
Failure Recovery in Distributed Environments

with Advance Reservation Management Systems

Lars-Olof Burchard, Barry Linnert
{baron,linnert}@cs.tu-berlin.de

Technische Universitaet Berlin, GERMANY

Abstract. Resource reservations in advance are a mature concept for
the allocation of various resources, particularly in grid environments.
Common grid toolkits such as Globus support advance reservations and
assign jobs to resources at admission time. While the allocation mecha-
nisms for advance reservations are available in current grid management
systems, in case of failures the advance reservation perspective demands
for strategies that support more than recovery of jobs or applications that
are active at the time the resource failure occurs. Instead, also already
admitted, but not yet started applications are affected by the failure and
hence, need to be dealt with in an appropriate manner. In this paper,
we discuss the properties of advance reservations with respect to failure
recovery and outline a number of strategies applicable in such cases in
order to reduce the impact of resource failures and outages. It can be
shown that it pays to remap also affected but not yet started jobs to
alternative resources if available. Alike reserving in advance, this can be
considered as remapping in advance. In particular, a remapping strat-
egy that prefers requests that were allocated a long time ago, provides
a high fairness for clients as it implements similar functionality as ad-
vance reservations, while achieving the same performance as the other
strategies.

1 Introduction

Advance reservations are a way of allocating resources in distributed systems
before the resources are actually required, similar to flight or hotel booking.
This provides many advantages, such as improved admission probability for suf-
ficiently early reservations and reliable planning for clients and operators of the
resources. Grid computing in particular uses advance reservations, which besides
reliability of planning simplifies the co-allocation of very different resources and
resource types in a coordinated manner. For example, the resource management
integrated in the Globus toolkit [6] provides means for advance reservations
on top of various local resource management systems. Currently, grid research
moves its focus from the basic infrastructure that enables the allocation of re-
sources in a dynamic and distributed environment in a transparent way to more
advanced management systems that accept and process jobs consisting of numer-
ous sub-tasks and, e.g., provide guarantees for the completion of such jobs. In

this context, the introduction of service level agreements (SLA) provides flexible
negotiation mechanisms for various applications. This demands for control over
each job and its required resources at any stage of the job’s life-time from the
request negotiation to the completion. An example for a resource management
framework covering these aspects is the virtual resource manager architecture
described in [3].

4. streaming

Internet

5. post-processing, visualization

1. satellite
transmission
1. satellite
transmission

3. data processing,
(filtering, database access, etc.)

3. data processing

2. bulk transfer
(non real-time) (real-time)

Fig. 1. Example: grid application with time-dependent tasks.

Such an application is depicted in Figure 1. The job processed in the dis-
tributed environment consists of a number of sub-tasks which are executed one
after another in order to produce the final result, in this case the visualization of
the data. This includes network transmissions as well as parallel computations
on two cluster computers.

One important aspect in this context is the behavior of the management
system in case of failures. While current research mainly focused on recovery
mechanisms for those jobs that are already active, in advance reservation envi-
ronments it is also necessary to examine the impact of failures onto admitted
but not yet started jobs or sub-jobs. In contrast to the sophisticated and difficult
mechanisms needed to deal with failures for running jobs, e.g., checkpointing and
migration mechanisms, jobs not yet started can be dealt with in a transparent
manner by remapping those affected jobs to alternative resources.

In this paper, a framework for dealing with those jobs is presented which
includes strategies for selecting alternative resources and assigning inactive jobs.
Similar to the term reserving in advance, we refer to this approach as remapping
in advance, as those mechanisms perform the remapping ahead of the actual im-
pact of the failure. Besides the description of the failure recovery framework, we
show the success of our approach using simulations in a distributed environment.

The failure recovery strategies do not solely apply to actual failures of re-
sources, e.g., hardware failures of processors or network links, but can also be
used in a highly dynamic system, where resources are deliberately taken out of
the distributed system for maintenance or in order to use the resource for local

requests of high priority. Furthermore, the failure strategies are independent of
the underlying resources, i.e., the mechanism is generic in the sense that it is not
restricted to a particular resource type such as parallel computers. Instead, it is
possible to apply the mechanisms to a wide range of resources as needed, e.g.,
in grid environments.

The remainder of this document is organized as follows: firstly, related work
important for this paper is outlined. After that, the properties of the advance
reservation environment are presented and the impact on the failure recovery
mechanisms that must be applied. Furthermore, we introduce the notion of ex-
pected downtime which describes the estimated time of the failure and outline
a number of remapping strategies for affected jobs which can be adopted in a
flexible manner depending on the jobs properties. In Sec. 6, the strategies are
evaluated using extensive simulations. The paper is concluded with some final
remarks.

2 Related Work

Advance reservations are an important allocation strategy, widely used, e.g., in
grid toolkits such as Globus [4], as they provide simple means for co-allocations
of different resources. Besides flexible and easy support for co-allocations, ad-
vance reservations also have other advantages such as an increased admission
probability when reserving sufficiently early, and reliable planning for users and
operators. In contrast to the synchronous usage of several different resources,
where also queueing approaches are conceivable [1], advance reservations have a
particular advantage when time-dependent co-allocation is necessary, as shown
in Fig. 1. In [3], advance reservations have been identified also as essential for a
number of higher level services, such as SLAs.

In the context of grid computing, failure recovery mechanisms are partic-
ularly important as the distributed nature of the environment requires more
sophisticated mechanisms than needed in a setting with only few resources that
can be handled by a central management system. The focus of this paper is
on the requirements for dealing with failures and outages of resources that are
reserved in advance.

In general, failure detection and recovery mechanisms focus on the require-
ments to deal with applications that are already active. The Globus heartbeat
monitor HBM [6] provides mechanisms to notify applications or users of failures
occurring on the used resources. The recovery mechanisms described in this pa-
per can be initiated by the failure detection of the HBM. In [7], a framework for
handling failures in grid environments was presented, based on workflow struc-
ture. The framework allows users to select different failure recovery mechanisms,
such as simply restarting jobs, or - more sophisticated - checkpointing and mi-
gration to other resources if supported by the application to be recovered.

In [2], the problem of failure recovery in advance reservation systems was
addressed in a similar manner for networks. One important difference is that in
contrast to the considerations in [2], jobs cannot be migrated and distributed

during run-time in the same way as network transmissions, where packets can
be transmitted on several paths in parallel.

Mechanisms as presented in this paper can be applied in distributed but
also in centralized management systems, such as the virtual resource manager
(VRM) described in [3]. Residing on top of local resource management systems,
the VRM framework supports quality-of-service guarantees and SLA negotiation
and with these mechanisms provides a larger variety and improved quality of the
services offered for users. In particular, when SLAs were negotiated, e.g., in order
to ensure job completion up to a certain deadline, failure recovery mechanisms
are essential in order to avoid breaching an SLA.

3 Application Environment

Advance reservations are requests for a certain amount of resources during a
specified period of time. In general, a reservation can be made for a fixed period
of time in the future, called book-ahead interval. The time between issuing a
request and the start time of the request is called reservation time. In contrast to
immediate reservations which are usually made without specifying the duration,
advance reservations require to define the stop time for a given request. This is
required to reliably perform admission control, i.e., to determine whether or not
sufficient resources can be guaranteed for the requested period.

Administrative Domain Controller

RMS RMS RMS

Administrative
Domain

The Grid

Fig. 2. Outline of the VRM Architecture

The failure recovery mechanisms described here are integrated in the VRM
architecture [3] (see Fig. 2). The administrative domain controller (ADC) is
in charge of the resource management, e.g., resource selection, scheduling, and
failure recovery, of a domain consisting of one or more resource management
systems. Once a failure is notified to the ADC, the failure recovery searches for
alternative resources firstly within its own domain. If this is not successful, other
resources available via the grid interface are contacted in order to find a suitable
alternative location for a job.

time����
��

current time

inactive, admittedactive, admitted

Fig. 3. Active and inactive jobs in the advance reservation environment.

4 Expected Downtime

In advance reservation environments, knowledge is available not only about jobs
that are currently active, but also about those that are admitted but not yet
started (see Fig. 3). While in other environments, failure recovery strategies
need to be implemented only for active jobs, advance reservations require to
consider also the inactive ones. For this purpose, we introduce the notion of
expected downtime. This time represents an estimate of the actual duration of
the failure and is the basis for our failure recovery strategies.

timefailure
detected

expected downtime

Fig. 4. Jobs within expected downtime (gray) are considered for remapping.

As depicted in Fig. 4, any job that is or becomes active during the expected
downtime period is considered for remapping. In contrast to those strategies
aiming at only recovering active jobs, e.g., using checkpointing and migration,
remapping of inactive jobs has the advantage of requiring much less efforts, since
this is done entirely within the management system. The emphasis in this paper
is on remapping inactive jobs.

5 Remapping Strategies

In the context of this study, jobs running at the moment the failure occurs are
considered to be not remappable. The reason is the difficulty to implement suit-
able recovery mechanisms, such as checkpointing and migration facilities. For
many resource types, such as cluster systems or parallel computers, such func-
tionality lacks completely or has to be implemented explicitly by the application.
However, our assumption is not crucial for the evaluation of our approach or the
success of the remapping strategies themselves.

In case, the failure of a specific resource system, e.g., a cluster, is notified,
the management system has to face different tasks to minimize the impact of

time
job

remapping
job

ordering
expected downtime

calculation
failure

detection / notification

Fig. 5. Timeline of the failure recovery process

the failure, which means, as many affected jobs as possible have to be remapped
to alternative resources. The amount of affected jobs to be remapped is defined
by the time the failure occurred and the expected downtime. Therefore, at first
it is necessary to investigate the actual allocation of the local resource system
affected by the failure, which means all jobs that have a reservation for the time
span between failure and end of the expected downtime have to be processed.
Other jobs are not required to be taken into account. The temporal sequence of
events during the recovery process is depicted in Fig. 5.

For all jobs that must be remapped, alternative resources have to be found.
Hence, the resource management system must have information about all avail-
able resources which are able to run the affected jobs. Because grid environments
can provide different and heterogeneous resources, the management system has
to make sure that only computing systems feasible to deal with the jobs to be
remapped are considered during the recovery process.

Finding the alternative resources for a set jobs is a classical bin packing prob-
lem [5]. In order to determine feasible resources, strategies such as gangmatching
have been developed [10]. Once the set of feasible resources has been determined,
the remapping mechanism determines the amount of unused capacity, e.g., com-
pute nodes, on all alternative compute systems, e.g., cluster computers. Then, the
task is to maximize the success of the remapping according to some optimization
criterion, e.g., the amount of successfully remapped jobs. Other optimization cri-
teria are conceivable as well although not targeted in this paper, e.g., minimizing
the penalty to be paid for terminated jobs.

The bin packing problem discussed here deals with different bins of different,
but fixed size, to be filled with objects of fixed size. In our case these objects
are rectangles, symbolizing the reservations, fixed in height and width, and the
bins are defined by the expected downtime (width) and the amount of unused
resources on the potentially available alternative resource locations (height). This
means, we have to deal with a special case of the multidimensional bin packing
problem - a rectangle packing problem, which is NP-complete [8]. Hence, in this
paper heuristics are used in order to determine how jobs are remapped onto
alternative resources.

Because the reservations are fixed in time it is not possible to shift the jobs
to the future on the local system or alternative resources. This differs from
scheduling bin packing approaches using time as variable dimension. Thus, it is
essential to find free resources during the specific downtime interval, for example,
using the available resources within the grid (see Sec. 3). On the other hand, free
resources on any of the alternative systems may not be available for any request.
Therefore, it the necessary to decide in which order jobs are being remapped to
unused resources.

Some assumptions can be made to motivate the decision for suitable remap-
ping heuristics, as outlined in the following.

First Come First Served (FCFS) In order to maximize the acceptance of
grid environments and advance reservation systems, a predictable behavior of
the system has to be assured – even in cases of failures. One opportunity is to
prefer reservations allocated a long time ago. This implements a similar mecha-
nism as advance reservations themselves, i.e., early reservations assure preferred
access to the requested resources. Hence, this remapping strategy, called first
come first served, matches best the users’ expectation of the behavior of the fail-
ure recovery mechanisms. For this purpose, the reservation time, i.e., the time
interval between allocation and resource usage (see Sec. 3), is stored with each
request.

Earliest First (EF) Since the problem of remapping all jobs afflicted by the
expected downtime is NP-complete, the search for free resources can last a signif-
icant amount of time by itself. Furthermore, in distributed management systems
it is necessary to accommodate for the communication costs for status checks and
remapping requests (see Fig. 2). Therefore, the termination of jobs due to the
long lasting recovery process must be reduced. This is achieved by the earliest
first strategy, which orders job according to their start time.

Smallest Job First (SJF) The smallest job first strategy aims at reducing
the total number of terminated jobs resulting from insufficient amount of free
resources. In contrast to FCFS, this strategy may be preferred by operators
more than by users. This strategy orders jobs according to their total resource
consumption, i.e., the product resource usage × time, e.g., CPU hours.

Largest Job First (LJF) The largest job first strategy deals with the effect of
fragmentation of free resources on the grid environment. Using this strategy it is
likely to optimize the utilization of the whole environment. Many small requests
will not congest alternative resources.

Longest Remaining First (LRF) This strategy prefers jobs with long re-
maining run-time. Thus, jobs which utilize resources for a long period of time
will get higher remapping probability.

Shortest Remaining First (SRF) The counterpart of LRF is shortest re-
maining first, which gives priority to jobs with low remaining run-time. Thus,
more jobs are likely to be remapped successfully which may be the goal of oper-
ators.

In Fig. 6, an example of jobs to be remapped during the expected downtime
is shown. Using FCFS, the jobs are prioritized according to the time intervals
r1, r2, r3, i.e., the remapping order is J2, J3, J1, whereas when using EF, only the
start time of the resource is of interest, i.e., the resulting order is J1, J2, J3.

time

J1

J3

J2

expected downtime

r3

r1

r2

Fig. 6. Example for job ordering and remapping.

6 Evaluation

All of the strategies previously described have their advantages and may be
chosen depending on the focus of operator or user perspectives. Simulations
were conducted in order to show how the different strategies perform in actual
grid environments.

6.1 Simulation Environment

The simulations were made assuming an infrastructure of several cluster and
parallel computers with homogeneous node setting, i.e., each job is capable of
running on any of the machines involved. The reason is, that although grid com-
puting in general implies a heterogeneous infrastructure, an alternative resource
used for remapping a job needs to be equipped such that the respective job is
runnable. Hence, it is sensible to simplify the infrastructure.

The simulations only serve the purpose of showing the general impact of fail-
ures and since according to [9] the actual distribution of job sizes, job durations
etc. do not impact the general quality of the results generated even when using
simple models, the simulations were made using a simple synthetic job and fail-
ure model. Each job was assumed to be reserved in advance with the reservation
time being exponentially distributed with a mean of 100 slots. Job durations
were uniformly distributed in the interval [250, 750] and each job demanded for
a number of nodes being a power of 2, i.e., 2, 4, 8, . . . , 256 nodes with uniform
distribution. Each time a failure occurred, a resource was chosen randomly with
uniform distribution. The time between failures followed an exponential distribu-
tion with a mean of 250 slots. The hardware infrastructure consisted of different
parallel computers with varying number of compute nodes, in total there were
eight machines with different amount of nodes, i.e., 1024, 512, 256, 128, 96, and
16. Obviously, some jobs cannot be executed on any machine.

Each simulation run had a duration of 10,000 slots and the results presented
in the following sections each represent the average of 10,000 simulation runs.

In order to assess the performance of the different strategies, two metrics
were chosen that reflect both the amount of jobs that were affected but could
not be successfully remapped onto alternative resources and the reduction of the

utilization that resulted from terminated jobs. The first metric is the termination
ratio, which is defined as follows:

termination ratio :=
|Ā|
|A| ,

with A being the set of affected jobs and Ā ⊂ A being the set of terminated
jobs. The second metric is called utilization loss rate, defined as

utilization loss ratio :=

∑
j∈Ā t(j)c(j)

∑
j∈A t(j)c(j)

,

with t(j) denoting the duration of job j ∈ A, and c(j) denoting the extend of
the resource usage of j. For example, when the resource in question is a cluster
computer, the amount of CPU hours lost due to a failure is captured by the
utilization loss ratio.

For the sake of simplicity, it was assumed that jobs can only be finished com-
pletely or not at all. In certain cases, users may also be satisfied with a reduced
quality-of-service in the sense that even partial results or a reduced number of
nodes can be tolerated. However, as the emphasis in this paper is on the general
behavior of a management system using our failure recovery strategies, this was
not taken into account.

6.2 Performance of the Remapping Strategies

36 37 38 39 40

FCFS

EF

LRF

LJF

SRF

SJF

re
m

ap
pi

ng
 s

tr
at

eg
y

termination ratio (%)

47 48 49 50 51 52

FCFS

EF

LRF

LJF

SRF

SJF

re
m

ap
pi

ng
 s

tr
at

eg
y

utilization loss ratio (%)

Fig. 7. Performance of the remapping strategies

In Fig. 7, the performance of the different strategies is depicted with respect
to termination ratio and utilization loss ratio. The general result is that, the
differences between the individual strategies is rather low. This means, it may
be possible to select a strategy that matches the expectations of operators or
users best.

While the strategies that prefer small or short jobs (SJF, SRF) achieve a low
termination ratio, the strategies which give high priority to long or large jobs
(LJF, LRF) achieve superior utilization loss ratio. The strategies related to the
time, i.e., EF and FCFS, range between the worst and the best, with EF being
near the best for both metrics.

6.3 Impact of the Downtime Estimation

The computation of the expected downtime is a crucial task in the whole failure
recovery process. This estimation can, e.g., be based on knowledge about the type
of the actual failure or statistics about previous failures. For example, replacing a
failed hardware part such as a processor or interconnect can strongly depend on
the time required for shipping the failed part which usually is known in advance.
However, as it can not be assured that the estimation is accurate, it is important
to study the impact of inaccurate downtime estimations on the termination ratio
and utilization loss ratio.

Two cases must be examined: an overestimation means that the actual failure
lasted shorter than expected, an underestimation means the actual failure lasted
longer than originally assumed.

36

38

40

42

-50 -40 -30 -20 -10 0 10 20 30 40 50

downtime deviation (%)

te
rm

in
at

io
n

ra
tio

 (
%

)

45

50

55

60

-50 -40 -30 -20 -10 0 10 20 30 40 50

downtime deviation (%)

ut
ili

za
tio

n
lo

ss
 r

at
io

 (
%

)

Fig. 8. Impact of inaccurate downtime estimation on the termination ratio and utiliza-
tion loss ratio

In Fig. 8, the influence of over- and underestimations is depicted for the
FCFS strategy as an example. It can be clearly observed, that with a positive
downtime deviation, i.e., the actual failure lasted longer than expected, both
the termination ratio and utilization loss ratio increase significantly. In contrast,
overestimations of the actual downtime do not show significant effects with re-
spect to both metrics.

The reason for this behavior is that with overestimations, the amount of
jobs that must be terminated does not differ from the case of an exact estima-
tion. Once the failure is removed, e.g., by replacing a failed hardware item, the
management system simply changes the status to running. No further actions
is required. In case of an underestimation, this is different. Once the end of the
estimated failure period is reached and the system is still not operable, the man-
agement needs to extend the estimated downtime period and then remap the
jobs within the extended downtime. Since at this time additional jobs may have
arrived and assigned to the set of alternative resources, it is more likely that
remapping is not successful.

While an overestimation of the actual downtime has no negative impact on
the job termination ratio, this is slightly different when investigating the amount
of jobs that can be accommodated by the distributed system and the achievable

50,2

50,4

50,6

50,8

51

51,2

51,4

-50 -40 -30 -20 -10 0 10 20 30 40 50

downtime devation (%)

jo
b

bl
oc

ki
ng

 r
at

io
 (

%
)

75

75,1

75,2

75,3

75,4

75,5

-50 -40 -30 -20 -10 0 10 20 30 40 50

downtime deviation (%)

ut
ili

za
tio

n
bl

oc
ki

ng
 r

at
io

 (
%

)

Fig. 9. Impact of inaccurate downtime estimation on the job blocking ratio and uti-
lization blocking ratio

utilization. This is depicted in Fig. 9, showing the job blocking ratio and uti-
lization blocking ratio which capture the percentage of rejected jobs in total and
the utilization these jobs would have been generated. It can be seen that both
metrics decrease with increasing overestimation resulting from the assumption
that the downtime lasts longer and since jobs are not admitted to a system
which is failed, fewer jobs are admitted to the system. However, in this case
underestimations admit more jobs at the expense that fewer jobs actually sur-
vive failures. Furthermore, the impact on the overall utilization depends on the
amount of failures and their duration. As failure situations can be considered as
exceptions, the actual impact of inaccurate downtime estimations remains low.

The results presented in this section show clearly, that the introduction of the
expected downtime, i.e., performing remapping in advance, is an effective mean
to reduce the amount of actually terminated jobs. Otherwise, the effect is similar
to an underestimation, i.e., termination ratio and utilization loss ratio increase
significantly. Although it is unrealistic that the actual downtime can always be
accurately predicted, it is useful to have at least any rough estimate in order to
increase the amount of successfully remapped jobs. Overestimations, although
reducing the amount of jobs that can be accommodated, do not harm the systems
performance with respect to the amount of terminated jobs. As indicated by the
performance results, the estimation of the downtime is more important than the
choice of the actual remapping strategy. In particular, an underestimation of
the downtime by only 10 percent leads to a worse performance than selecting a
different remapping algorithm.

7 Conclusion

In this paper, failure recovery strategies for advance reservation systems, e.g.,
several distributed parallel computers or grid environments, were presented. It
could be shown, that particularly remapping in advance, i.e., remapping inactive
but admitted jobs, is important to reduce the impact of failures. Furthermore,
remapping of inactive jobs does not interfere with running applications but can
instead be performed completely within the management system. The strategies
presented in this paper are generic, i.e., they can easily be applied to almost any

resource type and any resource management system, either centralized or dis-
tributed. This is particularly important for next generation grid systems, which
essentially need to support higher level quality-of-service guarantees, e.g., spec-
ified by SLAs.

The results of the simulations showed, that the impact of a wrong downtime
estimation is much higher than the differences between the remapping strategies.
This means, the choice of the remapping strategy can be selected according to the
needs of the actual environment. Concluding, the remapping of jobs in advance
proved to be a useful approach for dealing with failures in advance reservation
systems.

References

1. Azzedin, F., M. Maheswaran, and N. Arnason. A Synchronous Co-Allocation Mech-
anism for Grid Computing Systems. Journal on Cluster Computing, 7(1):39–49,
January 2004.

2. Burchard, L.-O., and M. Droste-Franke. Fault Tolerance in Networks with an
Advance Reservation Service. In 11th International Workshop on Quality of Service
(IWQoS), Monterey, USA, volume 2707 of Lecture Notes in Computer Science
(LNCS), pages 215–228. Springer, 2003.

3. Burchard, L.-O., M. Hovestadt, O. Kao, A. Keller, and B. Linnert. The Virtual
Resource Manager: An Architecture for SLA-aware Resource Management. In 4th
Intl. IEEE/ACM Intl. Symposium on Cluster Computing and the Grid (CCGrid),
Chicago, USA, 2004.

4. Foster, I., C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A Dis-
tributed Resource Management Architecture that Supports Advance Reservations
and Co-Allocation. In 7th International Workshop on Quality of Service (IWQoS),
London, UK, pages 27–36, 1999.

5. Garey, M. and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., 1979.

6. The Globus Project. http://www.globus.org/.
7. Hwang, S. and C. Kesselman. Grid Workflow: A Flexible Failure Handling Frame-

work for the Grid. In 12th Intl. Symposium on High Performance Distributed
computing (HPDC), Seattle, USA, pages 126–138. IEEE, 2003.

8. Karp, R., M. Luby, and A. Marchetti-Spaccamela. A Probabilistic Analysis of
Multidimensional Bin Packing Problems. In 16th annual ACM Symposium on
Theory of Computing (STOC), pages 289–298. ACM Press, 1984.

9. Lo, V., J. Mache, and K. Windisch. A Comparative Study of Real Workload Traces
and Synthetic Workload Models for Parallel Job Scheduling. In 4th Workshop on
Job Scheduling Strategies for Parallel Processing, Orlando, USA, volume 1459 of
Lecture Notes in Computer Science (LNCS), pages 25–46. Springer, 1998.

10. Raman, R., M. Livny, and M. Solomon. Policy Driven Heterogeneous Resource
Co-Allocation with Gangmatching. In 12th Intl. Symposium on High Performance
Distributed Computing (HPDC), Seattle, USA, pages 80–90. IEEE, 2003.

