations we used a 221 node grid network topology and the topology
of an ISP, Abovenet, from [16]. In this paper we mainly report on simulation results
from Abovenet, a network with 654 nodes and 1332 links. The simulation studies were
conducted with the SIMPSON network simulator [17]. The experiments were run with
a uniform message size of 1Kbyte, a bandwidth of 100MB/sec, a processing delay of
1ms, and a communication delay of 4ms.

In the simulation runs, rate limitation was ignored to better compare the key prop-
erties of TCA-GAP versus the other two schemes. The main effect of rate limitation is
to smooth peak traffic volumes, by imposing an upper bound on the traffic on each link.
Secondly, the overall traffic is reduced since each node has the ability to process several
messages before an output is produced.

Local weights are constrained to the interval [0, . . . , 100]. Weight changes are sim-
ulated using a random walk model with random step sizes. Changes occur at randomly
selected nodes, following a Poisson distribution with an average change rate per node
of 1 weight change per second.

For the simulations shown in this paper, the global thresholds have been chosen at
T+

g = 80% and T−

g = 70% of the maximally achievable aggregate, i.e., the aggregate
value where all nodes have the maximum possible weight of 100.

In the first scenario, nodes are initialized with weight values that are uniformly dis-
tributed in [0, . . . , 100] and the step size of the random walk model is biased with a
sinusoidal input, such that wi(t + ∆t) = wi(t) + ∆w + b ∗ sin(t/ω) + k where ∆w is
chosen to be uniformly distributed in an interval [−x, . . . , x], and the constants b and ω
are chosen to obtain a suitable period and amplitude for the superimposed sinusoid on
the aggregate. The constant k is a bias added to tune the aggregate to a desired long term
average value. In Fig. 3(a), we show the aggregate, upper and lower global thresholds
and, for both GAP and TCA-GAP, the total number of messages over a 200ms sam-
pling period. The local thresholds are computed using k1 = 0.9 and k2 = 0.85. Three
threshold crossings are shown in the figure. Each of them involves a gradually increas-
ing number of active nodes, until a point is reached where all nodes are active. In the
plot shown, this state is retained for a couple of seconds, until, after mode switching, the
root reverts to passive state by crossing the relevant lower local threshold. (Note that,
for any given node i in negative mode, the ‘lower’ threshold T −

i,l is actually higher than

the ‘higher’ threshold T−

i,u.) During the interval where all nodes are active, TCA-GAP
behaves roughly as GAP. The large peaks are due to the root node propagating new
threshold values, along with the sign, down the aggregation tree.

An interesting feature of TCA-GAP which is brought out in Fig. 3(a) is that traffic
is concentrated around the global threshold crossings, and not where aggregates are
maximal. This is attractive, since large aggregates are often indicative of congestion or
overload situations in the network where it is desirable to keep management overhead
to a minimum.

In the second scenario, the average aggregate weight has been chosen to be well
below the global threshold, at about 5%. For modeling the weight changes, we used a
biased version of the random walk model, such that wi(t + ∆t) = wi(t) + ∆w + k,
where ∆w is chosen to be uniformly distributed in an interval [−x, . . . , x].

The simulation results show that, on average, TCA-GAP generates 1.7% of the
messages that are generated by GAP. At any given time, 95% of the nodes were passive
and therefore did not produce messages. Graphs of the simulation results can be found
in [1].



(a) Scenario 1: Messages generated by TCA-GAP
and GAP; global aggregate over time; upper and
lower values of global thresholds

(b) Total number of messages produced during
a simulation run for TCA-GAP, SV and GAP in
function of the average global aggregate.

Fig. 3. Simulation Results
For the second scenario, we performed similar simulation studies with higher vari-

ability of the weight changes. As expected, the traffic and processing overhead of TCA-
GAP was larger than above, but still substantially smaller than that of GAP.

For both of the above scenarios, we performed the same simulations for a 221 node
grid network. The simulation results were similar to those for the Abovenet topology,
used in scenarios 1 and 2.

We have also compared our scheme to other schemes for detecting threshold cross-
ing alerts [4] in the number of messages consumed in the whole network. To compare
the performance of TCA-GAP with the simple-value scheme (SV) by Dilman-Raz [4],
we performed a number of simulations using scenario 2 with various average aggre-
gates. Fig. 3(b) shows the results of the simulations. It gives the number of messages
generated by TCA-GAP, SV and GAP, as a function of the average aggregate during the
simulation run of 900secs. As one can see, in GAP, the number of messages is hardly
affected by the level of the aggregate. We explain this by the fact that, this protocol
does not attempt any filtering and propagates all changes, no matter how small. The SV
scheme by Dilman and Raz distributes static thresholds to all nodes, and determines
whether a global TCA has occurred by polling all nodes whenever a node reports cross-
ing of its locally assigned threshold level. From the measurements, we conclude that,
for aggregate levels of less than 5%, SV produces a low number of messages compared
to both GAP and TCA-GAP, since local thresholds are almost never crossed. However,
as the aggregate level grow larger than 10%, the probability of local threshold cross-
ings increases significantly, which is reflected by a large increase in traffic volume. The
subsequent reduction in traffic for SV is due to the fact that, in SV, nodes sending traps
do not subsequently need to be polled. For TCA-GAP the traffic volume increases at a
much smaller rate.

7 Discussion and Future Work

In this section, we evaluate our simulation results against the design goals of TCA–GAP
concerning accuracy, scalability and robustness set out in section 3, and point to areas
of future work.
Accuracy: as we have pointed out, a protocol that does not allow some temporal im-
precision cannot be engineered. In particular, in a practical system, threshold crossings



must have some minimum duration ∆talert to guarantee detectability. Moreover, for a
deterministic solution such as TCA-GAP, threshold detection can only be guaranteed
when the network is stable: it is not hard to come up with failure patterns that con-
spire to continuously reconfigure the aggregation tree, such that threshold crossings
never get detected at the root. For a stable network an upper bound on ∆talert, the
amount of time a threshold must remain crossed for TCA-GAP to guarantee detection,
is O(n ∗ (td + tl) ∗ h) where:

– n is the degree of the network graph = maximal number of neighbors for any node;
– td is the rate limitation timeout;
– tl is the maximum communication delay between nodes;
– h is the height of the aggregation tree = the network diameter.

This bound is obtained, since, in the worst case, the threshold crossing has to be prop-
agated to the root from the furthest distant leaf. Along each node, threshold violation
has to be propagated through all neighbors in turn. Observe that the parameters n and h
are determined by the choice of the management overlay topology, which, for this pa-
per, is chosen to be identical to the underlying physical network topology. Soundness,
in that NTCA’s are raised only if the aggregate actually crosses T +

g , is conjectured to
hold in similar terms: if an NTCA is raised for at least the duration ∆talert then it can
be guaranteed that the threshold was also crossed some time during this interval. The
timeliness requirement needs to be similarly adapted.
Scalability and Robustness: TCA-GAP uses a simple rate limitation scheme to impose
an upper bound on the management traffic on each link. This by itself is not sufficient to
guarantee scalability, however, unless a bound on the degree of nodes is also imposed.
The effect of this is not trivial, and left for future work. For robustness, the protocol is
certainly capable of adapting to topology changes in a graceful way. We confirmed this
in simulations using scenarios with node failures and recoveries with results consistent
with the other results we have reported.
Aggregation functions: above,we have used SUM as the aggregation function. Other
simple aggregates like COUNT, MIN, and MAX can be supported with no modifica-
tions other than replacement of the aggregation function. For instance, to count the num-
ber of nodes with some local attribute exceeding c the local weight function wi(t) will
return 1, if the attribute value exceeds c and 0 otherwise, and the aggregation function
will be SUM. One way of handling AVERAGE in our framework could be to extend
the underlying tree management protocol to maintain also node counts. This can be
done by adding a further “tree size” field to the neighborhood table. Moreover, the cost
of maintaining node counts only amounts to extending the topology update messages
which are already exchanged by a node count field.
Future work: for the evaluation of our protocol in this paper, we have used a random
walk model to capture the fluctuations of the device variables, i.e., the local weights.
While random walk models have been used before to model the changes of device
variables (e.g., changes in load on host interfaces [10]), we plan to further evaluate
TCA-GAP using real traces. Further, we plan on analyzing the effect of using differ-
ent overlay topologies on the performance of TCA-GAP and on making our protocol
resilient with regard to root failures. Also, we plan to investigate proactive threshold
recomputation schemes and more complex aggregation functions. Finally, an imple-
mentation of TCA-GAP on the Weaver platform [18] is under way in our laboratory at
KTH.
Acknowledgments: This work has been supported by a grant from Cisco Systems and
a personal grant from the Swedish Research Council.



References

1. F. Wuhib M. Dam R. Stadler and A. Clemm. Decentralized computation of threshold cross-
ing alerts. Technical report, KTH Royal Institute of Technology, 2005.

2. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny AGggretation
service for ad-hoc sensor networks. In Proc. 5th Symposium on Operating Systems Design
and Implementation, pages 131–146, 2002.

3. M. Dam and R. Stadler. A generic protocol for network state aggregation. In Proc. Ra-
diovetenskap och Kommunikation (RVK), 2005.

4. M. Dilman and D. Raz. Efficient reactive monitoring. IEEE Journal on Selected Areas in
Communications (JSAC), 20(4), 2002.

5. David Breitgand, Danny Dolev, and Danny Raz. Accounting mechanism for membership
size-dependent pricing of multicast traffic. In Networked Group Communication, pages 276–
286, 2003.

6. R. van Renesse. The importance of aggregation. In In (A. Schiper, A.A. Shvatsman, H.
Weatherspoon, and B. Y. Zhao, eds.), Future Directions in Distributed Computing, Lecture
Notes in Computer Science, volume 2584, pages 87–92. Springer-Verlag, 2003.

7. I. Gupta, R. van Renesse, and K. Birman. Scalable fault-tolerant aggregation in large process
groups. In Proc. Conf. on Dependable Systems and Networks, pages 433–442, 2001.

8. David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In FOCS ’03: Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, page 482, Washington, DC, USA, 2003. IEEE Computer Society.

9. Mohamed A. Sharaf, Jonathan Beaver, Alexandros Labrinidis, and Panos K. Chrysanthis.
Tina: a scheme for temporal coherency-aware in-network aggregation. In MobiDe ’03: Pro-
ceedings of the 3rd ACM international workshop on Data engineering for wireless and mo-
bile access, pages 69–76, New York, NY, USA, 2003. ACM Press.

10. Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive filters for continuous queries over
distributed data streams. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD inter-
national conference on Management of data, pages 563–574, New York, NY, USA, 2003.
ACM Press.

11. N. Roussopoulos A. Deligiannakis, Y. Kotidis. Hierarchical in-network data aggregation
with quality guarantees. In Proc. 9th International Conference on Extending Database Tech-
nology (EDBT), March 2004.

12. M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating aggregates on a peer-
to-peer network. In Manuscript, 2003.

13. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only
read/write atomicity. Distributed Computing, 7:3–16, 1993.

14. IEEE. ANSI/IEEE Std 802.1D, 1998 Edition. IEEE, 1998.
15. R. Perlman. Interconnections, Second Edition. Addison Wesley Longman, 2000.
16. N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with Rocketfuel. In

Proc. ACM/SIGCOMM, 2002.
17. K. S. Lim and R. Stadler. SIMPSON — a SIMple Pattern Simulator fOr Networks.

http://www.comet.columbia.edu/adm/software.htm, 2005.
18. K. S. Lim and R. Stadler. Weaver — realizing a scalable management paradigm on com-

modity routers. In Proc. 8th IFIP/IEEE Int. Symp. on Integrated Network Management (IM
2003), 2003.


