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Abstract. In utility computing environments, multiple users and 
applications are served from the same r esource pool. To maintain 
service level objectives and maintain high levels of utilization in the 
resource pool, it is desirable that resources be assigne d in a manner 
consistent with operator policies, while ensuring that shared resources 
(e.g., networks) within the pool do not become bottlenecks. This paper 
addresses how operator policies (preferences) can be i ncluded in the 
resource assignment problem as  soft constraints. We provide the 
problem formulation and use two examples of soft constraints to 
illustrate the method. Experimental results demonstrate impact of 
policies on the solution.  

1 Introduction 

Resource assignment is the process of assigning specific resources from a resource 
pool to applications such that their requirements can be met. This problem is 
important when applications are provisioned within l arge resource pools (e.g. data 
centers). In order to automate resource assignment, it is impo rtant to convert user 
requests into specifications that detail the application requirements in terms of 
resource types (e.g. servers) and the network bandwidth required between application 
components. This application topo logy is then mapped to the physica l topology of a 
utility computing environment. The Resource Assignment Problem (RAP) 
specification [1] describes this process. In RAP, applications are mapped to the 
topology of a utility computing environment. While RAP accounts for constraints 
imposed by server, storage and networking requirements during assignment, it does 
not consider policies that may be desirab le by operators, administrators or  users. In 
this paper we discuss how operator preferences (policies) may be incorporated as 
logical constraints during resource assignment. We present formulations and 
experimental results that deal with classes of users and resource flexing as examples 
of policies that may be used during resource assignment.  

Policies have been traditionally considered as event -action expressions that are 
used to trigger control actions when certain events/conditions occur [ 2], [3]. These 



policies have been applied in network and system management domain by triggering 
control actions as a result of thres hold-based or time-based events. Sahai et al. [4] 
have formulated policies as hard constraints for automated resource construction.  
Other related work [5]-[8] on constraint satisfaction approaches to policy also treats 
policy as hard constraints.   

In this paper, we describe policies  as soft constraints for resource assignment. To 
the best of our knowledge, earlier work on resource assignment [1], [9] has not 
explored usage of soft constraints in resource -assignment. It is important to 
emphasize that the assignment system may violate s oft constraints to varying degrees 
in order to ensure a technically feasible solution. In contrast, hard technological 
constraints, such as capacity limits, cannot be violated during resource assignment 
because their violation implies technolog ical infeasibility.  

The rest of this paper is organized as follows. In Section 2, we review the resource 
assignment problem, and present the mathematical optimization approach to resource 
assignment. Section 3 describes how policy can be incorporated in this problem as 
soft constraints. It also presents the formulation for incorporating class -of-user 
policies during resource assignment as well as for application flexing. Simulation 
results using this approach are described in Section 4. We conclude with some 
directions for future work in Section 5.  

2 An Optimization Problem for Automated Resource Assignment  

In [1], a resource assignment problem (RAP) for a large -scale computing utility, such 
as an Internet data center, was defined as follows. Given the topology of a physical 
network consisting of switches and servers with varying capabilities, and for a given 
component-based distributed application with requirements for processing and 
communication; decide which server from the physical network should be assigned to 
each application component, such that the traffic -weighted average inter -server 
distance is minimized, and the application’s processing and communication 
requirements are satisfied without exceeding network capacity limits. This section 
briefly reviews the models used to represent computing resources and applications . 
The reader is referred to [1] for more details.  

2.1 The RAP Models 

Figure 1 shows an example of the physical network. The network consists of a set of 
switches and a set of servers connected in a  tree topology. The root of the tree is a 
switching/routing device that connects the fabric to the Internet or other utility fabrics. 
All the internal nodes are switches, and all the leaf nodes are servers. Note that the 
notion of a “server” here is not re stricted to a compute server. It includes other 
devices such as firewalls, load balancers, network attached storage (NAS), VPN 
gateways, or other such components. Each server is described by a set of attribute 
values, such as processor type, processor spee d, memory size, etc. A complete list of 
parameters that characterize the network topology and resource capabilities is 
available in [1]. 
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Fig. 1. Topology of a physical network  

Figure 2 shows the component architecture of a distributed application, which is 
represented by a directed graph G(C, L). Each node Cc∈  represents an application 
component, and each directed edge Lccl ∈= )',(  is an ordered pair of component 
nodes, representing communication from component c to component c’.  The 
bandwidth requirement is characterized by a traffic matrix T, where each element 

'ccT  represents the amount of traffic from component c to component c’. Each 
component has a set of requirements on the attributes of the server that will be 
assigned to it. 
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Fig. 2. A component-based distributed application architecture  

2.2  A Mathematical Optimization Approach 

The very large number of resources and inherent complexity of a computing utility 
impose the need for an automated process for dealing with RAP. Two elements make 
a decision problem: First there is the set of alternatives that can be followed – “like 
knobs that can be turned.” Second,  there is a description of what is “allowed”, 
“valid”, or “feasible”. The task of the decision maker is to find a “setting of the 
knobs” that is “feasible.” In many decision problems, not all feasible se ttings are of 
equal desirability. If there is a way o f quantifying the desirability of a setting, one can 
ask to find the best of all feasible settings, which results in an optimization problem.   
More formally, we model the RAP optimization problem with three elements:  



• The decision variables describe the set of choices that can be made. An assignment 
of values to all decision variables constitutes a candidate solution to the 
optimization problem. In RAP, the decision variables represent which server in the 
computing utility is assigned to each application c omponent. 

• The feasible region represents values that are allowed for the decision variables.  
Typically not all possible combinations of values assigned to the decision var iables 
denote an assignment that meets all technical requirements. For example, 
application components may have processing or communication requirements that 
cannot be satisfied unless those components are assigned to specific servers. These 
requirements are expressed using equality or inequality constraints .  

• The objective function  is a measure of goodness of a given assignment of values to 
all decision variables, expressed as a parameterized function of these decision 
variables. In [1], we chose a specific objective function for RAP that minimizes the 
traffic-weighted inter-server distance. However, the formulation is flexible enough 
to accommodate other choices of goodness measures, such as costs, or certain 
utility functions.  
We chose mathematical optimization as a technique to automate the resource 

assignment process primarily for its expressive power and efficiency in traversing a 
large and complex search space. Arriving at a solution that is mathematically optimal 
within the model specified is a welcome side effect.  Therefore, RAP was formulated 
as a constrained optimization problem.  We were not interested in developing our own 
optimization technology, so we chose to use off -the-shelf optimization tools. Through 
proper linearization of certain constraints in RAP, we derived a mixed integer 
program (MIP) [10] formulation of the problem. Our prototype solver is implemented 
in the GAMS language [11], which generates a MIP model that can be fed into the 
CPLEX solver [12]. The latter either finds an optimal/sub -optimal solution that 
denotes a technically feasible and desirable assignment of  resources to applications, 
or declares the problem as infeasible, which means there is no possible assignment of 
resources to applications that can meet a ll the technical requirements.  

A detailed description of the MIP formulation is  presented in [1]. Note that the 
model in [1] also contains a storage area network (SAN) in the utility fabric and 
includes applications’ requirements on storage. In this paper, only policies and rules 
that are directly related to server resources are considered. If necessary, policies for 
storage resources can be easily incorporated in a fashion similar to those described 
here. 

3 Incorporating Policies in Resource Assignment 

In addition to technical constraints described above, we need to include operator 
policies and business rules during resource assignment. For example, it may be 
important to consider application priority when resources are scarce, or components 
migration policies during application fle xing.  

Operator policies and business rules are often expres sed as logical statements that 
are actually preferences. The operator would like these preferences to be true, as long 
as other hard constraints are not violated. The set of operator policies for an 



assignment itself defines a feasible region of decision v ariables. Replacing the 
feasible region of the original problem with the intersection of that region and the 
feasible region defined by operator policies provides the region of all feasible 
assignments that meet technical requirements and operator policies  at the same time. 
Because a wide variety of operator policies can be expressed by the decision region 
formed by linear inequal ities, they can be incorporated into the resource assignment 
problem during mathematical optimization.  

The concept of hard and soft constraints developed in the context of mathematical 
programming provides a valuable tool to handle operator policies in the context of 
assignment. Hard constraints are stated as inequalities in an optimization problem. 
Any assignment that violate s any of such constraints is identified as infeasible and not 
a viable solution. In general, we consider that co nstraints imposed by the technology 
are hard constraints that cannot be violated (i.e., their violation i mplies technical 
infeasibility of the solution). On the other hand, constraints imposed by rules, po licy, 
or operator preferences are soft constraints that may be violated to varying degrees if 
a solution is otherwise not possible. This is accomplished by introducing a variable v 
that measures the degree of violation of a constraint. More formally, let a policy 
constraint be given by  

bxf ≤)( , 

where x is the vector of decision variables, the function )(xf  encapsulates the logic 
of the constraint and the scalar b stands for a desirable threshold. In the above 
formulation, the constraint is hard. Any valid assignment x must result in a function 
value )(xf  which is not larger than b. By introducing the violation variable v in the 
form 

vbxf +≤)( , 

we see that for any choice of x, the variable v will have to take a value bxfv −≥ )(  
which is at least as big as the amount by which the original constraint is violated. 
Nonetheless, whatever the particular choice of x, the soft constraint can be satisfied. 
This alone would render the new co nstraint meaningless. In order to compel the 
optimization algorithm to find an assignment x that violates the constraint only as 
much as necessary to find an otherwise feasible solution, we introduce  a penalty into 
the objective function that is proportionate to the violation itself by subtracting 1 the 
term vM ⋅ . If M is a sufficiently large number, the search for the optimal solution 
will attempt to minimize the violation of the constraint and only consider a violation 
if there is no feasible solution that satisfies all constraints.  

The typical operator/customer policies related to resource assignment in a utility 
computing environment that can be handled by an optimization approac h include the 
following: 
• Priority policies on classes of applications.  
• Migration policies during application flexing.  
                                                        
1 This assumes that our goal is maximizing the objective. If we want to minimize the objective 

we simply add the same term.  



• Policies for avoiding hot spots inside the resource pool, such as load balancing, or 
assigning/migrating servers based on local thermal co nditions. 

• Policies for high availability, such as dictating redundant designs, or maintaining 
buffer capacities in shared resources.  

• Policies for improving resource utilization, such as allowing overbooking of 
resources. 
In what follows, we use the first two policies as examples to illustrate how these 

policies can be incorporated into the original RAP MIP formulation. The other 
policies can be dealt with in a similar fashion.  

3.1 Policies on Classes of Applications 

In a resource constrained environment it is useful to consider different classes of 
applications, corresponding to different levels of service, which will be reflected in 
terms of priorities during resource assignment. If resources are insufficient to satisfy 
all applications, low priority applications are more likely to be rejected when making 
assignment decisions. In this paper, we consider the following priority policy:  

P1. Only assign an application with lower priority to the computing utility if its 
assignment does not preclude the assignment of any application of higher priority .  

While this policy has a very complex logical structure, it is easy to implement by 
using soft constraints.  Let the binary decision variable  1, =scx  indicate that 

component c is assigned to server s, otherwise 0, =scx . Let C(app) be the set of all 
components of application app with |C(app)| denoting the number of components of 
the respective application. Then the “hard constraint”  

1, =∑
∈Ss

scx , )(appCc ∈  (H1) 

implies that at an application component should be assigned to exactly one server. It 
can be relaxed as follows: 

1, ≤∑
∈Ss

scx , )(appCc ∈ . (S1) 

The constraint (S1) means that each application component is either not assigned, 
or is assigned to at most one server. To disallow partial assignment (where only some 
of the application components are assigned) the following hard constrain t is used: 

)(
)(

, appCx
appCc Ss

sc =∑ ∑
∈ ∈

. (H2) 

It simply says that the number of servers assigned to an application is equal to the 
number of components required by the application. Now we introducing a binary 
violation variable appv  to relax the hard constraint (H2) as follows,  

( )app
appCc Ss

sc vappCx −≥∑ ∑
∈ ∈

1*)(
)(

, . (S2) 

It is easy to see from (S2) that,  
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, appCxv
appCc Ss

scapp ∑ ∑
∈ ∈

−≥ . 

When all components of application app are placed on servers, 0≥appv . On the 

other hand, since appv  is binary, if any component of application app does not get a 

server, in which case application app has to be rejected, 1=appv . If the term 

AppApp vM  is added onto the objective function, not assigning an application c omes 

at a price of AppM . By choosing the magnitude of AppM  according to the 
application’s priority in such a way that higher priority applications have penalties 
that are larger than all potential penalties of lower pr iority applications combined, we 
can force the optimal solution of the modified assignment problem to conform to 
priority policy P1.  

3.2 Migration Policies for Application Flexing 

We use the term “application flexing” to refer to the process of adding addi tional 
resources to or removing resources from running applications. In this section we 
consider policies that are related to flexing applications. Of particular interest are 
policies dictating whether or not a component of an application can be migrated t o 
accommodate changing resource requirements of the applications in the environment.  
Let placedC  be the set of components of running applications that have been placed 
on servers of the computing utility. Every co mponent is currently placed on one 
server. This assignment can be expressed as a comp onent-server pair. Let ASSIGN be 
the set of existing assignments, i.e.,  

{ }scscASSIGN server   toassigned is component :),(= . 

We denote the set of components that can be migrated as placedmig CC ⊆ and the set 

of components that cannot be migrated as migplacednomig CCC −= . Let us consider 
the following migration policy:  

P2. If an application component is not migratable, it should remain on the server it 
was placed on; if a component is migratable, migration should be a voided unless 
feasible assignments meeting new application requirements  can not be found 
otherwise. 

Prohibiting migration of the components in nomigC  is accomplished by introducing 
the following additional constraints: For each assig nment, ASSIGNsc ∈),( , 

nomig
sc Ccx ∈=     1, . 

For components that can be migrated, P1 states that migration should be avoided 
unless necessary. This is incorporated by introducing a penalty migπ  in the objective 
function for changing the assignment of an existing component. Thus , we add 



∑
∈

∈

−
migCc

ASSIGNsc
sc

mig x
),(

, )1(π  

to the objective function. It is easy to see that the penalty is incurred whenever a 
component is moved away from its current server, i.e. when 0, =scx .  

4 Simulation Results 

In this section, we present simulation results of two resource assignment scenarios 
that required the two policies described in Section 3, respectively. The first simulation 
shows the use of priorities in assigning resources to applicati ons when the available 
resources are insufficient to meet the demands of all applications. The second 
simulation demonstrates the impact of policies around mobility of application 
components in an application flexing scenario.  

4.1    Description of the Computing Utility 

The computing utility considered in our simulations is based on a 125 -server utility 
data center [1] in HP Labs.  The physical network has two layers of switches below 
the root switch. We refer to the one switch that is directly connected to  the root switch 
as the edge switch (e1), and the four additional switches that are directly connected to 
the edge switch as the rack switches ( r1-r4)2. There are no direct connections between 
the rack switches. All the 125 servers are either connected to the edge switch, or to a 
rack switch. Table 1 describes the exact network topology of the utility.  

Table 1. Network topology of the computing utility  

Type of switch Edge Rack 

Switch label e1 r1 r2 r3 r4 

No. of directly-connected servers 61 12 12 20 20 

Among the 61 servers directly-connected to e1, there are 15 high-end servers in 
terms of their processing capacity. All the switches in the utility are non -blocking. As 
a result, if all traffic of an application is contained within one switch, network 
bandwidth is not an issue. If traffic has to traverse switches, inter -switch link 
capacity, as we will see, can become a scarce resource.  

                                                        
2 Each switch has a hot standby for high availability. However, in the logical topology of the 

network, only the primary switch is considered.  



4.2 Description of the Applications 

In both simulations, we consider 10 applications that need to be host ed in the 
computing utility. The application topology considered is a three -tier topology typical 
of e-commerce applications.  The resource requirements of the applications follow:  
1. Application components do not share servers. Thus every application require s a 

separate server for each of its components.   
2. Each application contains a high -end component for its back-end component 

(typically a database). Thus each application requires one high -end server. 
3. The total amount of network bandwidth needed by each appl ication can be 

classified into three categories: High, Medium, and Low.  
4. Based on the criticality of meeting the application’s resource demand, each 

application belongs to one of the three priority classes: Platinum, Gold, and Silver.  

Table 2. Resource requiredments of the 10 applications  

Application number 1 2 3 4 5 6 7 8 9 10 

Total no. of components 8 8 10 5 7 8 6 10 5 6 

High-end components 1 1 1 1 1 1 1 1 1 1 

Bandwidth requirements. 
(Hi / Med / Low) 

H M H M M M L H L M 

Application priority 
(Platinum/Gold/Silver) 

P P G P P P S P S P 

These requirements are summarized in Table 2. Notice that, since a total of 73 
servers are needed, not all applications can fit simultaneously on the 61 servers 
directly connected to e1. As a result, some applications will have to be allocated in a 
way that traffic traverses switches creating p otential network bottlenecks.  

4.3 Policies on Classes of Applications  

In the first simulation, we consider the problem of assigning resources to the 10 
applications simultaneously. We compare two approaches for undertaking the 
assignment: without any priority policies or with the priority policy P1 defined in 
Section 3.1. The result of the comparison is illustrated in  Fig. 3. 

As we can see, when no priority policies are implemented, all the applications are 
assigned resources from the computing utility except App8 – a platinum application. 
This result is intuitive, because when priority levels of applic ations are ignored, the 
RAP solver first tries to place the largest number of appl ications possible, second it 
chooses those applications that minimize the traffic weighted inter -server distance as 
described earlier. In our scenario, this results in exclud ing placement of App8 since it 
requires a large number of servers and high bandwidth.  

As explained in Section 3.1, when application priorities are enforced, the priority 
policy P1 is incorporated into the RAP optimization problem using soft constraints, 
i.e., adding a penalty onto the objective function when the policy is violated. As 



indicated by the third column in  Fig. 3, the resulting assignment solution is different. 
Now App3 in the “Gold” class is not assigned while App8 in the “Platinum” class is. 
This simulation demonstrates the impact of including the priority policy on the 
resulting assignment solution. It also validates the value of the soft constraint 
approach for incorporating priority policies into our RAP solver.  
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Fig. 3. Total number of applications, number of applications placed without priority, and 
number of applications with priority policy P1 in each priority class  

4.4 Migration Policies for Flexing Applications  

In this simulation, we consider an application flexing scenario and demonstrate the 
impact of the migration policy P2 we defined in Section 3.2. Consider the assignment 
obtained using the priority policy in the last section. For this assignment, all servers 
directly connected to the switch e1 are assigned to applications, including the 15 high-
end servers. However, the hosted nine applications together require only nine high -
end servers. As a result, six high-end servers are used to host component s that could 
have been hosted on a low -end server, and therefore, no high -end servers are currently 
available for assignment.  

Let us now assume that after a while of running the nine applications in the 
computing utility, some applications’ r esource demands change: App8 is requesting 
one additional high-end server, while App10 is able to release three low-end 
components that happen to be placed on low -end servers3. It is obvious that if no 
migration of application components is permissible, App8’s flexing request cannot be 
                                                        
3 The traffic requirements of the flexed applications have been adjusted accordingly in the input 

data. Since both appl ications only use servers directly connected to the edge switch e1, the 
traffic of these two applications is not affecting the a ssignments described below.  



satisfied, because even after the release of the servers no longer needed by App10 
there are no more high-end servers available in the free pool.  

On the other hand, treating all components as migratable and, in essence, solving a 
new initial assignment problem for all nine applications currently admitted may 
prescribe a new assignment that requires moving many components resulting in 
severe disruption of service for many of the applic ations.  

The solution lies in specifying sensible migrat ion policies that can be taken into 
account by the RAP solver. Let’s consider the following migration policy on top of 
the formerly defined policy P2: existing low -end components can be migrated, while 
existing high-end components have to stay put. This is  reasonable because for 
example, for a 3-tier Web application, the low -end components are Web servers and 
application servers that are more likely to be migratable, while high -end components 
can be database servers that are much harder to move.  

As described in Section 3.2, the above migration policy was implemented by 
adding both hard and soft constraints to the RAP MIP formulation. Table 3 shows the 
resulting assignment of high-end and low-end servers to applications before and after 
flexing. Only the appl ications affected by flexing are shown. All the other 
assignments remain the same. As we can see, by incorporating the above migration 
policy, the RAP solver finds an assignment for the flexed applic ations, where one 
low-end component of App1 previously assigned to a high-end server is migrated to a 
low-end server released by App10, and this freed high-end server is used to host the 
additional high-end component of App8. 

Table 3. Server assignment to the applications affected by flexing  

Applications App1 App8 App10 
Servers Low-end Hi-end Low-end Hi-end Low-end Hi-end 

Required 8 1 10 1 6 1 Before 
flexing Assigned 7 2 10 1 6 1 

Required 8 1 10 2 6 1 After 
flexing Assigned 8 1 10 2 3 1 

This simulation demonstrates that, by defining sensi ble migration policies based on 
properties of application components and server technologies, we are able to 
accommodate flexing requests that may otherwise be infeasible, thus increasing 
resource utilization. At the same time, we minimize the disruption t o applications that 
are already running in the computing utility. In addition, the result verifies that using 
a combination of hard and soft constraints in the optimization problem can be an 
effective way of incorporating migration policies into the RAP op timization problem. 

5 Conclusion and Future Work 

In this paper, we demonstrate how operator policies can be included in a automated 
resource assignment using mathematical optimization techniques. Mathematical 
optimization is used because, as shown in [1], a simple heuristic leads to poor 



application placements that can create fragmented computing resources and network 
bottlenecks. Our simulation results on two resource assignment scenarios with 
common policies encountered in a utility computing environment confirm that our 
framework can not only address the resource assignment problem efficiently, but also 
offers a unified approach to tackle quantitative and rule based problems.  

As a final note, observe that policies and rules need to be defined precisely in a 
way that helps to answer the quintessential question for resource assignment: Can 
resource s be assigned to component c? Consequently, we require a data model for the 
business rules and operator pol icies that allows expressing these rules and policies i n 
terms of the parameters and decision variables of the MIP formulation of the resource 
assignment problem. In the future, we may d evelop a tool that directly writes 
mathematical programming code, without the need of templates and associated data 
models as shown in the examples of Section 3 and 4.  
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