
HiFi+: A Monitoring Virtual Machine for
Autonomic Distributed Management

Ehab Al-Shaer, Bin Zhang

School of Computer Science, Telecommunications and Information Systems
DePaul University, USA

{ehab, bzhang}@cs.depaul.edu

Abstract. Autonomic distributed management enables for deploying
self-directed monitoring and control tasks that track dynamic network
problems such as performance degradation and security threats. In this
paper, we present a monitoring virtual machine interface (HiFi+) that
enables users to define and deploy distributed autonomic management
tasks using simple Java programs. HiFi+ provides a generic expressive
and flexible language to define distributed event monitoring and corre-
lation tasks in large-scale networks.

1 Introduction

The continuing increase in size and complexity and dynamic state changing prop-
erties of modern enterprise network increases the challenges on network monitor-
ing and management system. Next-generation distributed management systems
need not only monitor the network events but also dynamically track the net-
work behaviors and update the monitoring tasks accordingly at run-time. This
is important to keep up with significant changes in the network and perform
recovery/protection actions appropriately in order to maintain the reliability
and the integrity of the network services. Traditional network monitoring and
management systems lack expressive language interfaces that enable distributed
monitoring, correlation and control (actions). In addition, many of the existing
management systems are static and lack the ability to dynamically update the
monitoring tasks based on analyzed events. In request-based monitoring sys-
tems, the managers have to initiate large number of monitoring tasks in order to
track events that might overload the monitoring agents and cause events delay
or dropping. Next-generation monitoring systems must allow for defining com-
plex monitoring actions or programs, instead of monitoring requests, in order to
analyze the received events and initiate customized monitoring or management
programs dynamically. For example, it will be more efficient to use a general
traffic monitoring task for detecting network security vulnerability and initiate
customized/specialized monitoring tasks when misbehaving (suspicions) traffic
exits in order to closely track particular clients.

In this paper we present a monitoring virtual machine HiFi+ that explic-
itly addresses these challenges and provides a generic interface for multi-purpose



monitoring applications. HiFi+ system supports dynamic and automatic cus-
tomization of monitoring and management operations as a response to the
change in the network behavior. This is achieved though programmable monitor-
ing interfaces (agents) that can reconfigure their monitoring tasks and execute
appropriate actions on the fly based on the use’s request and the information col-
lected from the network. HiFi+ employs a hierarchical event filtering approach
that distributes the monitoring load and limits event propagation. The main con-
tribution of this work is providing a Java-based monitoring language that can
be used to define a dynamic monitoring and control tasks for any distributed
management application. It also incorporates many advanced monitoring tech-
niques such as hierarchical filtering and correlation, programmable actions and
imperative and declarative interfaces.

This paper is organized as follow. In section 2, we introduce our expressive
monitoring language. Section 3 gives application example. In section 4, we com-
pare our work with related works. Section 5 gives the conclusion and identifies
the future work.

2 HiFi+ Expressive Language Components

In this section, we present the three components of HiFi+ monitoring language:
(1) Event Interface that describes the network or system behavior, (2) Filter
Interface that describes monitoring and correlation tasks, and (3) Action Inter-
face that describes the control tasks[2, 3]. HiFi+ is an object-oriented language
implemented in Java. Users can use the event and filters interfaces to define the
network behavior pattern to be detected and the action interface to perform the
appropriate operation.

2.1 Event Definition Interface

An event is a significant occurrence in the system or network that is represented
by a notification message. A notification message typically contains information
that captures event characteristics such as event type, event source, event values,
event generation time, and state changes. Event signaling is the process of gener-
ating and reporting an event notification. The HiFi+ Event interface allows users
to use standard events like SNMP traps as well as defining a customized event
specification. Figure 1 shows the class hierarchy of Event Definition Interface.

In HiFi+, although events can be in different formats, all types of events
share the same interface and can be accessed and manipulated in the same way.
For example, the special SNMPTrap event with fixed format encapsulates all
the information in an SNMP trap message and these information can still be
accessed by the general event function like getAttributeValue(). The HiFiEvent
event format is the general event type which can be used to construct customized
events. The HiFievent event can be divided into two parts: the event body and
event id. The event id can be a string or an integer which stand for the event
name or type. The event body is the container of the real information.



+setEventId()
+getEventId()
+setEventBody()
+getEventBody()
+setAttributeValue()
+getAttributeValue()
+addAttribute()
+delAttribute()

-eventID
-eventBody

Event

+setAttributeValue()
+getAttributeValue()
+addAttribute()
+delAttribute()

EventBody

+equalTo()
+lessThan()
+greaterThan()

-id

EventID

GenEventBody

+getFixAttribute()
+setFixAttribute()
+setVarAttribute()
+getVarAttribute()
+setAttributeValue()
+getAttributeValue()
+addAttribute()
+delAttribute()

HiFiEventBody OcteStr Int32

SNMPTrap
-evtID
-evtBody

HiFiEvent

+getModuleName()
+setModuleName()
+getFuncName()
+setFuncName()
+getReportMode()
+setReportMode()

FixAttribute

+setAttributeValue()
+getAttributeValue()
+addAttribute()
+delAttribute()

VarAttribute

Informtrap

1

-

1

1

1
-

-1

-

Fig. 1. Event Definition Interface Classes

Two types of event body are extended from the basic event body class: the
general event body and HiFiEvent body. HiFiEvent body mainly has two parts:
the fix attributes and the variable attributes. Both of these two parts are com-
posed by a set of predicates. Each predicate has an attribute name, the value of
that attribute and the relation between them. For example, bandwidthUsage >
0.8 is an event predicate which means the value of bandwidthUsage attribute is
larger than 0.8. The fixed attributes define the common attributes shared by
all event types. From this part, we can get the information about the event
source, generated time and signaling type. When event is created, the system
automatically inserts the current time in the timestamp attribute of the event.
The variable attributes allows user to define any additional general attributes
that might reveal more information. For example, suppose we want to monitor
the system load of the Web server neptune. We can define the format of the
event generated by neptune as follows:

Event systemLoad = new HiFiEvent("systemLoad, "Neptune, loadMonitor,

senderThread", "cpuUsage = Any");



+setEventExpression()
+getEventExpression()
+setFilterExpression()
+getFilterExpression()
+setAction()
+getAction()

-ex : EventExpression
-fx : FilterExpression
-action
-filterID

Filter

+modifyFX()
+setFX()
+getFX()

FilterExpression

+modifyEX()
+setEX()
+getEX()

EventExpression

+getResult()

-leftAttribute
-relation
-rightAttribute

FilterPredicate
-eventName

EventPredicate
-AND
-OR
-NOT

FilterOperator

-eventName
-attributeName

LeftAttr
-eventName
-attributeName
-value

RightAttr

-name

AttrName

-lessThan
-greaterTran
-equal
-notEqual
-RegularExEqual

AttriRelation

1
1

-AND
-OR
-BEFORE
-AFTER
-NOT

EventOperator

-1 -*
1

*

-

-

-

-

-1

-1

1* -1 -*

-id

EventID

1*

Fig. 2. Filter Definition Interface Classes

2.2 Filter Definition Interface

In HiFi+ monitoring virtual machine, users describe their monitoring demands
by defining ”filters” and submit them to the monitoring system at run time[2].
Figure 2 shows the filter classes hierarchy. A filter is a set of predicates where each
predicate is defined as a Boolean valued expression that returns true or false.
Predicates are joined by logical operators such as ”AND” and ”OR” to form
an expression[3]. In HiFi+ language, the filter is composed by four components:
filter ID, event expression which specifies the relation between the interesting
events, filter expression which specifies the relations or the matching values of
different attributes, and action object name. The action object will be loaded
and executed by the monitoring agent if both the event and filter expressions are
true. The event and filter expressions define the correlation pattern requested by
consumers. Consumers may add, modify or delete filters on the fly. The filters
are inserted into the monitoring system through filter subscription procedure[2].
The monitoring agent can reconfigure itself by updating their internal filtering
representation. This feature is highly significant to provide dynamic features of
programmable monitoring virtual machine.

Every filter has a filter id that is unique in the monitoring system. To illus-
trate the expressive power of the filter abstraction to define monitoring tasks,
we will next show some examples. Assume we want to monitor the performance
of our web server neptune and accept new connections only if the service time



of the existing clients is acceptable. Therefore, if the simultaneous connections
exceed a certain threshold and the connected clients experience unacceptable
performance drop, then we need neptune to refuse more service requests. In this
example, we need to monitor not only the system load of neptune, but also the
performance drop in the client side. Assume neptune will send out systemLoad
event periodically or when load is significantly increased as defined in the previ-
ous example. We are interested in events that reflect high increase of CPU Load
(assuming 80%). The filter for this requirement can be defined like this:

Filter systemLoadFilter = new Filter("systemLoadFilter", "systemLoad",

"systemLoad.cpuUsage > 0.8 AND systemLoad.machine = neptune",

"systemLoadAction" )

The four parameters transferred to the filter constructor are filter ID, event
expression, filter expression, and action class name. Suppose the web client will
send out performaceDrop event if it experience long response time from a web
server. The performaceDrop event format can be defined like this:

Event performaceDrop = new HiFiEvent("performaceDrop", "Any, webClient ,

senderThread", "responseTime = Any, server = Any")

The long response time experienced by web client can be caused by network
congestion and packets drop or server load exceed its capacity. If only one web
client complains about the long response time, it’s hard to decide it’s the server or
the network causes this problem. If we receive multiple performanceDrop events
come from different web clients, we have more confidence to suspect that the
long response time may be caused by server overload. So the filter should keep
a counter for how many clients have sent out performanceDrop events. When
the counter value is larger than threshold (assuming 5), the filter will send out
serverOverloadAlert event. We can define event and filter for this task like this:

Event serverOverloadAlert = new HiFiEvent("serverOverloadAlert", "Any,

performanceDropFilter, Any", "server = Any")

Filter performceDropFilter = new Filter("performaceDropFilter",

"performanceDrop", performanceDrop.responseTime > 120 AND

performanceDrop.server = neptune", "performanceDropAction")

The counter updating and the event creation are implemented in the action
and not shown in the filter definition. Suppose if we receive the serverOver-
loadAlert event in ten seconds after receive systemLoad event, we can get the
conclusion that the server has been overloaded. The filter for this task can be
defined as follow:

Filter serverOverloadFilter = new Filter("serverOverloadFilter",

"serverOverloadAlert AND systemLoad", "systemLoad.timeStamp -

serverOverloadAlert.timeStamp < 10000", "serverOverloadAction")



2.3 Action Definition Interface

Actions describe the tasks to be performed when the desired event pattern (cor-
relation or composition) is detected. In this part, we support programmable
management interface. Users can write a Java program to perform any action
to respond to detected network conditions. If the event and filter expressions in
filter evaluate true, the monitoring agents load and execute the corresponding
action programs.

Supporting customized action is one of the major objectives of HiFi+ mon-
itoring virtual machine. The action class allows users to define monitoring task
that can dynamically be updated. It provides a set of API to allow users to
create their own action implementation which extended from action abstract
class. The users can also execute scripts or binary files that will be loaded
on-demand into the monitoring agents. The action class supports five differ-
ent action types: (1) activating/adding a new filter to the monitoring system or
deactivating/removing an existing filter from the system, (2) modifying the filter
expression of an existing filter to accommodate changes in the monitoring envi-
ronment, (3) forwarding the receiving event to agents, (4) creating new events
as a summary of previous event reports, and (5) executing a shell or binary
program. The action class is actually a Java program extends ”Action” abstract
class, and thereby all standard Java as well as HiFi+ API can be used in an
extended action class. This offers great flexibility to customize the monitoring
system.

The action interface also provides ”virtual registers” that the action devel-
oper can use to store event information history. The user can dynamically create
and update registers in the action program, and these registers will be used lo-
cally and globally by the monitoring agents during the monitoring operations.
Figure 3 shows the classes hierarchy of the action interface. To implement an
action program in HiFi+ system, user defined actions must extend the action
class and override the performAction() method to specify his action implemen-
tation. When action class is loaded and executed by the monitoring agent, the
performAction() method will be invoked with three arguments: EventManager,
FilterManager, and ActionManager. The EventManager has the methods by
which the user can access and analyze the received events, create and forward
events. The FilterManager lets the user activate (addFilter()) and deactivate
(delFilter()) filters in the system or update the filter expression (modifyFX()).
The actionManager allows users to execute script or binary file and create or
update virtual register (create/get/check/deleteRegister()).

The action class provides rich event management functions that have a sig-
nificant impact on the language expressiveness. Events can be retrieved based
on its time-order, event type, event name, value of event attribute and so on. For
Example, users can get all events sent by host neptune by invoking the follow-
ing function: getAnyEventQueue(”machine=Neptune”). On the other hand, we
can use getEventQueue(”systemLoad”, ”machine=Neptune”) method to find all
the systemLoad events sent by neptune. In addition, event queues can be sorted
based on a specific attribute value.



+performAction()

Action

+getFirstEventInstance()
+getLastEventInstance()
+getEventInstance()
+forwardEvent()
+getEventQueue()
+getAnyEventQueue()
+createEvent()
+deleteEvent()

EventManager

+sort()
+getEvent()
+addEvent()
+delEvent()
+caculateAvg()
+getMaxValueEvent()
+getMinValueEvent()
+size()
+getFirstEvent()
+getLastEvent()

EventQueue

+addFilter()
+delFilter()
+getFilterInstance()
+modifyFX()

FilterManager

+execute()
+createRegister()
+getRegister()
+deleteRegister()
+checkRegister()

ActionManager

-* -*

* -*

+getValue()
+setValue()

VirtualRegister

-*

*

Fig. 3. Action Definition Interface Classes

Now, let’s us show example of action programs using HiFi+ virtual machine
language. In the web server performance monitoring example discussed in section
2.2, we didn’t define the action programs for those filters. The action program
for performanceDropFilter filter is a good example to show how to use virtual
register.

1 public class performanceDropAction extend Action{

2 public void performAction(EventManager EM, FilterManager FM,

ActionaManager AM){

3 Register reg;

4 if(reg = AM.createRegister("hostCounter") !=void)

5 reg.setValue(1);

6 else{

7 reg = AM.getRegister("hostCounter");

8 String host =

EM.getLastEvent("performanceDrop").getEventAttribute("machine");

9 if (EM.getEventQueue("systemLoad", "machine ="+host).size()==1){

10 reg.increaseValue();

11 if(reg.getValue() >=5){

12 AM.deleteRegister("hostCounter");

13 Event evt =

EM.createEvent("serverOverloadAlert", "server =neptune");

14 EM.forwardEvent(evt);}}}

15 }

16 }



In this action, we extract the IP addresses of the web clients and compare it
with other events and update the counter. The counter should be kept outside
the action program in virtual register so it can be referenced by next round
execution. When receive first performanceDrop event, we use the action manager
to create a virtual register to store the counter (line 4). Then we initialize the
counter (line 5). For the following events, we use the action manager get the
register (line 7). Then in line 8, we get the IP address for the web client who
sends the performanceDrop event. We search all the received events to find the
events come from the same host with the last received event and put these events
in an event queue (line 9). If the event queue size equal one, that mean this is
the first time that web client send out performanceDrop event. Then we increase
the counter (line 10). When the register value is equal or larger than 5, we delete
the register and create and forward the serverOverloadAlert event (line 11-14).

3 Application of HiFi+ in Distributed Intrusion
Detection

In this section, we will show an example of how HiFi+ can be used in intrusion
detection systems (IDS) to detect DDoS attack. DDoS attacks usually launch
number of aggressive traffic streams (e.g., UDP, ICMP and TCP-SYN) from
different sources to a particular server. This example shows how HiFi+ can be
used to support IDS devices in deploying security (signature-based or anomaly-
based) monitoring tasks efficiently. In [10], a proposal for an attack signature was
presented to detect DDoS by observing the number of new source IP addresses
(not seen during a time window) in the traffic going to a particular server. We
here will implement a variation of this technique using HiFi+ interfaces.

We will, first, monitor the load of the target servers using systemLoadFilter
filter. If any of these filters indicates that the system load of a server goes beyond
a specific threshold, then the diffSrcCheckFilter filter will be activated in order
to monitor all new tcp connections initiated to this target server. The diffSrc-
CheckFilter filter receives and filters all tcpSyn events that represent TCP-SYN
packets destined (i.e., destination IP) to the target server. The tcpSyn events
can be generated by network-based intrusion detection system (IDS). As the
diffSrcCheckFilter filter keeps track of tcpSyn events, it calculates the number
of different IP sources seen within a one-second time windows. If the number of
different IP sources is larger than a specified threshold, then the diffSrcChcekAc-
tion will create diffSrcExceedThr event. Here we need point out the difference
between our approach and the approach proposed in[10] is that we don’t need
keep the history of IP source for every server which makes our approach suitable
for large-scale network with many target servers. Finally, we use the DDosFil-
ter filter to correlate the systemLoad and diffSrcExceedThr events. Only when
these two events occur within a close time window from each other and they
are both related to the same server, then we can conclude the server is under
DDOS attack. Let us assume that the DDOS signature will be defined like this:
if the CPU usage on a server increases beyond the 0.6 and within one second we



detect that there are more than 100 different IP source addresses starting tcp
connections to that server, we will report DDOS attack. The events and filters
used in this monitoring task can be defined as follows:

Event tcpSyn = new HiFiEvent("tcpSyn", "Any, Any, Any",

"sourceIP = Any, destinationIP = Any")

Event diffSrcExceedThr = new HiFiEvent("diffSrcExceedThr", " Any,

diffSrcCheckFilter, Any", "targetIP = Any")

Event systemLoad = new HiFiEvent("systemLoad", "Any, loadMonitor,

senderThread", "cpuUsage = Any, diffSrcThr = 100");

Filter systemLoadFilter = new Filter("systemLoadFilter", "systemLoad",

"systemLoad.cpuUsage > 0.6 OR systemLoad.cpuUsage <0.3",

"systemLoadAction" )

Filter diffSrcCheckFilter = new Filter("diffSrcCheckFilter", "tcpSyn",

"tcpSyn.destinationIP =Any", "diffSrcChcekAction")

Filter DDosFilter = new Filter("DDosFiler", "diffSrcExceedThr AND

systemLoad", "diffSrcExceedThr.targetIP = systemLoad.machine AND

systemLoad.timeStamp - diffSrcExceedThr.timeStamp < 1000","DDosAction")

Next, let us look at the action programs for systemLoadFilter filter. This action
has three tasks: (1) activating the diffSrcCheckFilter filter to detect DDoS attack
if the system load is beyond a threshold, (2) forward the systemLoad event, and
(3) deactivate (or deleting) the diffSrcChekcFilter filter if the system load drops
below the threshold because the DDoS investigation is not needed any more. In
this action program we dynamically change filter expression of diffSrcCheckFilter
filter. The original filter expression will check tcpSyn event for any server to find
if there are more than threshold different IP want to connect to that server.
After the filter expression is updated, the filter checks only the tcpSyn events
with the destination IP of the suspect target server.

public class systemLoadAction extend Action {

public void performAction(EventManager EM, FilterManager FM,

ActionaManager AM){

Event evt = EM.getLastEvent("systemLoad");

float load = evt.getAttributeValue("cpuUsage");

if (load > 0.8){

String target = evt.getAttributeValue("machine");

FM.modifyFX("diffSrcCheckFilter", "tcpSyn.destionationIP =" +

target);

FM.addFilter("diffSrcCheckFilter");

EM.forward(ent);}

if(load < 0.3)FM.delFilter("diffSrcCheckFilter");}

}



Next, let us look at the action program of the diffSrcCheckFilter filter below.
In line 4, we get the time stamp for last tcpSyn event. This event triggers the
execution of action program, so the destination IP must equal the target server.
We get the time t2 which is 1 second before last event in line 5. Then we delete
the outdated or irrelevant events whose time stamps are less than t2 or whose
IP destinations are different than the target server (line 7). We then get the
rest of tcpSyn events and put them in an event queue (line 8) and create a set
to store the source IP addresses (line 9). In lines 10-13, we go through every
event in the queue and putting the source IP in source IP set. Then we get the
threshold for different source IP in line 14. In lines 15-18, we check the size of
the source IP set. If the size is larger than threshold, we create and forward the
diffSrcExceedThr event.

1 public class diffSrcCheckFilter extend Action {

2 public void performAction(EventManager EM, FilterManager FM,

ActionaManager AM){

3 Event evt = = EM.getLastEvent("tcpSyn");

4 int t1 = evt.getEventAttribute("timeStamp");

5 int t2 = t1 - 1000;

6 String targetIP = evt.getEventAttribute("destinationIP");

7 EM.deleteEvent("tcpSyn", "tcpSyn.timeStamp < " + t2 + " OR

tcpSyn.destinationIP != " + targetIP);

8 EventQueue queue= EM.getEventQueue("tcpSyn");

9 Set IpSource = new HashSet();

10 for (int i=0; i < = queue.size(); i++){

11 String sourceIP =

(queue.getEvent(i)).getAttributeValue("sourceIP");

12 IpSource.add(sourceIP);

13 }

14 int threshold =

EM.getLastEvent("systemLoad").getEventAttribute("diffSrcThr");

15 if (IpSource.size()> threshold){

16 Event evt = EM.createEvent("diffSrcExceedThr,", "targetIP

=’’+ targetIp );

17 EM.forwardEvent(evt);}

18 }

Finally, let’s look at the action program for DDosFilter. It just create and forward
the DDosAlert event.

public class DDosAction extend Action {

public void performAction(EventManager EM, FilterManager FM,

ActionaManager AM){

EM.createEvent("DDosAlert");}

}



4 Related Works

Numbers of monitoring and management approaches based on event filtering
have been proposed in [1, 6–8]. Many of these approaches focus on event filtering
techniques such as performance and scalability. But less attention was given to
provide flexible programming interfaces as described in this paper.

Hierarchy filtering-based monitoring and management system (HiFi) was in-
troduced in [2, 3]. HiFi employs an active management framework based on pro-
grammable monitoring agents and event-filtter-action recursive model. This work
is an extension of HiFi system to provide an expressive and imperative language
based on Java. The user can get benefit from the new API by implementing
really complex action programs using known programming language.

A general event filtering model has been discussed in [5]. But this approach
can filter the primitive events based on attribute values only, thereby doesn’t sup-
port event correlation. SIENA, a distributed event notification service has been
described in[4]. The programming interface of SIENA mainly provides functions
for the user to subscribe, unsubscribe, publish and advertise events. It doesn’t
provide functions for the user to aggregate and processing events.

High-level language for event management is described in READY event no-
tification system [6]. In READY, matching expressions are used to define the
event pattern. The matching expression and actions in READY have same ab-
straction level similarity with filter and action in HiFi+. But the action types in
READY are limited, only assignment, notify and announce action are supported.
HiFi+ approach allows the user define complex action to trace and analyze the
event history, modify the monitoring tasks dynamically, aggregate information
to generate new meaningful events or even execute scripts and binary files.

Java Management Extensions (JMX)[11] is a framework for instrumentation
and management of Java based resources. JMX focuses on providing a universal
management standard, so the management application will not rely on fixed
information model and communication protocol. HiFi+ focuses on supplying
users a flexible and expressive programming interface to define the monitoring
tasks and appropriate actions.

The Meta monitoring system[9] is a collection of tools used for constructing
distributed application management software. But in Meta, sensors (a function
that returns program state and environment values) are static programs that
are linked with the monitored application prior to its execution. This reduces
the dynamism and the flexibility of the monitoring system. Unlike in HiFi+, the
monitoring agent can dynamically be configured and updated.

5 Conclusion and future works

In this paper, we present flexible monitoring programming interfaces for dis-
tributed management systems. The presented framework, called HiFi+ virtual
monitoring machine, enables users to expressively define events formats, net-
work pattern or behaviors to be monitored and the management actions using



simple Java-based filter-action programs. Filters can implement intelligent mon-
itoring tasks that go, beyond just fetching the information, to correlate events,
investigate problems, and initiate appropriate management actions. The HiFi+
virtual monitoring machine provides unified interfaces for distributed monitoring
regardless of the application domain. We show examples of using HiFi+ in secu-
rity and performance management applications; however, many other examples
can be similarly developed.

Our future research work includes important enhancements in the language
interfaces and the system architecture such as integrating more event operators,
implanting safe-guard for infinite loops, improving the virtual registers abstrac-
tion, developing topology-aware agents’ distribution.

References

1. S. Alexander, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie: High Speed and Robust
Event Correlation. IEEE Communication Magazine, pages 433-450, May 1996.

2. Ehab Al-Shaer: Active Management Framework for Distributed Multimedia Sys-
tems. Journal of Network and Systems Management (JNSM), March 2000.

3. Ehab Al-Shaer, Hussein Abdel-Wahab, and Kurt Maly: HiFi: A New Monitor-
ing Architecture for Distributed System Management. Proceedings of Interna-
tional Conference on Distributed Computing Systems (ICDCS’99), pages 171-178,
Austin, TX, May1999.

4. Antonio Carzaniga, David S. Rosenblum Alexander L. Wolf: Design and evaluation
of a wide-area event notification service. ACM Transactions on Computer Systems
(TOCS), Volume 19, Issue 3, August 2001

5. P. Th. Eugster, P.Felber, R. Guerraoui1, S. B. Handurukande: Event Systems: How
to Have Your Cake and Eat It Too. 22nd International Conference on Distributed
Computing Systems Workshops (ICDCSW ’02), July, 2002.

6. Robert E. Gruber, Balachander Krishnamurthy and Euthimios Panagos: High-level
constructs in the READY event notification system. Proceedings of the 8th ACM
SIGOPS European workshop on Support for composing distributed applications
1998, Sintra, Portugal.

7. Boris Gruschke: A New Approach for Event Correlation based on Dependency
Graphs. Proceedings of the 5th Workshop of the OpenView, University Association:
OVUA’98, Rennes, France, April 1998.

8. Mads Haahr and Rene Meier and Paddy Nixon and Vinny Cahill: Filtering and
Scalability in the ECO Distributed Event Model. International Symposium on
Software Engineering for Parallel and Distributed Systems (PDSE 2000)

9. K. Marzullo, R. Cooper, M. D. Wood, and K. P. Birman: Tools for distributed
Application Management. IEEE Computer, vol. 24, August 1991.

10. Peng, C. Leckie and R. Kotagiri: Protection from Distributed Denial of Service
Attack Using History-based IP Filtering. Proceedings of ICC 2003, Anchorage,
Alaska, USA, May 2003.

11. Sun Microsystems: Java Management Extensions (JMX).
http://java.sun.com/products/JavaManagement/index.jsp


