Defining Reusable Business-Level QoS Policies for
DiffServ

André Beller, Edgard Jamhour, Marcelo Pellenz

Pontificia Universidade Catoélica do Parana — PUGFRGIA
Curitiba, PR, Brazil
abeller@ig.com.br, {jamhour, marcelo}@ppgia.pucpr.b

Abstract. This paper proposes a PBNM (Policy Based Netwodndjement)
framework for automating the process of generasing distributing DiffServ
configuration to network devices. The frameworlb@&sed on IETF standards,
and proposes a new business level policy modedifoplifying the process of
defining QoS policies. The framework is definedtimee layers: a business
level policy model (based on a IETF PCIM extensiandevice independent
policy model (based on a IETF QPIM extension) anigeice dependent policy
model (based on the IETdffservPIB definition). The paper illustrates the use
of the framework by mapping the information modelML documents. The
XML mapped information model supports the reuseudés, conditions and
network information by usiniPointerreferences.

1 Introduction

Policy Based Network Management (PBNM) plays an importanfoolmanaging
QoS in IP-based networks. [1,2,8]. Recent IETF publicatibage defined the
elements for building a generic, device independent framewo®d8rmanagement.
An important element in this framework is QPIM (Policy Qm&rmation Model)
[6]. QPIM is an information model that permits to descrid®vice independent
configuration policies. By defining a model that is not-devdependent, QPIM
permits to “re-use” QoS configuration, i.e., configuratiaiiqy concerning similar
devices can be defined only once. QPIM configuration is exprdss¢éetms of
“policies” assigned to “device interfaces”, and does not take into actwmsiness
level elements, such as users, applications, network topolabyiraa constraints.
The RFC 3644 that defines QPIM, points that a complete Qasagement tool
should include a higher level policy model that could generate @PIM
configuration based on business goals, network topology @om@ methodology
(diffserv or intserv) [6].

In this context, this paper proposes a PBNM framework fomaating the process
of generating and distributing Differentiated Services (diffsaronfiguration to
network devices. The framework proposes a new business levey pobdel for
simplifying the process of defining QoS policies. The ideatoducing a business
level model for QoS management is not new [3,4,5]. Howelemptoposal presented
in this paper differs from the similar works found iretliterature because the

business level polices are fully integrated with the IETF staisd By taking
advantage of the recent IETF publications concerning QoS proingj the
framework defines all the elements required for generating aitvibdigg diffserv
configuration to network devices.

This paper is structured as follows. Section 2 review soragtkivorks that also
proposes business level models for QoS management. Sectiesedis the overview
of our proposal. Section 4 presents the business level poligel, defined as a
PCIM extension and fully integrated with QPIM. Section 5cdbs the QPIM based
configuration model, and the process adopted for transforthiegousiness level
policies into configuration policies. Section 6 presents XMapping strategy and
examples for illustrating the use of the proposed modekllizjnthe conclusion
resumes the important aspects of this work and pointsucefdevelopments.

2 Related Works and Discussion

This section will review some important works that addrieesdsue of defining a
business level QoS policy model. Verma [3] et al. proposemlafér managing
diffserv configuration in enterprise networks. The work defines tleenehts for
building a QoS management tool, permitting to transforsinass level policies into
device configuration information. The proposal adopts the conafpranslating
business level policies based on SLAs (Service Level Agreemaenits)device
configuration. Verma [4] present an extension of this wiorkpducing more details
concerning the business level model and a configuration disiribased on the IETF
framework. The business level policy is described by statemetfitgshe syntax: “a
user (or group of users) accessing an application (or grioagpptications) in a server
(or group of servers) in a specific period of time must receivspecific service
class”. The service class is defined in terms of “response tinee; &.round-trip
delay of packets). An important concept developed in [4] referthe strategy
adopted for distributing the configuration to the netwddvices and servers. The
strategy assumes diffserv topology. For network devices (e.g., routers), a
configuration policy is relevant only if the shortest-patitween the source and
destination IP includes the router. For servers, a configarablicy is relevant if the
server IP is included in the source or destination IP rangf@sed by the policy. As
explained in the next sections, we adopt a similar strategyriframework.

The Solaris Bandwidth Manager, implemented by Sun [7], pep@ business
level QoS model for enterprise networks that closely follthnes semantics of the
IETF PCIM/PCIMe [12,13]. In the proposed model, a packet fhat satisfies some
conditions receives a predefined service class defined in termsarafwilth
percentage and traffic priority. The Sun’s approach adopts th®&/FHP
implementation framework [2], extending the enforcement paintetwork devices
(routers and switches) and servers. The communication betweebkhand the PEP
is implemented through a set of proprietary APIs.

There are also attempts of proposing a standard model for eapingsbusiness
level policies. According to the IETF terminology, a SLS {®er Level
Specification) represents a subset of a SLA (Service Level Agreethahtefers to

traffic characterization and treatment [8]. There was two attemptdefafiing a
standard SLS model published by IETF as Internet draftQUIEA [9] and
AQUILA [10]. TEQUILA (Traffic Engineering for Quality oService in the Internet,
at Large Scale) define a SLS in terms of six main attributapes Flow Identifier,
Performance, Traffic Conformance, Excess Treatment, Service Schedule and
Reliability. AQUILA (Adaptative Resource Control for QoS ikt an IP-based
Layered Architecture) adopts the concept of predefined SLS typssdlon the
generic SLS definitions proposed by TEQUILA. A predefingé® $ype fixes values
(or range of values) for a subset of parameters in the genesicAgicording to [10],
the mapping process between the generic SLS and the concrete QoSisnecican
be very complex if the user can freely select and combine the paraniétensfore,
the use of predefined types simplifies the negotiation betwestarnars and network
administrators.

The proposal described in this paper has several similaritits the works
reviewed in this section. However, the strategy for definirgptolicy model and the
implementation framework differs in some important aspectsasidering the
vendors efforts to follow the recent IETF standards, trangl#usiness level policies
to a diffserv PIB [11], and distributing the configuratimformation using the COPS-
PR [5] protocol is certainly a logical approach for a QoS manegetool. None of
the works reviewed in this section follows this approachgattter. In [3,4], even
though some CIM and PCIM [8] concepts are mentioned, theopabgollows its
own approach for representing policies, servers, clients and d@aSguration
parameters. In [7], the policy model follows a closer PCIMeesibn, but the policy
distribution and enforcement follows a proprietary approackravimeither the PIB
structure, nor the COPS protocol is adopted. The TEQUIkdjept offers some
attempts of defining standard representations for SLS agreentdoigever, as
pointed by AQUILA, the mapping between a generic SLS defimitio QoS
mechanisms can be very complex. AQUILA tries to solve the gnolbly proposing a
set of predefined SLS types. This paper also follows the IAAUstrategy of
adopting predefined SLS types. However, instead of usingéeheric TEQUILA
template, our work represent SLS types as predefined actionsbddsicr terms of
device-independent QPIM configuration policies. Because confignsadescribed in
terms of QPIM are easily translated to diffserv PIB instandks, strategy
significantly simplifies the process of mapping the busiress| policies to QoS
mechanisms in network devices.

3 Proposal

Fig. 1 presents an overview of our proposed framework (tipdamation in this
section follows the numbers in the arrows in the figurbk @ore of framework is the
business level policy model (BLPM). The BLPM is defined &C#V extension and
it is described in details in section 4. BLPM business redgsantics accommodates
most of the elements proposed in [3,4 and 7], but all elenfgriup of users, group
of applications and group of servers) are described in terstamdard CIM elements
(1). Also, the service classes are defined are in terms of @&tkiguration, or more

precisely, QPIM actions, as explained in the next section (2. Business level
policy information (3) is “compiled” to a Configuration Leveblicy Model (CLPM)

information (4) by the Business Level Policy Compiler F#L). The CLPM and the
transformations implemented by the BLPC are discussed in ségtiNote that the
CLPM repository is pointed as both, input and outputhef BLPC module. The
CLPM is defined as a combination of QPIM and PCIM/PCIMe ess$he CLPM

offers classes for describing both elements in a device confiyuratonditions

(traffic characterization) and actions. Actions correspond to thfigemation of QoS

mechanisms such as congestion control and bandwidth allocatidrgorrespond to
predefined QPIM compound actions (i.e., a manager, when creatsigebs level
policies, assigns a service level to a SLS by pointing tedgfined group of QPIM
actions). The conditions, by the other hand, are generatedtfi®rhusiness level
definitions (users, applications, and servers). Therefore, a swwof CLPM

configuration is created by the BLPC module during an “ofli compilation

process.

9. Device-
dependent protocol

(Users, Applications

1. refrereeeey

(e.g. SNMP) and Network)
Legacy
— (legacy
Devices)
Legacy Confi i I
< guration Level Business Level Policy|

Switch ‘Lg COPS-PR Policy Model (CLPM) 2. refemsst " lodel (BLPM)

] (QPIM-based) (PCIM-based)

COPS-PR
Enabled
Router . 8 .COPS-
COPSPR PR

Enabled
Switch

4. Traffic 3. Policy.

6. Device- c terizati
independent aracterization (R
and action

configuration
mapping Business Level Policy Compiler|
(BLPC)
e} [
Device Level Policy Compiler| 5| Device capabilities
7. Device- (DLPC) (supplied by the
PEP,

dependent)
configuration

PDP Host

Fig. 1. Framework overview.

The CLPM device-independent configuration (6) is transforimedl a device-
specific configuration (7) by the Device Level Policy CompiBLPC). The DLPC
“existence” is conceptually defined by the IETF framework, in thevipioning
approach. The device-dependent configuration is expressed indkandiffserv PIB,
which general structure is defined by the IETF [11]. Becauseonktdevices can
support different mechanisms for implementing diffserv astidime DLPC must also
receive the “device capabilities” as an input parameter. Device capabilitigsecan
“optionally” transmitted by the PEP through the COPS-P&aqgol [5] when the
provisioning information is requested to the PDP. Thegss of configuring network
devices consists in transmitting the PIB using the COP$+B®col. Two situations
can be considered. (i) COPS-PR enabled Network devices capableeofydi
accepting the PIB information as configuration (i.e., all necessanslation from the
PIB to vendor-specific commands are implemented internally bydtvice). (ii)
Legacy devices, where a programmable host is required to act asdPErting the

PIB information to vendor-specific commands using a conditjom protocol, such as
SNMP. The DLPC module and the PIB generation is not disduiasthis paper.

4 Business Level QoS Policy Model

The strategy used for describing the business level policigsecarpressed as: “user
(or group of users) accessing an application (or group dicapipns) in a server (or
group of servers), in a given period of time, must receiveedgfined service level”.
Fig. 2 presents the UML diagram of the proposed business pelicy model. The
policy model is derived from the PCIM/PCIMe model [12,b$]creating a new set
of specialized classes. Basically, the PCIM/PCIMe model permasetde policies as
a group of rules. Each rule has conditions and actionse I€dhditions are satisfied,
then the corresponding actions must be executed. There are mais aeteérning
how conditions are grouped and evaluated. For a more detailedssin about
extending PCIM model, please, refer to [14].

In our proposal, th®redefinedSLSActiorefers to a predefined QPIM compound
policy action (see Fig. 3). For example, a QoS specialist can gregtefined QPIM
compound actions defining a Gold, Silver and Bronze servicesl¢thes example is
illustrated in the section 6). Then, in the business levdicypamodel, the
administrator only makes a reference to the predefined service tiesctiping the
PredefinedSLSNanatribute of thePredefinedSLSActioclass. The conditions of the
SLSPolicyRulgermit to define “who” will receive the service level and “when” the
service will be available. Considering the diffserv approach, “tieo” policy
information must be used for defining: (i) the filteringes used by the device for
classifying the traffic. This information is used for coetplg the QPIM
configuration (as explained next). (i) which devices must recéie pre-defined
service level configuration. This information is used by R for selecting which
policies must be provisioned in a given device.

In the business level policy model the “who” information épresented by the
CompoundTargetPolicyConditiociass. This class defines users/applications/servers
semantic and it is composed by thr€@mpoundPolicyConditionextensions:
CompoundServerPolicyCondition ~ CompoundApplicationPolicyCondition and
CompoundUserPolicyConditionin our model, compound conditions have been
choosen for supporting information reuse. A compound ¢ioendpermits defining
objects in terms of logical expressions. These logical expressice formed by
SimplePolicyConditionswhich follow the semantics “variable” match “value”,
defined by PCIMe. The variables refer to already defined CIM abject
(PolicyExplicitVariablg, permitting to create policies that reuse CIM information.
Therefore, compound conditions can be used for representing gfasers, group of
applications and group of servers that can be reused in seveiressupolicies.

CompoundServerPolicyCondition refers to one or more CIM
UnitaryComputerSysterobjects, permitting to retrieve the correponding server IP
addresses through the associatedRemoteServiceAccessPoint objects.
CompoundUserPolicyConditiarefers to one or more ClMersonobjects, permitting
to retrieve the correponding user’s host IP addresses onaoss also through the

associated RemoteServiceAccessPoint objects Finally,
CompoundApplicationPolicyConditigmints to one or more ClMpplicationSystem
or InstalledProductobjects permitting to retrieve the application’s protocol aod p
information trough the associat8oftwareFeatureandServiceAccessPoiobjects.

1 ———
‘ ol TimePerioaCandi ‘ {) PolicysetComponent

olicyTimePeriodCondition |« e e o= = - - - SLSPolicyGroup
N PolicyRule (‘ PolicySet }4—{ PolicyGroup N SLSType

S aPlieyCondiion | ValiditPeriod *(JAN [stwee]
|-<>‘ ompoundPolicyCondition - S

PolicyRule kl—{ SLsPolicyRule [

1 k# 4 Y * PolicyAction

A
. - . |
_—
CompoundTargetPohcyCondltlonlnSLSPohcyRula' > SLsPolicyActionin
1

1 SLSPolicyRule
----- '01 CompoundTargetPoIicyConditio¢

/\

PredefinedSLSAction
-PredefinedSLSName

¥ -
cupcincTpCl
CompoundUserPolicyCondition ‘

. — :CSPclng;TPC ‘ RemoteServiceAccessPoint ‘
CompoundServerPolicyCondition ‘——— \] \
. System Model CIM 2.8 1)
PCInPC PR . . CAPCINGTPC
CompoundAppI|cat|onPoI|cyCond|uon+———— User Model CIM 2.8 k@t == = o o o == \
1
== SlmpIePohcyConmon - Policyvalue Application Model CIM 2.6 1
* * * 1
b G e PolicyExplicitvariable ServiceAccessPoint =0
N
PCInPC: PolicyConditionInPolicyCondition B CIM objects pointed by explicit variables
CUPCINCTPC: CompoundUserPolicyConditioninCompoundTargetPolicy Condition
CSPCInCTPB: CompoundServerPolicyConditioninCompoundTargetPolicyCondition
CAPCINCTPB: CompoundApplicationPolicy ConditionInCompoundTargetPolicyCondition

Fig. 2. The PCIM/PCIMe-based business level QoS Policy d¢extended classes are shown
in gray). In the proposed model, a policy is repmted by aSLSPolicyGroupnstance. A
SLSPolicyGroup contains one or moreSLSPolicyRule instances (associated by the
PolicySetComponent When the conditions of &LSPolicyRuleare satisfied, then the
corresponding’redefinedSLSActiomaust be executed.

5 Configuration Level QoS Policy Model

Our proposal adopts the strategy of representing SLS prededictions using the
QPIM model. The QPIM model is a PCIM/PCIMe extension, amasaio offer a
device independent approach for modeling the configuratidanteérv and diffserv
devices. Because our work addresses onlyliffi@ervmethodology, only thdiffserv
elements of QPIM will be presented and discusseddRfsery, QPIM should offer
elements for representing both, traffic profile, used by @&8hanisms to classify
the traffic, and QoS actions, used by the QoS mechanisms taaedhe output
traffic to the specified levels. In fact, the RFC 3644 [6] doatspresent the complete
model. Instead, it presents only the new classes that are reaf@btactions. The
RFC merely suggests that developers must combine the QPIM ¢demwih
PCIM/PCIMe for creating a complete configuration model. Figpr@sents our
approach for using the QPIM extensions.

A device configuration is expressed bZanfigPolicyGroupinstance. Note in Fig.
3 that this class is associated t®alicyRolecollection. This association permits to
assign “roles” for the configuration. According to IETFesoare used by the PDP to
decide which configuration must be transmitted to a given (R&PRa network device

interface). During the provisioning initialization, a PERoims the roles assigned to
the device interfaces, and the PDP will consider allGbefigPolicyGroupinstances
that match these roles. In our approacboafigPolicyGroupinstance is dynamically
created as a result of the Business Policy Level (BPL) compilatfiberefore, the
BPL compiler must also determine which roles are assignee twotifiguration. This
is determined by the association between BodicyRoleCollectionand the CIM
Network class. The BPL compiler assures that all businessgmincluding users or
servers with IP addresses belonging to the network subnetiaesl to a given
PolicyRoleCollectiorwill generate configuration policies with the same roles isf th
collection.

PolicyValidityPeriod

] 1

| [TPconnectvitysubnel] |

[Poticyconditioh [_PoticyTimeperiodcondition |— —{ PolicyRule | PolicyGroup 1 Y (
7 ~ AN { -SubnetNumber (
PacketFilterConditioninConfigPolicyRule { -SUb"e‘MaSt (

ConfigPolicyGrou |

- <> ConfigPolicyRule == == — _ 9 Y P { 1 (
PacketFilterCondition 5 -ConfigName Network (
[}

|

|

(

-

-
1
ConfigQoSActionInConfigPolicyRule PolicySetinRoleCollection :]
FilterListOfPacketCondition CompoundPolicyAction I:' PolicyRoleCollectio
| " roloyrok st
) R
t
1 1
[iPHeadersFitter | policy | [PolicyAction Simp\ePDllcyAc(iug-——I Policylmplicitvariable |
| . Policyvalue
QoSPolicyTrfProf QoSPolicyDiscardAction
QoSPolicyPHBAGtIon QoSPolicyBandWidthAction

QoSPolicyTokenBucketTrfcProf

QoSCongestionControlAction|

QoSPolicyTrfcProfiInAdmissionAction

QoSPolicyShapeAction

| QoSPolicy. 1Action

QoSPolicyPoliceAction

QPIM QoPolicyConfi tion, QoSPolicy ion, QoSPolicy Vi

Fig. 3. The configuration policy model, including PCIM/A# and QPIM classes. The QPIM
classes are highlighted in the figure by a greyamgle. We have introduced two new classes:
ConfigPolicyGroupand ConfigPolicyRule The other classes are defined by PCIM/PCIMe,
CIM Policy and CIM Network.

A ConfigPolicyGroup instance aggregates one or mo@onfigPolicyRule
instances. In our approach, eaconfigPolicyRule instance is associated to
PacketFilterCondition instances and to CompoundPolicyAction instances.
PacketFilterConditionsare used for defining the rules classifying the traffic it
benefit from the QoS service level defined by tBempoundPolicyActianThe
PacketFilterConditionsare defined by the BPL compiler considering the “who
information in the BPL model. TheompoundPolicyActiomstance is a pre-defined
SLS QoS action, which is simply pointed by the BPL coemplly matching the
attribute PredefinedSLSNam@& the BPL model with the name attribute of the
CompoundPolicyActian The actions included in th€ompoundPolicyActiorare
defined by QPIM [6]. An example of QPIM configuration i®gented in the section
6.

6 XML Mapping and Examples

The proposed framework have been implemented using XML for imgsdl
information model related to the business level policy mod@ifiguration policy
model and CIM information. The strategy adopted for mappirey information
models into XML is inspired by the LDAP mapping guidebrproposed by IETF and
DTMF, and can be summarized as follows: (i) for the structilaglses the mapping is
one-for-one, information model classes and their propertags tm XML elements
and their attributes. (ii) for the relationship classes tifferént mappings are used: If
the relationship does not involve information reuse, a swmpsubordinate
relationship is established by XML parent-child relationsttig, association class is
not represented and its attributes are included in the child dlelihtre relationship
involves reusable information, the association class maps kbLacKild node, which
includes aXPointerreference [15] attribute that points to a specific reusable object.
this case, if the relationship is an association, the parerg ocodesponds to the
antecedent class and the child node points to the dependentfdlasselationship is
an aggregation, the parent node corresponds to the group cemh@ord the child
node points to the part component class.

BusinessLevelPolicyContainer

SLSPolicyGroup

!

|

'

SLSPolicyRule

PolicyContainer

Reusable PolicyContainer

Reusable PolicyContainer

CompoundTargetCondition
ReusableCompoundUserCondition
ReusableCompoundServerCondition
ReusableCi ondition

Comp dUserConditior|

CompoundServerConditior|

SimpleCondition
ExplicitPolicyVariable
PolicyValue

SimpleCondition
ExplicitPolicyVariable
PolicyValue

CompoundApplicationConditio

SimpleCondition
ExplicitPolicyVariable
Policyvalue

‘ PredefinedSLSAction ‘

J—* Xpointer reference

Reusable PolicyContainer

[ReusablePolicyTimePeriodConditionH+

‘ PolicyTimePeriodCondition

Fig. 4. Business level XML mapping structure. In th8LSPolicyRute element the conditions
are defined by €ompoundTargetPolicyConditionelements that point to user, application and
server compositions stored in &&usablePolicyContainer The mapping supports the reuse
of CompoundPolicyConditionand PolicyTimePeriodConditionsThe simple conditions are
based on th&xplicitPolicyVariablesemantics, which permits to make references tmeés
described in terms of CIM objects. In our approatimple conditions are not reusable.

In our implementation, XML was preferred as an alternative t&RDdue to the
considerable availability of development tools and recent sugptidduced in
commercial relational databases. However, the information modrlsdisd in this
paper can also be mapped to LDAP or to a hybrid combinatievebatLDAP and
XML. Fig. 4 illustrates XML mapping structure, and theastgy adopted for
supporting information reuse in the business level poéppsitory. Fig. 5 presents
and example of a business level policy model (BLPM) mappedNii. X ig. 6
illustrates the compound conditions representing userscapptis and servers.

<PolicyContainer Name="BusinessLevelPolicy">
<SLSPolicyGroup SLSType="Olimpic" PolicyDecisionStrategy="2">
<—Silver Rule -->
<SLSPolicyRuleName="SilverRule" Enabled="1" ConditionListType="BEXecutionStrategy="2" Priority="2">
<CompoundTargetPolicyCondition ConditionListType="1"GroupNumber="1" ConditionNegated="false">
<CompoundUserPolicyConditioninCompoundTargetPolicyConditionGroupNumber="1
ConditionNegated="false" PartComponent="./Compound@iond.xml#
xpointer(//CompoundUserPolicyCondition[@Name='"ComnaktanagerT) />
<CompoundApplicationPolicyConditioninCompoundTargetPolicyCondition .../>
<CompoundServerPolicyConditioninCompoundTargetPolicyCondition... />
</CompoundTargetCondition>
<PredefinedSLSPolicyActionPredefinedSLSName="Silver" />
<PolicyRuleValidityPeriod PartComponent="./Validity.xml#
xpointer(//PolicyTimePeriodConditionj@Name="Period17)" />
</SLSPolicyRule>
<l-- Gold Rule and Bronze Rule -->
</SLSPolicyGroup>
</PolicyContainer>

Fig. 5. Example of business level policy in XML. Th&LSType attribute in the
<SLSPolicyGroup indicates the predefined set of reusable setyipes adopted in the model.
In this case, the “Olimpic” indicates three sendieeels (SLS), named “Bronze”, “Silver” and
“Gold”. Only the service level corresponding to N&ir” is detailed in the figure by the
corresponding SLSPolicyRule element. The €ompoundTargetPolicyConditiendefines the
conditions for receiving the “Silver” pre-definedl$ action. TheXPointerexpression assigned
to the PartComponent attributes follows the syntax “reusable-info-reposi
URI™#xpointer(“XPath expression for selected nodethe repository”).

<l- CompoundConditions.xra>
<ReusablePolicyContaineName="CompoundUserCondition">
<SimplePolicyCondition GroupNumber="1" ConditionNegated="false">
<PolicyExplicitVariable ModelClass="Person" ModelProperty="BusinessCatggor
<PolicyStringValue StringList="Manager" />
</SimplePolicyCondition>
<SimplePolicyCondition GroupNumber="1" ConditionNegated="false">
<PolicyExplicitVariable ModelClass="Person" ModelProperty="0U" />
<PolicyStringValue StringList="CommercialDepartment" />
</SimplePolicyCondition>
</CompoundUserPolicyCondition>
</ReusablePolicyContainer

<ReusablePolicyContaineiName="CompoundApplicationCondition"> ...
</ReusablePolicyContainer
<ReusablePolicyContaineName="CompoundServerCondition"> ...
</ReusablePolicyContainer

Fig. 6. Example of reusable compound conditions. Th€orfimercialManagér
<CompoundUserConditienselects the users matching “BusinessCategory ralyker” AND
“OU = CommercialDepartmeht

Fig. 7 Iillustrates the strategy adopted for mapping the iguation level
information model. Fig. 8 illustrates an example of configjon policy generated by
the BLPC. The corresponding predefined SLS compound actitinssated in Fig.
9, and the reusable QPIM actions and associations are illustrated 10.

ReusablePolicyContainer

ConfigPolicyGroup

ConfigPolicyRules

PacketFilterCondition L
Reusable CompoundPolicyActions

Reusable Policy TimePeriodConditions

Reusable PolicyContainer

CompoundPolicyAction
Reusable SimplePolicyAction
Reusable QoSPolicyDiscardAction
Reusable QoSPolicyPHBAction
Reusable PolicyAdmissionAction

e

Reusable PolicyContainer

SimplePolicyAction
PolicylmplicitVariable
PolicyValue

QoSPolicyBandWidthAction

QoSCongestionControlAction

XPointer reference

XPointer reference

Reusable PolicyContainer

PolicyTimePeriodCondition

QoSPolicyAdmissionAction
Reusable ConformAction
Reusable ExceedAction
Reusable ViolatedAction

ReusablePolicyTokenBycketTrafProfil

Reusable PolicyContainer

‘ QoSPolicyTokenBucketTrafProfile]

‘

Fig. 7.. Configuration Level XML Mapping Structure. AGonfigPolicyGroup groups the
<ConfigPolicyRules corresponding to the configuration of deviceshwiimilar role” in the
network. ThePacketFilerConditionis generated by the BLPC, and it is not reusable

<CompoundPolicyActions and <PolicyTimePeriodConditionrs however,

are

reusable

information pointed byXPointerreferences. Note theGompoundPolicyAction also points to

reusable QPIM actions.

<PolicyContainer Name="ConfigPolicy">

</PacketFilterCondition>

</ConfigPolicyRule>
</ConfigPolicyGroup>
<l-- ... other ConfigPolicyGroups>

</PolicyContainer>

<l-- ... other PacketFilterConditions>

<PolicyRuleValidityPeriod PartComponent="/Time.xml#
xpointer(//PolicyTimePeriodCondition[@Name="Perigd1>

<ConfigQoSActionIinConfigPolicyRule PartComponent="/QoSOlimpic.xml#
xpointer(//CompoundPolicyAction[@name="SilverActiptv>

<ConfigPolicyGroup ConfigName="OlimpicConfigQoSCommercial" PolicyDsionStrategy="1">
<ConfigPolicyRule Enabled="1" ConditionList Type="1" Priority="2">
<PacketFilterCondition FilterEvaluation="4" GroupNumber="2" ConditionNegd="false">
<IPHeadersFilter IsNegated="False" HdrIPVersion="4" HdrSrcAddre$s8:0.0" HdrSrcMask="0"
HdrDestAddress="10.0.4.1" HdrDestMask="24" Direoti3"/>

Fig. 8. Configuration policy generated by the BPL compilén this example, each
<ConfigPolicyGroup represents the configuration of the devices igpacific subnet in a
enterprisediffserv network. Only the configuration policy correspamglito the Silver service
level in the Commercial subnet is detailed in figere.

<ReusablePolicyContaineMName="0limpicQoSSpecification">

"/ QPIMAction.xml#xpointer(//QoSPolicyBandwidthAch[@Name="SilverBWClass)" />
</CompoundPolicyAction>
<CompoundPolicyAction name="GoldAction" SequencedActions="1" Executioa®gy="2">...
</CompoundPolicyAction>
</ReusablePolicyContainer

Fig. 9. Example of reusable pre-defined QPIM compound oasti The compound
“SilverActiori points to a set of reusable QPIM actions, whiclismbe executed in a
predefined order.

<ReusablePolicyContaine name="QPIMAction">
<QoSPalicyPoliceActionName="PoliceSilverFlow" gpAdmissionScope="0">
<QoSPolicyTrfcProflInAdmissionAction Dependent="./QPIMAction.xml#
xpointer(//QoSPolicyTokenBucketTrfcProf{@Name='8ifVBFlow])" />
<PolicyConformAction Dependent="./ QPIMAction.xml #
xpointer(//SimplePolicyAction[@Name='SilverDSCPFIGanform7)" />
<PolicyExceedAction... />
<PolicyViolateAction ... />
</QoSPalicyPoliceAction
<QoSPolicyCongestionControlActionName="SilverQueueClass" qpQueueSizeUnits="1" qu@8&e="15"
gpDropMethod="3" gpDropThresholdUnits="0" gpMinThh®ldValue="30" gpMaxThresholdValue="45" />
<QoSPolicyBandwidthAction Name="SilverBWClass" gpBandwidthUnits="1" gpMinBamdth="25" />
<SimplePolicyAction Name="SilverDSCPFlowConform">
<PolicyDSCPVariable Name="PolicyDSCPVariable" />
<PolicyIntegerValue IntegerList="AF21" />
</SimplePolicyAction>
<SimplePolicyAction Name="SilverDSCPFlowExceed">... SimplePolicyActiorn>
<SimplePolicyAction Name="SilverDSCPFlowViolate">... SimplePolicyAction>

</ReusablePolicyContainer

<ReusablePolicyContainemame="TokenBucket">
<QoSPolicyTokenBucketTrfcProf Name="SilverTBFlow"
gpTBRate="256" qpTBNormalBurst="64" qpTBExcessBut82" />
<l-- other traffic profiles -->
</ReusablePolicyContainer

Fig. 10.Example of reusable pre-defined QPIM actions.

Conclusion

This work contributes for defining a complete framework QoS diffserv
management that is in according with recent IETF standards.widtls proposes a
new business level model and completes the QPIM model witheslasquired for
defining filtering conditions for diffserv configuratiorAn important point with

respect to the implementation of CIM/PCIM-based frameworks coadhe strategy
adopted for mapping class associations to XML or LDAP. Becthesalirectives

published by IETF and DTMF offers several possibilitiesniapping the information
model classes, retrieving information from a repository regla previous knowledge
of how the information classes have been mapped to a specifidGtoepeshema.

That poses an important obstacle for building “out-of-the’ irmmeworks that could

reuse existent CIM/PCIM information. This is certainly anpaihat should be

addressed by IETF and DMTF. Future works includes exterttimdpusiness level
policy model for supporting more elaborated policies rulesthadlevelopment of a
graphical tool for generating the business level policies.

References

1. Ponnappan, A.; Yang, L.; Pillai, R.; Braun, R.Policy Based QoS Management System for
the IntServ/DiffServ Based Internet”. Proceedinfigshe Third International Workshop on
Policies for Distributed Systems and Networks (POYI02). IEEE, 2002 .

2. Yavatkar, R., Pendarakis, D.; Guerin, R. A Frar for Policy-Based Admission Control,
RFC2753, Jan. 2000.

3. D. Verma, M. Beigi and R. Jennings, "Policy BhAsBLA Management in Enterprise
Networks", Proceedings of Policy WorkShop 2001.

4. D. Verma, "Simplifying Network Administration g Policy based Management", |IEEE
Network Magazine, March 2002.

5. Chan K.; Seligson, J.; Durham, D.; Gai, S.; Mdlirie, K.; Herzog, S.; Reichmeyer, F.;
Yavatkar, R.; Smith, A.; “COPS Usage for Policy ®swoning (COPS-PR)”, IETF RFC
3084, Mar. 2001.

6. Snir, Y.; Ramberg, Y.; Strassner, J.; CohenMgre, B.; “Policy Quality of Service (QoS)
Information Model”, IETF RFC 3644, Nov. 2003.

7. Kakadia, D.; “Enterprise QoS Based Systems &wddt Management”, Sun Microsystems
White Paper, Article #8934, Volume 60, Issue 1,/min Section, February 4, 2003.

8. J. Schnizlein, J. Strassner, M. Scherling, BinQuS. Herzog, A. Huynh, M. Carlson, J.
Perry, S. Waldbusser; “Terminology for Policy-Bad¢dnagement”, IETF RFC 3198, Nov.
2001.

9. D. Goderis, D. Griffin, C. Jacquenet, G. Pavlttiributes of a Service Level Specification
(SLS) Template”, IETF draft, October 2003.

10. S. Salsano, F. Ricciato, M. Winter, G. Eichker,Thomas, F. Fuenfstueck, T. Ziegler, C.
Brandauer; “Definition and usage of SLSs in the AlAJconsortium”, IETF draft, Nov.
2000 (expired).

11. K. Chan, R. Sahita, S. Hahn, K. McCloghrie, ff&fentiated Services Quality of Service
Policy Information Base”, IETF RFC 3317, Mar. 2003.

12. B. Moore, E. Elleson, J. Strasser, A. Weterifalicy Core Information Model. IETF RFC
3060, February 2001.

13. B. Moore, E. Elleson, J. Strasser, A. WeterinBolicy Core Information Model
Extensions. IETF RFC 3460, February 2001.

14. Nabhen, R., Jamhour, E., Maziero C. “Policydgasramework for RBAC”, Proceedings
for the fourteenth IFIP/IEEE International Workshamp Distributed Systems: Operations &
Management, October, Germany, Feb. 2003, pg. 181-19

15. W3C, XPointer Framework, W3C Recommendationyi2bch 2003.

