
A Domain Specific Language for Composable

Memory Transactions in Java

André Rauber Du Bois1 and Marcos Echevarria1

PPGInf - Programa de Pós-Graduação em Informática,
Universidade Católica de Pelotas

CEP: 96010-000, Pelotas-RS, Brazil
{dubois, marcosge}@ucpel.tche.br

Abstract. In this paper we present CMTJava, a domain specific lan-
guage for composable memory transactions [7] in Java. CMTJava pro-
vides the abstraction of transactional objects. Transactional objects have
their fields accessed only by special get and set methods that are auto-
matically generated by the compiler. These methods return transactional
actions as a result. A transactional action is an action that, when ex-
ecuted, will produce the desired effect. Transactional actions can only
be executed by the atomic method. Transactional actions are first class
values in Java and they are composable: transactions can be combined
to generate new transactions. The Java type system guarantees that the
fields of transactional objects will never be accessed outside a transac-
tion. CMTJava supports the retry and orElse constructs from STM
Haskell. To validate our design we implemented a simple transactional
system following the description of the original Haskell system. CMT-
Java is implemented as a state passing monad using BBGA closures, a
Java extension that supports closures in Java.

1 Introduction

Multi-core machines are now available everywhere. The traditional way to pro-
gram these machines using threads, shared memory and locks for synchronization
is difficult and has many pitfalls [16, 22, 24]. A promising approach to program
multi-core machines is to use software transactional memory (STM). In this
approach, accesses to shared memory are performed inside transactions, and a
transaction is guaranteed to be executed atomically with respect to other concur-
rently executed transactions. Transactions can be implemented using optimistic

concurrency: all transactions are executed concurrently with no synchronization,
all writes and reads to shared memory are performed in a transaction log. When
a transaction finishes, it validates its log to check if it has seen a consistent
view of memory, and if so, its changes are committed to memory. If validation
fails the log is discarded and the transaction is executed again with a fresh log.
With atomic transactions the programmer still has to worry when critical sec-
tions should begin and end. But although having to delimit critical sections, the
programmer does not need to worry about a locking protocol, that can induce
problems like deadlocks.

In this paper, we present CMTJava, a domain specific language to write com-

posable memory transactions in Java. CMTJava brings the idea of composable
memory transactions in the functional language Haskell [7] to a object oriented
context.

The main characteristics of the CMTJava system are:

– CMTJava provides the abstraction of Transactional Objects. Transactional
objects have their fields accessed only by special get and set methods that
are automatically generated by the compiler. These methods return transac-

tional actions as a result. A transactional action is an action that, when
executed, will produce the desired effect. Java’s type system guarantees
that the fields of transactional objects can only be accessed inside transac-
tions. Transactions can only executed with the atomic method. The atomic
method takes a transaction as an argument and executes it atomically with
respect to all other memory transactions. As transactions can not be ex-
ecuted outside a call to atomic, properties like atomicity (the effects of a
transaction must be visible to all threads all at once) and isolation (during
the execution of a transaction, it can not be affected by other transactions)
are always manteined.

– Transactional actions are first class values in Java, they can be passed as
arguments to methods and can be returned as the result of a method call.
Transactions are composable: they can be combined to generate new trans-
actions. Transactions are composed using STM blocks (Section 2), and we also
support the retry construct, that allows possibly-blocking transactions to
be composed sequentially and the orElse construct that allows transactions
to be composed as alternatives.

– Transactions are implemented as a state passing monad (Section 3.3). Most
of the simplicity of the implementation comes from the fact that we use
a Java extension for closures to implement CMTJava. Hence, this paper
is also a case support for closures in Java 7. We describe translation rules
that translate CMTJava to pure Java + closures. Although the system was
implemented in Java, the ideas could also be applied to any object oriented
language that supports closures, e.g., C#.

The paper is organized as follows. First, in Section 2, CMTJava is presented
through simple examples. Section 3, describes the implementation of the lan-
guage primitives using a state passing monad. A simple prototype implementa-
tion of transactions is also described. Section 4 discusses related work and finally
Section 5 presents conclusions and directions for future work.

2 Examples

In this section we present simple examples with the objective of describing how
to program with CMTJava.

2.1 The Dinning Philosophers

In this section, an implementation of the dinning philosophers problem is given
using the CMTJava DSL. The first class to be defined is Fork:

class Fork implements TObject{

private volatile Boolean fork = true;}

The Fork class has only one field and Java’s volatile keyword is used to guar-
antee that threads will automatically see the most up-to-date value in the field.
The TObject interface works as a hint to the compiler, so it will generate auto-
matically the code needed to access this class in transactions. It also generates
two methods to access each field of the class. For the Fork class it will generate
the following methods:

STM<Void> setFork(Boolean fork);

STM<Boolean> getFork();

The setFork and getFork methods are the only way to access the fork field.
A value of type STM<A> represents a transactional action that when executed will
produce a value of type A.

We can now define the Philosopher class as in Figure 1. The STM{...}

class Philosopher implements Runnable{

Fork right;
Fork left;

int id;

Philosopher(int i, Fork r, Fork l)

{
id = i;

right = r;
left = l;

}

public void run()

{
STM<Void> t1 = STM{

acquireFork(r);
acquireFork(l)
}

atomic(t1);

System.out.println("Philosopher " + id +
" is eating!!!");

STM<Void> t2 = STM{

releaseFork(r);
releaseFork(l)

}
atomic(t2);

}
(...)

}

Fig. 1. The Philosopher class

block works like the do notation in STM Haskell [7]: it is used to compose
transactions. The notation STM{ a1;...; an} constructs a STM action by glue-
ing together smaller actions a1;...;an in sequence. Using STM blocks it is
possible to implement the STM<Void> acquireFork(Fork f) and STM<Void>

releaseFork(Fork f) methods that are missing on Figure 1:

STM<Void> acquireFork(Fork f)

{

STM<Void> r = STM{

Boolean available <- f.getFork();

if (!available)

retry()

else

f.setFork(false)

}

return r;

}

The acquireFork method first checks the current state of the Fork using
the getFork() method. If the fork is not available it blocks the transaction by
calling retry. If the fork was available, it is set to false, i.e., not available.
The call to retry will block the transaction, i.e., the transaction will be aborted
and restarted from the beginning. The transaction will not be re-executed until
at least one of the fields of the TObjects that it has accessed is written by
another thread. In the case of the acquireFork method, when it calls retry

the philosopher will be suspended until a neighbor philosopher puts the fork
back in the table. The variables created inside a transactional action are single

assignment variables. These variables are used only to carry the intermediate
state of the transaction being constructed and do not need to be logged by the
runtime system supporting transactions. To emphasize that these variables are
different than the ordinary Java variable a different symbol for assignment is
used ((<-).

The releaseFork method has a simple implementation:

STM<Void> releaseFork(Fork f)

{

return f.setFork(true);

}

It returns a transaction that when executed will set the fork field to true.
When a philosopher calls releaseFork it already holds the fork so there is no
need to check its current state.

2.2 The orElse method

CMTJava also provides the orElse method that allows the composition of trans-
actions as alternatives

public static <A> STM<A> orElse (STM<A> t1, STM<A> t2)

orElse takes two transactions as arguments and returns a new transaction. The
transaction

orElse(t1,t2);

will first execute t1; if it retries then t1 is discarded and t2 is executed. If t2
also retries then the whole transaction will retry.

In Figure 2 a simple implementation of a class representing a bank account
is given. Using orElse we could extend the Account class with the following
method:

public static STM<Void>withdraw2Accounts(Account c1, Account c2)

{

return orElse(c1.withdraw(1000.0), c2.withdraw(1000.0));

}

The withdraw2Accountsmethod first tries to withdraw 1000.0 from c1. If there
is not enough money in that account it tries to withdraw the same amount from
c2

class Account implements TObject{
private volatile Double Balance;

public STM<Void> withdraw(Double n)
{

STM<Void> t = STM{
Double b <- getBalance();

if (b < n)
retry()

else

setBalance(b-n)
};

return t;
}

public STM<Void> deposit (Double n)
{

return STM{
Double b <- readBalance();

writeBalance(b + n)
};

}

public static STM<Void> transfer(Account a1, Account a2, Double money)

{
return STM{

a1.withdraw(money);
a2.deposit(money)

}

}
}

Fig. 2. The Account class

3 Implementation

3.1 Java Closures

To implement CMTJava we used BGGA Closures, a Java extension that supports
anonymous functions and closures [2]. This extension is a prototype implemen-
tation of a JSR proposal to add closures to Java 7 [3].

In BBGA, an anonymous function can be defined using the following syntax:
{ formal parameters => statements expression}

where formal parameters, statements and expression are optional. For example,
{ int x => x + 1 } is a function that takes an integer and returns its value
incremented by one. An anonymous function can be invoked using its invoke

method:

String s = {=> "Hello!"}.invoke();

An anonymous function can also be assigned to variables:

{int => void} func = {int x => System.out.println(x)};

The variable func has type {int => void}, i.e., a function type meaning that
it can be assigned to a function from int to void. Function types can also be
used as types of arguments in a method declaration.

A closure is a function that captures the bindings of free variables in its
lexical context:

public static void main(String[] args) {

int x = 1;

{int=>int} func = {int y => x+y };

x++;

System.out.println(func.invoke(1)); // will print 3

}

A closure can use variables of the enclosing scope even if this scope is not active
at the time of closure invocation e.g., if a closure is passed as an argument to a
method it will still use variables from the enclosing scope where it was created.

3.2 Monads

A monad is a way to structure computations in terms of values and sequences of
computations using those values [1]. A monad is used to describe computations
and how to combine these computations to generate new computations. For this
reason monads are frequently used to embed domain specific languages in func-
tional languages for many different purposes, e.g., I/O and concurrency [20],
Parsers [13], controlling robots [19], and memory transactions [7]. A monad can
be implemented as an abstract data type that represents a container for a com-
putation. These computations can be created and composed using three basic
operations: bind, then and return. For any monad m, these functions have the
following type in Haskell:

bind :: m a -> (a -> m b)-> m b

then :: m a -> m b -> m b

return :: a -> m a

The type m a represents a computation in the monad m that when executed
will produce a value of type a. The bind and then functions are used to combine
computations in a monad. bind executes its first argument and passes the result
to its second argument (a function) to produce a new computation. then takes
two computations as arguments and produces a computation that will execute
them one after the other. The return function creates a new computation from
a simple value.

The next section presents the implementation of these three operations for
the STM monad in Java.

3.3 The STM Monad

The monad for STM actions is implemented as a state passing monad. The state
passing monad is used for threading a state through computations, where each
computation returns an altered copy of this state. In the case of transactions,
this state is the meta-data for the transaction, i.e., its log.

The STM class is implemented as follows:

class STM<A> {

{ Log => STMResult<A> } stm;

STM ({ Log => STMResult<A> } stm) {

this.stm = stm;

}

}

The STM class is used to describe transactions, and it has only one field: a
function representing the transaction. A transaction STM<A> is a function that
takes a Log as an argument and returns a STMResult<A>. The Log represents
the current state of the transaction being executed and STMResult describes the
new state of the transaction after its execution.

The STMResult<A> class has three fields:

class STMResult<A> {

A result;

Log newLog;

int state;

(...)

}

the first field (result) is the result of executing the STM action, the second
(newLog) is the resulting log, and the third is the current state of the transac-
tion. Executing a STM action can put the transaction in one of two states: it is
either VALID meaning the the transaction can continue, or the state can be set
to RETRY meaning that the retry construct was called and the transaction must
be aborted.

The bind method is used to compose transactional actions:

public static <A,B> STM bind (STM<A> t, {A => STM } f) {

return new STM ({Log l1 =>

STMResult<A> r = t.stm.invoke(l1);

STMResult re;

if (r.state == STMRTS.VALID) {

STM nst = f.invoke(r.result);

re = nst.stm.invoke(r.newLog);

} else {

re = new STMResult(null, r.newLog, STMRTS.RETRY);

}

re

});

}

The bind method takes as arguments an STM<A> action t and a function
f of type {A => STM } and returns as a result a new STM action. The
objective of bind is to combine STM actions generating new actions. The resulting
STM action takes a log (l1) as an argument and invokes the t action by passing
the log to it (t.stm.invoke(l1)). If the invocation of t did not retry (i.e., its
state is VALID) then f is called generating the resulting STM. Otherwise the
execution flow is abandoned and bind returns a STMResult with the state set
to RETRY.

The then method is implemented in a very similar away

public static <A,B> STM then (STM<A> a, STM b) {

return new STM ({Log l1 =>

STMResult<A> r = a.stm.invoke(l1);

STMResult re;

if (r.state == STMRTS.VALID) {

re = b.stm.invoke(r.newLog);

} else {

re = new STMResult(null, r.newLog, STMRTS.RETRY);

}

re

});

}

The then method is a sequencing combinator: it receives as arguments two
STM actions and returns an action that will execute them one after the order.

Finally, the stmreturn method is used to insert any object A into the STM

monad:

public static <A> STM<A> stmreturn (A a) {

return new STM<A>({ Log l => new STMResult(a,l,STMRTS.VALID) });

}

The stmreturn method is like Java’s return for STM blocks. It takes an
object as an argument and creates a simple transaction that returns this object
as a result. It can also be used to create new objects inside a transaction. For
example, the insert method returns a transaction that inserts a new element
at the end of a linked list:

class Node implements TObject{

private volatile Integer value;

private volatile Node next;

(...)

public STM<Void> insert(Integer v)

{

return STM {

Node cnext <- getNext();

if(cnext == null) {

STM{

Node r <- stmreturn (new Node(v,null));

setNext(r)

}

}else

cnext.insert(v)

}

}

}

3.4 STM blocks

STM blocks are translated into calls to bind and then using the translation rules
given in Figure 3. Translation rules for STM blocks are very similar to the trans-
lation rules for the do notation described in the Haskell report [21].

STM{ type var <- e; s} = STMRTS.bind(e, { type var => STM { s }})

STM{ e ; s } = STMRTS.then(e, STM{ S })

STM{ e } = e

Fig. 3. Basic translation schemes for STM blocks

For example, the following implementation of a deposit method:

public STM<Void> deposit (Account a, Double n)

{

return STM{

Double balance <- a.getBalance();

a.setBalance(balance + n)

};

}

is translated to

public STM<Void> deposit (Account a, Double n)

{

return STMRTS.bind(a.getBalance(), { Double balance =>

a.setBalance(balance + n)});

}

3.5 Compiling TObjects

A class like Fork given in section 2.1 is compiled to the class in Figure 4, using
the translation rules given in Appendix A.

class Fork implements TObject {

private volatile Boolean fork = true;

private volatile PBox<Boolean> forkBox =
new PBox<Boolean> ({Boolean b => fork = b; } , { => fork});

public STM<Void> setFork (Boolean b) {
return new STM<Void>({Log l =>

LogEntry<Boolean> le = l.contains(forkBox);
if(le!=null) {

le.setNewValue(b);
} else {
l.addEntry(new LogEntry<Boolean>(forkBox,fork,b));

}
new STMResult(new Void(), l,STMRTS.VALID)});

}

public STM<Boolean> getFork() {

return new STM<Boolean> ({Log l =>
Boolean result;

LogEntry<Boolean> le = l.contains(forkBox);
if(le!=null) {

result = le.getNewValue();
} else {
result =fork;

l.addEntry(new LogEntry<Boolean>(forkBox,fork,fork));
}

new STMResult(result, l,STMRTS.VALID)});
}

}

Fig. 4. The Fork class after compilation

Every TObject has a PBox for each of its fields. A PBox works like a pointer
to the field. The constructor of the PBox class takes two arguments: one is a
function that updates the current value of a field and the other is a function
that returns the current value of a field. This functions are used by atomic to
commit a transaction (Section 3.8).

The setFork and getFork methods are used to access the fork field in a
transaction. The setFork method first verifies if the PBox for the field is already
present in the transaction log using the contains method of the Log. A log is a
collection of log entries:

class LogEntry<A> {

PBox<A> box;

A oldValue;

A newValue;

(...)

}

Each LogEntry represents the current state of a field during a transaction.
It contains a reference to the field’s PBox, the original content of the field
(oldValue) and the current value of the field (newValue). If the log already
contains an entry for fork then this entry is updated so its newValue field con-
tains a reference to the argument of the set method. If the log contains no entry
for fork a new entry is added where the oldValue contains the current content
of fork and newValue is set to the argument of setFork.

getFork will first check if there is an entry for fork in the log. If so, it
returns the current value of the newValue field of the entry, otherwise it adds
a new entry to the log where both oldValue and newValue contain the current
value in the fork field.

3.6 The retry method

The retry method has a simple implementation:

public static STM<Void> retry() {

return new STM<Void>({ Log l =>

new STMResult(new Void(),l,STMRTS.RETRY)});

}

It simply stops the current transaction by changing the state of the transac-
tion to STMRTS.RETRY. When a transaction returns STMRTS.RETRY the transac-
tion is aborted (see the implementations for bind and then in Section 3.3).

The atomic method is responsible for restarting aborted transactions (Sec-
tion 3.8).

3.7 The orElse method

The orElse method is used to compose transactions as alternatives. To imple-
ment orElse, proper nested transactions are needed to isolate the execution of

the two alternatives. If the first alternative calls retry, all the updates that it
did must be invisible while executing the second alternative.

The orElse method is implemented in a similar way to orElse in STM
Haskell. Each alternative is executed using a new log called nested log. All writes
to fields are recorded in the nested log while reads must consult the nested log and
the log for the enclosing transaction. If any of the alternatives finishes without
retrying, its nested log is merged with the transaction log and a VALID STMResult
is returned containing the merged log. If the first alternative calls retry, then
the second is executed using a new nested log. If the second alternative also
calls retry, all three logs are merged and an STMResult containing the merged
log and state set to RETRY is returned. All logs must be merged so that the
aborted transaction will be executed again when one of the fields accessed in
the transaction is modified by other transaction (Section 3.8). The reader should
notice that, if both alternatives that retried modified the same filed of a TObject,
the merged log will contain only one entry for that field. That does not matter
as the merged log will be never used for committing, since the transaction was
aborted. The final log is used to decide when the transaction should be restarted
(Section 3.8).

3.8 The atomic method

An STM action can be executed by calling atomic:

public static <A> A atomic (STM<A> t)

The atomic method takes as an argument a transaction and executes it atom-
ically with respect to other concurrent calls to atomic in other threads.

In order to execute a transactional action, the atomic method generates a
fresh Log and then invokes the transaction:

Log l = STMRTS.generateNewLog();

STMResult<A> r = t.stm.invoke(l);

As described before, an invoked transaction will return a STMResult contain-
ing the result of executing the transaction, a log and the state of the transaction
that can be either VALID or RETRY. A Log contains, besides log entries, a global
lock that is used by atomic to update shared data structures when committing.

If the state of the executed transaction is RETRY, atomic acquires the global
lock and validates the log of the transaction. To validate a log, each log entry is
checked to see if its oldValue contains the same object that is currently in the
field of the TObject. The current content of a field is accessed using the PBox in
the log entry. If the log is invalid, the transaction is automatically restarted with
a fresh log. If the log is valid, the transaction is only restarted once at least one
of the fields that it accessed is modified by another thread. To do that, atomic
first creates a SyncObject for the transaction. A SyncObject has two methods:

public void block();

public void unblock();

When a thread calls the block method of a SyncObject, the thread will block
until some other thread calls the unblock method of the same object. If a thread
calls unblock, and the blocked thread was already unblocked, the method simply
returns with no effect. If a thread calls unblock before block was called, the
thread waits for the call to block before continuing. Every PBox also contains a
list of SyncObjects for the threads waiting for that field to be updated. After
creating the SyncObject, it is added to the list of blocked threads in every PBox

present in the transaction log. Then the transaction releases the global lock and
calls the block method of the SyncObject, suspending the transaction. When
the transaction is awaken, meaning that at least one of the TObjects in its log
was update, it will be executed again with a fresh log.

If the state of the transaction executed by atomic is VALID, atomic acquires
the global lock and validates the transaction log. If valid, the transaction commits
by modifying all TObjects with the content of its log. It also awakes all threads
waiting for the commit. This is done by calling the unblock method of the
SyncObjects contained in the PBoxes in the log. If the transaction log is invalid,
the log is abandoned and the transaction is executed again with a fresh log.

4 Related Work

Transactional memory was initially studied as a hardware architecture [10, 23, 5].
Software transactional memory [25] is the idea of implementing all transactional
semantics in software. Most works on STM in Java provide low level libraries to
implement transactions [9, 8, 17]. Harris and Fraser [6] provide the first language
with constructs for transactions. Their Java extension gives an efficient imple-
mentation of Hoare’s conditional critical regions [11] through transactions, but
transactions could not be easily composed. The Atomos language [4] is a Java
extension that supports transactions through atomic blocks and also the retry

construct to block transactions. Transactions are supported by the Transactional
Coherence and Consistency hardware transactional memory model (TCC) [18],
and programs are run on a simulator that implements the (TCC) architecture.
No support composing transactions as alternatives is given.

CMTJava builds on work done in the Haskell language, by bringing the idea of
composable memory transactions into an object oriented context. STM Haskell
[7], is a new concurrency model for Haskell based on STM. Programmers define
transactional variables (TVars) that can be read and written using two primitives:

readTVar :: TVar a -> STM a

writeTVar :: Tvar a -> a -> STM a

The readTVar primitive takes a TVar as an argument and returns an STM action
that, when executed, returns the current value of the TVar. The writeTVar

primitive is used to write a new value into a TVar. In CMTJava, each field of a
transactional object works as a TVar and each field has its get/set method that
work just like readTVar and writeTVar. In STM Haskell, STM actions can be
composed together using the same do notation used to compose IO actions in
Haskell:

addTVar :: TVar Int -> Int -> STM ()

addTVar tvar i = do

v <- readTvar tvar

writeTVar tvar (v+i)

STM blocks in CMTJava are just an implementation of the do notation
available in Haskell. The STM system described here is very similar to the one
described in the STM Haskell paper, the main difference being that STM Haskell
is implemented to run on uniprocessors. This simplifies the implementation as
all calls to the C functions that support transactions in the runtime system are
run without interruption. The simple implementation of CMTJava given in this
paper can be executed on multi-core machines, as we use a global lock to avoid
races during commits, at the cost of a huge bottleneck imposed by the lock.

In [12], an implementation of composable memory transactions using pure
Haskell is given. CMTJava uses an implementation of the STM monad that is very
similar to the one described in this paper, although CMTJava’s implementation
of the low level mechanisms to support transactions is very different, as it is
based on the STM Haskell runtime system.

5 Conclusions and Future Work

In this paper we have presented CMTJava, a domain specific language for com-
posable memory transactions in Java, in the style of STM Haskell. CMTJava
guarantees that fields of transactional objects will only be accessed inside trans-
actions. CMTJava is translated to pure Java + closures, that are supported by
the BBGA Java extension [2]. Although the system was implemented in Java,
the ideas could also be applied to any object oriented language that supports
closures.

There are many directions for future work. A semantics for the language
could be provided by extending Feather Weight Java [14] with the semantics for
composable memory transactions in Haskell. Exceptions inside an atomic call
could be handled in the same way as in STM Haskell.

The prototype implementation of the STM system presented in this paper is
very naive and is given only to illustrate the concepts presented and as a proof
of concept. Every time a field of a TObject is accessed the system must search
in an array of LogEntries for the right entry before using the content of the
field. The single lock used for committing transactions is also a bottleneck in
the system. We plan to re-implement CMTJava in the future using a low level
library for transactions in Java (e.g., [8]) or using other optimized technique for
the implementation of transactional memory (a survey on the subject is given
in [15]).

The source code for CMTJava can be obtained by contacting the authors.

Acknowledgment The authors would like to thank CNPq/Brazil for the fi-
nancial support provided.

References

1. All About Monads . WWW page, http://www.haskell.org/all about monads/html/-
index.html, December 2008.

2. Java Closures. WWW page, http://www.javac.info/, December 2008.
3. JSR Proposal: Closures for Java . WWW page, http://www.javac.info/consensus-

closures-jsr.html, December 2008.
4. B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh, C. Kozyrakis,

and K. Olukotun. The ATOMOS transactional programming language. ACM
SIGPLAN Notices, 41(6):1–13, June 2006.

5. L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg,
M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory
coherence and consistency. volume 32, page 102, New York, NY, USA, 2004. ACM.

6. T. Harris and K. Fraser. Language support for lightweight transactions. ACM
SIGPLAN Notices, 38(11):388–402, Nov. 2003.

7. T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable memory
transactions. In PPoPP’05. ACM Press, 2005.

8. Herlihy, Luchangco, and Moir. A flexible framework for implementing software
transactional memory. SPNOTICES: ACM SIGPLAN Notices, 41, 2006.

9. Herlihy, Luchangco, Moir, and Scherer. Software transactional memory for
dynamic-sized data structures. In PODC: 22th ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing, 2003.

10. M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Proceedings of the Twentieth Annual International
Symposium on Computer Architecture, 1993.

11. C. A. R. Hoare. Towards a theory of parallel programming. Operating System
Techniques, pages 61–71, 1972.

12. F. Huch and F. Kupke. A high-level implementation of composable memory trans-
actions in concurrent haskell. In IFL, pages 124–141, 2005.

13. G. Hutton and E. Meijer. Monadic Parsing in Haskell. Journal of Functional
Programming, 8(4):437–444, July 1998.

14. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus
for Java and GJ. TOPLAS, 23(3):396–459, May 2001.

15. J. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool, 2006.
16. E. A. Lee. The problem with threads. IEEE Computer, 39(5):33–42, 2006.
17. V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer,

III, and M. L. Scott. Lowering the overhead of nonblocking software transactional
memory. revised, University of Rochester, Computer Science Department, May
2006.

18. A. McDonald, J. Chung, H. Chafi, C. C. Minh, B. D. Carlstrom, L. Hammond,
C. Kozyrakis, and K. Olukotun. Characterization of TCC on chip-multiprocessors.
In Proc. 14th International Conference on Parallel Architecture and Compilation
Techniques (14th PACT’05), pages 63–74, Saint Louis, MO, USA, Sept. 2005. IEEE
Computer Society.

19. J. Peterson, P. Hudak, and C. Elliott. Lambda in motion: Controlling robots with
haskell. In PADL ’99: Proceedings of the First International Workshop on Practi-
cal Aspects of Declarative Languages, pages 91–105, London, UK, 1998. Springer-
Verlag.

20. S. Peyton Jones. Tackling the awkward squad: monadic input/output, concur-
rency, exceptions, and foreign-language calls in Haskell. In Engineering theories of
software construction, pages 47–96. IOS Press, 2001.

21. S. Peyton Jones. Haskell 98 language and libraries: the revised report. Journal of
Functional Programming, 1(13), 2003.

22. S. Peyton Jones. Beautiful Concurrency. O’Reilly, 2007.
23. R. Rajwar, M. Herlihy, and K. K. Lai. Virtualizing transactional memory. In

ISCA, pages 494–505. IEEE Computer Society, 2005.
24. R. Rajwar and G. James. Transactional execution: Toward reliable, high-

performance multithreading. IEEE Micro, 23(6):117–125, 2003.
25. Shavit and Touitou. Software transactional memory. DISTCOMP: Distributed

Computing, 10, 1997.

Appendix A: Translation Rules for TObjects

Translation rules for TObjects are given as Haskell functions. These functions
take as arguments Strings (i.e., names of variables and their types) and return
as result a String representing the code to be generated. Strings in Haskell are
represented using double quotes and the (++) operation is used to concatenate
two strings.

PBox objects are generated using the genPBox function:

type Type = String

type VarName = String

genPBox :: Type -> VarName -> VarName -> String

genPBox vtype var parName =

"private volatile PBox<" ++ vtype ++ "> " ++

var ++ "PBox = new PBox<" ++ vtype ++"> ({" ++

vtype ++ " " ++ parName ++ " => " ++

var ++ " = " ++ parName ++" ; } , { => "++var++"});"

The parameters for genPBox are the type of the field of the transactional
object (vtype), the name of the field var, and a random name for the parameters
of the closures being defined parName.

Set methods for TObjects are generated using genSetMethod:

genSetMethod :: Type -> VarName -> VarName -> VarName -> String

genSetMethod vtype var parName boxName =

"public STM<Void> set"++var++"("++vtype++" "++parName++")\n"++

"{\n" ++

" return new STM<Void>({Log l => \n" ++

" LogEntry<"++vtype++"> le = l.contains("++boxName++");\n"++

" if(le!=null) {\n" ++

" le.setNewValue("++parName++");\n" ++

" } else {\n" ++

" l.addEntry(new LogEntry<"++vtype++">("++boxName++","++

var++","++parName++"));\n"++

" }\n" ++

" new STMResult(new Void(), l,STMRTS.VALID)});\n" ++

"}\n"

Get methods for TObjects are generated using genGetMethod:

genGetMethod :: Type -> VarName -> VarName -> VarName -> String

genGetMethod vtype var parName boxName =

"public STM<"++vtype ++"> get"++var++"() {\n"++

" return new STM<"++vtype++"> ({Log l =>\n"++

" "++vtype++ " result;\n"++

" LogEntry<"++vtype++"> le = l.contains("++boxName++");\n"++

" if(le!=null) {\n"++

" result = le.getNewValue();\n"++

" } else {\n"++

" result ="++var++";\n"++

" l.addEntry(new LogEntry<"++vtype++">("++boxName++

","++var++","++var++"));\n"++

" }\n"++

" new STMResult(result,l,STMRTS.VALID)});\n"++

"}\n"

