
A Case-Based Reasoning Approach for
Automated Management in Policy-Based

Networks

Nancy Samaan and Ahmed Karmouch

School of Information Technology & Engineering (SITE), University of Ottawa,
161 Louis Pasteur St. Ottawa, ON, Canada K1N-6N5

{nsamaan, karmouch}@site.uottawa.ca

Abstract. Policy-based networking technologies have been introduced
as a promising solution to the problem of management of QoS-enabled
networks. However, the potentials of these technologies have not been
fully exploited yet. This paper proposes a novel policy-based architec-
ture for autonomous self-adaptable network management. The proposed
framework utilizes case-based reasoning (CBR) paradigms for online cre-
ation and adaptation of policies. The contribution of this work is two fold;
the first is a novel guided automated derivation of network level policies
from high-level business objectives. The second contribution is allowing
for automated network level policy refinement to dynamically adapt the
management system to changing requirements of the underlying environ-
ment while keeping with the originally imposed business objectives. We
show how automated policy creation and adaptation can enhance the
network services by making network components behavior more respon-
sive and customizable to users’ and applications requirements.

1 Introduction

Policies have been introduced as efficient tools for managing QoS-enabled net-
works. It has been widely supported by standards organizations such as the IETF
and DMTF to address the needs of QoS traffic management. Policies are sets of
rules that guide the behavior of network components. In current systems, policies
are defined by users, administrators, or operators. Once defined, these policies
are translated and stored in a policy repository. Policies are then retrieved and
enforced as needed.

Despite the recent research advances in the area of policy-based network
management, e.g., [1–3], existing policy frameworks are faced with various chal-
lenges. Current networking systems, characterized with increasingly growing
sizes and services, are becoming extremely complex to manage. Hence, an in-
creasing burden is put on network administrators to be able to manage such
networks. Furthermore, static policy configurations built a-priori by administra-
tors into network devices usually lack the flexibility required by wired/wireless
networks environments and may not be sufficient to handle different changes in
the underlying environments. On the other hand, in current systems, network
reconfiguration in response to users’ requests for service customization can only



be performed manually by a network operator. This results in significant delays
ranging from minutes to days. In summary, the traditional policy-based man-
agement approach based on Condition-Action notion poses a major difficulty of
acquiring necessary management knowledge from administrators, while it lacks
the ability to deal with unexpected faults. Further, once policies are built into
the network, there is no possibility to learn from gained experience. These chal-
lenges along with current advances in hardware/software network technologies
and emerging multi-services networks necessitate the existence of robust self-
learning and adaptable management systems.

This paper proposes a novel approach to autonomous self-adaptable policy-
based networks. The proposed work utilizes case-based reasoning (CBR) paradigms
[4] for on-line selection, creation and adaptation of policies to dynamically re-
configure network components behaviors to meet immediate demands of the
environment based on previously gained experiences. In general, a CBR sys-
tem [4] is a system that solves current problems by adapting to or reusing the
used solutions to solve past problems. It carries out the reasoning with knowl-
edge that has been acquired by experience. This acquired experience is stored
in a case-base memory and used for knowledge acquisition. The CBR systems
analyze and obtain solutions through algorithms of comparison and adaptation
of problems to a determined situation.

In the proposed approach, policies are presented as cases. Each case (pol-
icy) consists of policy objectives, constraints, conditions and actions. Hence, the
network behavior is controlled through defining a set of applicable cases. The
key idea is that the network status is maintained in terms of sets of constraints
and objectives. A better network behavior can than be formed on the basis of
previous experiences gained from old cases that have been applied before. The
network behavior is adapted by using knowledge of the network monitored re-
sources and users’ requirements to continuously change these sets of constraints
and objectives. Given these new sets, the goal is to redesign these cases such
that they can operate to achieve the network desired performance. A reason-
ing engine uses CBR adaptation techniques, such as null adaptation, parameter
substitution and transformation [4] to reach this goal.

The remainder of this paper is organized as follows. In section 2 related
work and existing approaches for QoS management and policy adaptation are
briefly discussed. The necessary background for case-based reasoning paradigms
is introduced in Section 3. The proposed policy-based management framework
is described in section 4. Finally, section 5 concludes the paper.

2 Related Work and Motivation

Existing frameworks that have been developed to support QoS management
mainly fall into one of two categories [5]; reservation-based and adaptation-
based Systems. Although adaptation seems to provide a more promising solu-
tion for network management, existing adaptation techniques still have certain
limitations. For example, many QoS-based adaptive systems use indications of
QoS failure to initiate adaptation actions. Consequently, adaptation may fail in
many cases such as in the case of a QoS failure resulting from a congested link.



Moreover, these techniques usually lack an essential degree of flexibility to build
upon past experiences gained from the impact of previously pursued adaptation
strategies on system behavior.

Policy-based network management has been introduced as a promising solu-
tion to the problem of managing QoS-enabled networks. However, static policy
configurations built a-priori into network devices lack the flexibility and may
not be sufficient to handle different changes in these underlying environments.
Various research trends, e.g. [6], have highlighted the notion of policy adapta-
tion and the central role that it can play in QoS management in policy-enabled
networks. This notion of policy adaptation is becoming even more crucial as the
managed systems become more complicated.

In [7], Granville et al. proposed an architecture to support standard policy
replacement strategies on policy-based networks. They introduced the notion of
policy of policies (PoP). PoPs, acting as meta-policies, are defined to coordinate
the deployment of network policies. The definition of PoP requires references to
every possible policy that may be deployed besides the identification of events
that can trigger a policy replacement. Although their work follows the concepts
of policies automation, it puts a burden on the network administrator to define
both the standard policies and the PoPs. Planning policies in the existence of
PoPs is a complex task. Moreover, reaching an adequate policy replacement
strategy requires a complex analysis process. The administrator still has to check
which policies deployment strategies were successful and which strategies failed
to achieve their goals and manually update these strategies.

In [8] a genetic algorithm based architecture for QoS control in an active
service network has been introduced. Users are allowed to specify their require-
ments in terms of loss rate and latency and then policies are used to adapt the
queue length of the network routers to accommodate these requirements. The
proposed work has the advantage that it is benefits from learning for adaptation.

Agents are used in [9] to represent active policies. The proposed architec-
ture has a hyper-knowledge space, which is a loosely connected set of different
agent groups which function as a pluggable or dynamically expandable part of
the hyper-knowledge space. Active policies, which are agents themselves, can
communicate with agents in the hyper-knowledge space to implement policies
and retrieve information from agents. The architecture takes advantage of in-
telligent agents features such as the run-time negotiation of QoS requirements.
However, an active policy by itself has to be created by the administrator, and
once deployed to the network it remains static through its life-cycle.

In [6] a framework for adaptive management of Differentiated Services using
the Ponder language [10] has been proposed. The framework provides the admin-
istrator with the flexibility to define rules at different levels. Policy adaptation is
enforced by other policies, specified in the same Ponder policy notation. A goal-
based approach to policy refinement has been introduced in [11] where low level
actions are selected to satisfy a high-level goal using inference and event-calculus.
In contrast to existing approaches, the proposed framework takes advantage of
availability of previous experience gained from previously applied policies and
their behavior to make decisions concerning the creation of future policies. An-
other approach has been presented in [12] which attach a description of the



system behavior, in terms of resource utilization, such as network bandwidth
and response time, to each specified rule.

3 CaseBased Reasoning Paradigms

Case-Based Reasoning (CBR) is a problem solving and learning paradigm that
has received considerable attention over the last few years [4, 13]. It has been
successfully applied in different domains such as e–commerce [14] and automated
help desks [15]. CBR relies on experiences gained from previously solved prob-
lems to solve a new problem. In CBR past experiences are referred to as cases.
A case is a contextualized piece of knowledge representing an experience that
teaches a lesson fundamental to achieving the goals of the reasoner. A case is usu-
ally described by a set of attributes, also often referred to as features. Cases that
are considered to be useful for future problem solving are stored in a memory-like
construct called the case-base memory. In broad terms a CBR reasoning cycle
consists of four basic steps; namely: case retrieval, reuse, revision and retain-
ment. A new problem is solved by retrieving one or more previously experienced
cases, reusing the case in one way or another, revising the solution based on
reusing a previous case, and retaining the new experience by incorporating it
into the existing case-base memory.

Compared to rule-based systems, CBR does not require causal models or a
deep understanding of a domain, and therefore, it can be used in domains that
are poorly defined, where information is incomplete, contradictory, or where it
is difficult to get sufficient domain knowledge. Moreover, it is usually easier for
experts to provide cases rather than to provide precise rules, and cases in general
seem to be a rather uncomplicated and familiar problem representation scheme
for domain experts. CBR can handle the incompleteness of the knowledge to
which the reasoner has access by adding subsequent cases that describe situa-
tions previously unaccounted for. Furthermore, using cases helps in capturing
knowledge that might be too difficult to capture in a general model, thus allow-
ing reasoning when complete knowledge is not available. Finally, cases represent
knowledge at an operational level; they explicitly state how a task was carried
out or how a piece of knowledge was applied or what particular strategies for
accomplishing a goal were used.

4 Case–Based Policy Management Architecture

As shown in Figure 1, the main component of the proposed architecture is the
case-based policy-composer (CBPC) which is responsible for translating higher-
level business policies into lower-level network policies and for continuously
adapting the network behavior through the online refinement of network policies
in the policy repository. The CBPC relies on two different sources of knowledge
for reaching decisions concerning policies changes. It continuously receives an up-
dated view of different business-level objectives, service-level agreements (SLAs)
with customers along with the underlying network topology and constraints.
The second source of information is provided by a set of monitoring agents [16]



responsible for monitoring network resources based on the monitoring policies
specified by the CBPC. Once obtained, the CBPC is then responsible for analyz-
ing these knowledge to reach decisions concerning the adaptation and creation of
different sets of policies; namely: admission, provisioning, routing and monitor-
ing policies, based on previously gained experiences. The main focus of the work
presented in this paper is the automated generation and refinement of admission
and provisioning policies for differentiated-services operated networks [17].

Policy repository

Case-Based
Policy 

Composer
(CBPC)

Admission
Policies
manager

PHB
Policies
manager

Routing 
Policies
manager

Monitoring
Policies
manager

Service 
constraints

Network 
Abstraction

(topology, Resources, 
Derives constraints, etc)

Resources monitoring
reporter

Dynamic SLS
(or user request)
(user, other ISPs)

Business
Policies

Fig. 1. Policy Management Architecture.

A detailed description of the functionalities of the CBPC is shown in Figure
2. The key idea in the proposed work is that policies are presented as cases.
Hence, the terms case and policy will be used interchangeably throughout the
rest of the paper. Each case (policy) consists of problem domain, describing the
case’s constraints and objectives, and a solution domain, describing the actions
that must be taken under and which conditions to reach the specified objectives.
A new policy generation/adaptation is triggered as a result of either changes
in the supplied business and SLAs requirements or through objective violation
indicated by information obtained from monitoring agents. The CBPC starts
by deriving target objectives and constraints to represent the problem of new
case. In the second step, the retrieval step, the CBPC uses a similarity measure
to find previously existing cases in the policy repository with objectives and
constraints that best match the target ones. Using a set of adaptation operators,
the solutions of these retrieved cases are adapted, in the third step, to form
the solution of the new target case. Once assembled, the new case (policy) is
dispatched at the network level. A refinement step is carried-out to evaluate the
behavior of dispatched policy. The case is repeatedly refined and dispatched until
the target objectives are met. Finally, the new case is retained for future use in
the case-base memory. The following sections provide a detailed description of
these steps to illustrate the life cycle of policies creation and adaptation.



New Case

Adaptation
3

DispatchDispatch

CBPC

Objectives Constraints

Case-Base
Memory

retrieved
cases

New problem representation

1

Retrieval 

2

-

Monitoring  informationMonitoring  information

Retaining

5

New Case
New Case

New problem

Refinement

4

Fig. 2. Functionalities of the CBPC.

4.1 Step 1: Policy representation and construction

In policy-based management systems, one starts with a business-level specifi-
cation of some objective (e.g., users from department A get Gold services) and
ends up with a network-level mechanism that is the actual implementation of this
objective (e.g., a classifier configuration for admission control and a queue con-
figuration for per-hop-behavior treatment). The general structure of the CBPC
reflects and maintains this relation between the specification of objectives and
the final mechanisms passing via network-level policies through a four-level hier-
archical representation of cases as shown in Figure 3. The solution of a layer i is
mapped as the objectives of new subcases in the lower layer i + 1. For example,
at the highest level, abstract cases represent different business objectives and
the corresponding solution is a set of finer grain network level solutions. Each of
these solutions is considered an objective for a lower level case and so forth.

Business Level

Case RB1

Service A
Case RB2

Service B

Case a

Treatment for A
Case b

Admission

C1 C2

Network 
Abstract Level

Case RBM

Service M…

Case B1 

Business Policy
Case  BL

Business Policy

Network 
Finer  Level

Network 
Mechanism   Level C3 C4 C4

…

…

Case c:

Treatment for B …

Fig. 3. General Case Hierarchy.



When a new business objective specification is posed, one or more abstract
cases are retrieved and their solution is adapted to fit the specifications of the
new objective. The result is a high-level description of the target solution. This
high-level solution is further refined by retrieving and adapting more specific
cases at each level, each solving some subproblem of the target. Eventually,
concrete cases are selected and an actual set of policies can be produced. In
this way, the CBPC builds up an overall solution in an iterative manner. The
evolving solution forms an emergent abstraction hierarchy as high-level solution
parts (from the abstract cases) are refined to produce a set of detailed policies.

Figure 4 shows a general case template, where each case Λi consists of a
problem description part Pi and a corresponding solution Si, i.e., Λi = (Pi, Si).
Furthermore, Pi is composed of a set of objectives Oi and imposed constraints
CNi, while Si is a set of solution steps SSij , where SSij = (Rij , Cij , Aij , Tij).
Rij is a set of roles, Cij is a set of conditions, Aij is the set of corresponding
actions and Tij is the life-time of solution step SSij .

Objectives (Objectives (OOii))

Case : Case : ΛΛΛΛi

Problem Problem Pi ::

Solution Solution Si::

ΛΛΛΛnΛΛΛΛ2ΛΛΛΛ1
….

Constraints (Constraints (CNCNii))

Roles (Roles (Ri))

Actions (Actions (Ai))

Case Life Time (Case Life Time (Ti))

Conditions (Conditions (Ci))

Solution Step SSiJ

Fig. 4. Policy representation as a case.

4.2 Step 2: Policies Retrieval

During retrieval, the target objectives of the new case are matched against the
described objectives of cases in the case memory and a measure of similarity is
computed. The result is a ranking of cases according to their similarity to the
target, allowing one or more best-matching cases to be selected. The similarity
of a case Λi in the case-base memory to a target case Λ is calculated through
the similarity measure defined as

sim(Λ, Λi) =
1√∑

j wj +
∑

k cwk

√∑

j

fc(oj , oij)wj +
∑

k

fc(cnk, cnik)cwk

(1)
where for each objective oij ∈ Oi, wj is a numeric weight representing the impor-
tance of oij . Similarly, for each constraint cnik ∈ CNi, cwk is a numeric weight



representing the influence of cnik. fc(xi, yj) is a local measure of similarity, de-
fined as follows,

fc(xi, yj) =





0 if xi is symbolic and xi 6= yi

1 if xi is symbolic and xi = yi
|xi−yi|
rangei

if xi and yi are numeric
(2)

where rangei is the allowable range for xi and yi, used to normalize the similarity
distance between the two features.

The number of retrieved cases depends on a preselected similarity threshold
θ, such that a similar case Λi is retrieved iff sim(Λ,Λi) ≥ θ.

4.3 Step 3: Policy Adaptation

Each of the retrieved cases in the previous stage undergoes a sequence of adap-
tation steps to meet the objectives of the target case. This stage can be referred
to as partial adaptation. During this stage after applying a set of adaptation
operators, some of the candidate cases are gradually eliminated if they failed
to meet any of the target objectives. The remaining cases are then fed into the
second stage for an overall adaptation to come up with a unified solution for the
target case. Partial and overall adaptation steps are described next.

Partial adaptation Different operators are used to adapt each of the retrieved
cases separately. In the following, each of these operators is described.

– A1: Null adaptation This is the simplest type of adaptation, which in-
volves directly applying the solution from the most similar retrieved case to
the target case. Null adaptation occurs when an exact match is found or
when the match is not exact but the differences between the input and the
target cases are known by the CBPC to be insignificant and, therefore, can
be directly changed. A simple example to illustrate such a situation occurs
in replacing an IP address in a classification policy, or a users’ domain in a
business-level policy. Figure 5 shows an example of a case adaptation using
null adaptation.

ooi1i1= Gold QoS for  Group A= Gold QoS for  Group A

Problem Problem Pi ::

Solution Solution Si::

SSi1 : Identify GROUP A
SSi2 :Identify GOLD SERVICE
SSi3 :Treat (GROUPA, 

GOLD SERVICE)

Case : Case : ΛΛΛΛi

Case : Case : ΛΛΛΛi

oo11= Gold QoS for  Group B= Gold QoS for  Group B
Problem Problem P ::

::iSSolution Solution 

SS1 : Identify GROUPB
SS2 :Identify GOLD SERVICE
SS3 :Treat (GROUPB, 

GOLD SERVICE)

New Case : New Case : ΛΛΛΛ

Fig. 5. An example of null adaptation.



– A2: Parameter adjustment adaptation A structural adaptation tech-
nique that compares specified parameters of the retrieved cases and target
case to modify the solution in an appropriate direction based on the param-
eter values in all retrieved cases. In this operator, the administrator defines
a set of formulae or configuration methods according to the nature of each
parameter. Figure 6 gives an example of a congestion policy adaptation using
parameter adjustment operations based on two retrieved cases.
In general, most parameters adjustments can be obtained as the average
value of all recommended values from all retrieved cases as follows

P i =
1
k

j=k∑

j=1

(Pji
ol

ojl
) (3)

where P i is the new parameter value in the ith solution step SSi, in the target
case. k is the number of retrieved cases, and ol and ojl are the values of related
objectives in the target case, Λ, and the retrieved case, Λj , respectively.

oo1111= CLS= CLS11 congestion controlcongestion control
(drop = low)(drop = low)

Problem Problem P1 ::

Solution Solution S1::
SS11 :
CongestionControlAction

DropMethod: random 
DropThresholdUnits packet qp
DropMinThreshold: 6 packets 

DropMaxThreshold: 16 packets 

Case : Case : ΛΛΛΛ1

oo11=CLS=CLS3 3 congestion controlcongestion control
(drop = high)(drop = high)

Problem Problem P ::

New Case : New Case : ΛΛΛΛ

oo2121= CLS= CLS2 2 congestion controlcongestion control
(drop = medium)(drop = medium)

Problem Problem Pi ::

Solution Solution Si::

Case : Case : ΛΛΛΛ2

SS21 :
CongestionControlAction

DropMethod: random 
DropThresholdUnits packet qp
DropMinThreshold: 4 packets 

DropMaxThreshold: 13 packets 

Solution Solution Si::

SS1 :
CongestionControlAction

DropMethod: random 
DropThresholdUnits packet qp
DropMinThreshold: 2 packets 

DropMaxThreshold: 10 packets 

Fig. 6. Example of case adaptation using parameter Adjustment.

– A3: Adaptation by reinstantiation This type of adaptation is selected
when the old and new problems are structurally similar, but differ in ei-
ther one or more of their constraints. In this case, reinstantiation involves
replacing one or more of the old actions with a new action that is used to
instantiate features of an old solution with new features.
For example, if the retrieved and target cases differ in a constraint concerning
the availability of applicable mechanisms at the lowest level of the hierar-
chy, then the mechanism in the old solution is replaced with an equivalent
mechanism in the target case that implements the same objective.



– A4: Adaptation by heuristics This adaptation involves the utilization
of a set of predefined rules set by the administrator for the purpose of case
adaptation. For example, the adaptation of an admission control case can
be based on the heuristic that a behavior aggregate classifier (BA) is used
at edge routers connecting to other domains while a multiple field (MF)
classifier is used for edge routers connected to users’ hosts. Another example
of a heuristic rule is that each objective in a case that includes a bandwidth
allocation implies that a classifier and a queue should be allocated to the
traffic class defined by the objective’s conditions. Hence, once a bandwidth
allocation policy is specified as a case objective, at least one classification
and one scheduling action must exist as solution steps for this case.

Overall adaptation In the case where none of the retrieved cases met the
objectives of the target case after the application of one or more partial adapta-
tion operations, an overall adaptation is performed using two or more partially
adapted cases to generate the target solution. Figure 7 shows a simplified oper-
ation of an overall adaptation in response to changes in a dynamic SLA. In the
Figure, two retrieved SLA policies were used to generate the required policies of
a new SLA based on an overall adaptation of these two cases.

oo1111= Shape  to profile= Shape  to profile
oo1212= drop if queue is full= drop if queue is full

Problem Problem P1 ::

Solution Solution S1::

SS11 : Add classifier (DSCP)
SS12 :Add meter (value) 
SS13 : Add  Queue
SS14 : Out_profile (drop)

Case : Case : ΛΛΛΛ1

oo11=Remark to lower class=Remark to lower class
oo22= drop if queue is full= drop if queue is full

Problem Problem P ::

Solution Solution S::

SS1 : Add classifier (DSCP)
SS2 : Add meter (value)
SS3 : Add meter (value)
SS4 : Out_profile (Remark)

New Case : New Case : ΛΛΛΛ

oo2121= remark out of profile = remark out of profile 

Problem Problem Pi ::

Solution Solution Si::

SS21 : Add classifier (DSCP)
SS22 :Add meter (value) 
SS24 : Out_profile (Remark)

Case : Case : ΛΛΛΛ2

∆1:  Shape to profile all Gold class flows and drop when queue is full. 

∆2 :  Remark all silver class flows to lower class when out of profile

∆∆ : Shape to profile all Gold class services and remark to lower : Shape to profile all Gold class services and remark to lower class when fullclass when full

Fig. 7. A simplified example of an overall adaptation.

4.4 Step 4: Policy Refinement

When a new case is produced and dispatched, it has to go through a repeated
cycle of evaluation and refinement before it can be finally stored in the case-
base memory. As shown in Figure 8, at each refinement step i, the difference



between the case’s original objectives and QoS measurements obtained from the
monitoring agents, ∆Oi, of the leaf cases is calculated and used to perform a
solution refinement ∆Si through one or more parameter adjustment operations,
described above. This cycle can be repeated several times until either the case
objectives are met, i.e., ∆Oi = 0, or the CBPC fails to perform any further adap-
tation. If the refinement is successful, the next step, case retainment, is carried
out. Otherwise, if the refinement failed at the lower-level cases, it propagates to
the next higher-level.

ΛΛΛΛi= (Pi, Si)
Pi=(Oi ,CNi )
Si = SSi
SSij =(Rij ,Cij , A ij ,Tij)
∆∆∆∆S={∆∆∆∆s1, ∆∆∆∆s2,....}
∆∆∆∆O = {∆∆∆∆ o1 , ∆∆∆∆ o2,…}

∆∆∆∆o1

∆∆∆∆s1=0

∆∆∆∆o2

∆∆∆∆s2

∆∆∆∆on=0

∆∆∆∆sn

…

Oi

Case Case ΛΛΛΛi

Problem Problem Pi

Solution Solution Si

CNi

Ri

A i

Ti

Ci

SSiJ

∆∆∆∆ ΛΛΛΛ1 ∆∆∆∆ ΛΛΛΛ2 ∆∆∆∆ ΛΛΛΛn

Fig. 8. Case Refinement.

4.5 Step 5: Policy Retainment

The final step in the case life cycle is learning. Newly solved problems are learnt
by packaging their objectives and solutions together as new cases, and adding
them to the case memory. There are a number of issues associated with this
type of learning, mainly the increasing size of the memory. However, often it is
not necessary to learn an entire new case if only a small part of its solution or
objectives is novel. Significant redundancy is eliminated by benefiting from the
hierarchical representation of cases. Since learning can operate at a finer level of
granularity as parts of different policies can be treated as separate cases.

5 Conclusions

In this paper we presented a novel framework for autonomous self- learning
and adaptive policy-based network management. The proposed work utilized
case-based reasoning paradigms for on-line selection, creation and adaptation
of policies. The framework base policy creation and adaptation decisions on
previously gained experiences of the management history. The main advantage
of the proposed work is that it creates a dynamic environment where the network
components are self-adaptable in response to changes in business and users’
objectives. In addition, it frees up specialized administrators to other design and
development tasks. In future work, we plan to evaluate our work through the
implementation of the proposed architecture.



References

1. G. Valrie, D. Sandrine, K. Brigitte, D. Gladys and H. Eric, “Policy-Based Quality
of Service and Security Management for Multimedia Services on IP networks in
the RTIPA project”, in MMNS 2002, Santa Barbara, USA, Oct. 2002.

2. P. Flegkas, P. Trimintzios and G. Pavlou, “A Policy-Based Qualifty of Service
Management System for IP DiffServ Networks”, IEEE Network, Special Issue on
Policy-Based Networking, pp. 50–56, Mar./Apr. 2002.

3. L. Lymberopoulos, E. Lupu and M. Sloman, “QoS Policy Specification A Mapping
from Ponder to the IETF Policy Information Model”, in 3rd Mexican Intl Conf in
Computing Science (ENC01), Sept. 2001.

4. Janet Kolodner, Case-based reasoning, Morgan Kaufmann Publishers Inc., 1993.
5. C. Aurrecoechea, T. Campbell, A. and L. Hauw, “A Survey of QoS Architec-

tures”, ACM/Springer Verlag Multimedia Systems Journal , Special Issue on QoS
Architecture, vol. 6, n. 3, pp. 138–151, May. 1998.

6. L. Lymberopoulos, E. Lupu and M. Sloman, “An Adaptive Policy Based Manage-
ment Framework for Differentiated Services Networks”, in IEEE 3rd Intl Wrkshp
on Policies for Distributed Systems and Networks (POLICY’02), Monterey, Cali-
fornia, pp. 147–158, Jun. 2002.

7. Z. Granville, L., A. Faraco de S Coelho, G., M. Almeida and L. Tarouco, “An
Architecture for Automated Replacement of QoS Policies”, in 7th IEEE Symp. on
Comput. and Comm. (ISCC02), Italy, Jul. 2002.

8. I. Marshall and C. Roadknight, “Provision of Quality of Service for Active Ser-
vices”, Computer Networks, vol. 36, n. 1, pp. 75–85, Jun. 2001.

9. T. Hamada, P. Czezowski and T. Chujo, “Policy-based Management for Enterprise
and Carrier IP Networking”, FUJITSU Sc and Tech Jrnl, vol. 36, n. 2, pp. 128–139,
Dec. 2000.

10. N. Damianou, E. Dulay and M. Sloman, “The Ponder Policy Specification Lan-
guage”, in IEEE 2nd Intl Wrkshp on Policies for Distributed Systems and Networks
(POLICY’01), Bristol, UK, pp. 18–39, Jan. 2001.

11. A. Bandara, E. Lupu, J. Moffet and A. Russo, “A Goal-based Approach to Policy
Refinement”, in Policy 2004), New York, USA, Jun. 2004.

12. S. Uttamchandaniand, C. Talcott and D. Pease, “Eos: An Approach of Using
Behavior Implications for Policy-based Self-management”, in 14th IFIP/IEEE
Intl Wrkshp on Distributed Systems: Operations and Management, DSOM 2003,
Heidelberg, Germany, October 20-22, pp. 16–27, 2003.

13. A. Aamodt and E. Plaza, “Case-based reasoning:Foundational issues, methodolog-
ical variations and system approaches”, AI Commu., vol. 7, pp. 39–59, 1994.

14. R. Bergmann and P. Cunningham, “Acquiring Customers’ Requirements in Elec-
tronic Commerce”, Artif. Intell. Rev., vol. 18, n. 3-4, pp. 163–193, 2002.

15. M. Goker and T. RothBerghofer, “Development and Utilization of a Case-Based
Help-Desk Support System in a Corporate Environment”, in 3rd Intl Conf on
Case-Based Reasoning, ICCBR-99, Seeon Monastery, Germany, July, 1999.

16. N. Samaan and k. Karmouch, “An Evidence-Based Mobility Prediction Agent Ar-
chitecture”, in Mobile Agents for Telecommunication Applications, 5th Intl Wrk-
shp, MATA 2003, Marakech, Morocco, Oct. 2003.

17. S. et al. Blake, “AN Architecture for Differentiated Services”, IETF RFC 2475,
Dec 1998.


