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Abstract. Cross-site scripting attacks represent one of the major security threats
in today’s Web applications. Current approaches to mitigate cross-site script-
ing vulnerabilities rely on either server-based or client-based defense mecha-
nisms. Although effective for many attacks, server-side protection mechanisms
may leave the client vulnerable if the server is not well patched. On the other
hand, client-based mechanisms may incur a significant overhead on the client
system. In this work, we present a hybrid client-server solution that combines the
benefits of both architectures. Our Proxy-based solution leverages the strengths of
both anomaly detection and control flow analysis to provide accurate detection.
We demonstrate the feasibility and accuracy of our approach through extended
testing using real-world cross-site scripting exploits.

1 Introduction

Some of the most well-known and significant vulnerabilities of a Web application are
related to cross-site scripting (XSS) [15]. XSS vulnerabilities enable an attacker to in-
ject malicious code into Web pages from trusted Web servers. Typically, when the client
receives the document, it cannot distinguish between the legitimate content provided by
the Web application and the malicious payload inserted by the attacker. Since the mali-
cious content is handled as the content from the trusted servers, it has the privileges to
access the victim users’ private data or take unauthorized actions on the user’s behalf.

XSS vulnerabilities have been analyzed by a number of researchers and practition-
ers. One of the most common defense mechanism currently deployed consists of in-
put validation at the server-end, wherein the untrusted input is processed by a filtering
module that looks for scripting commands or meta-characters in untrusted inputs. The
filtering module then filters any such content before these inputs get processed by the
Web application. However, proper input validation is challenging; XSS attacks can be
crafted so as to bypass the input sanitization steps. Further, input validation adds a sig-
nificant burden on the server end, and leaves clients defenseless in case of unprotected
sites. Consequently, recent efforts have shifted their attention on client-end solutions,
to protect client systems against servers that failed to filter untrusted content [13]. Un-
fortunately, neither one of these approaches are able to withstand against all forms of
XSS attacks. For example, server-side solutions require good control and knowledge of
the server’s source code, and therefore fare well with attacks that target servers, or that



a reflected off Web servers [11, 8, 4]. Client-side solutions instead are most effective
against attacks that are perpetrated through attacks which malicious code is contained
in the client side page [13, 3]. In this paper, we propose a novel approach to combine
the benefits of both server-side and client-side defense mechanisms. We leverage the
information obtained from both the client and the server-side using a simple, yet ef-
fective, security-by-Proxy approach. Our design allows us to uphold users’ browsing
activities while thoroughly monitoring the sites’ vulnerabilities before any attack is
carried out. Specifically, the Proxy develops an anomaly-based detection mechanism,
enriched with detailed control flow analysis. These two techniques combined together
enable early detection of subtle attacks that may involve obfuscation attempts. In addi-
tion, control flow analysis helps us validate any redirections and minimizes the leakage
of the victim’s information through malicious links.

The architecture includes a Plug-in on the client-end. The Plug-in is responsible for
ensuring that any Web site visited by the user is checked by the Proxy. Based on the
input of the Proxy, the Plug-in also deploys the actual protection. In either case, we
effectively stop the attack from being successfully carried out and affect the user’s sys-
tem. The Plug-in is carefully designed so as to maintain limited amount of information
of the user’s browsing history.

We extensively test our solution over a large number of actual XSS vulnerabilities.
Our evaluation results show not only that we are able to protect against all types of XSS
attacks, but also that our approach is efficient and does not impose a significant burden
either on the client or on the server. In summary, the key benefits of our solution are:

1. User Friendly. Our approach does not require any significant level of human in-
volvement. It is based on a simple Plug-in that interacts with the user to inform him
of possible attacks and stop them from being carried out.

2. High Accuracy. Our approach can detect all known types of XSS script injections,
by providing different levels of protection, that include selectively blocking portions
of the sites being infected and preventing the site from being accessed.

3. Acceptable Overheads. Our approach does not impose any burden on Web appli-
cation performances. The overhead at the client-side is minimal, most of the compu-
tation is carried out by a Proxy. The Proxy is also very efficient, and therefore it can
be used to protect multiple users at the same time.

The rest of the paper is organized as follows. Next section provides an overview of
XSS attacks. Section 3 provides an overview of our solution, the XSS-Dec. In Section 4
we describe the Proxy’s architecture. In Section 5, we discuss the Plug-in. In Section 6
we present our evaluation results. Section 7 analyzes existing body of work in this area,
and Section 8 concludes the paper.

2 XSS Attacks and Common Solutions

XSS attacks are a class of code injection attacks caused by the server’s lack of input
validation and are typically the result of insecure execution of JavaScript, although non-
JavaScript vectors, such as Java, ActiveX, or even HTML, may also be used to mount
the attack. XSS attacks can be segregated into the following classes:



DOM-based attacks: The attacker sends a specially crafted URL to the victim, altering
the DOM structure of the Web page once it’s loaded in the browser. The actual source
code is not changed. It is often launched using the document.location DOM and
then used to populate the page with dynamically generated content.
Reflected XSS attacks: The attack code is “reflected” from a Web server. The attacker
inserts malicious JavaScript into some form, which typically reflects the string back to
the trusted site, using the content inserted to generate a response on the fly. The attack
code, which is treated as belonging to the same domain as the rest of the site, is then
executed. This is the most common form of attack.
Stored XSS attacks: In this type of attack (also known as HTML injection attack), the
payload is stored by the system, and may later be embedded by the vulnerable system
in an HTML page provided to a victim. The attack is carried out when a victim visits
this page, or the part of the page on which the payload is stored.

Usually, to prevent untrusted code from gaining access to content on other domains,
protection mechanisms such as sandboxing are applied or the same origin policy is en-
forced. However, XSS attacks bypass the same origin policy to gain access to objects
stored on different domains by luring the victim to download or execute malicious code
from a trusted site. Beyond sandboxing, the most commonly employed defense against
XSS attacks is input validation [3, 19, 8, 11]. This approach uses a server-side filtering
module that searches scripting command or meta-characters in untrusted input, and fil-
ters any such content. If the server fails to filter the input, however, the client is left
defenseless. Other popular input validation techniques include dynamic tainting and
untrusted information tracking. As highlighted by some recent work, these solutions
correctly track whether a filter routine is called before untrusted information is output,
but they do not reason about the correctness of employed filters, and fail to consider
the Web application output [4]. Further, there are many scenarios where filtering is dif-
ficult to carry out correctly, especially when content-rich HTML is used. For example,
attacks that are launched by scripts located at multiple locations in a Web application
may succeed. A single filter function may not be sufficient if it looks for scripting com-
mands, as injected input may be split across the output statements. In this case, every
character in the HTML character set is legal, which implies that the filter cannot reject
any individual character that may result in script content. Unauthorized scripts can be
obfuscated by entering it within pre-existing execution environments, allowing it to es-
cape the filters. That is, the attacker may embed an environment variable in between two
existing tags. Hence, one should check the alteration of the execution flow to identify
such hidden attacks.

3 Our approach: the XSS-Dec

Among the most popular techniques for Web vulnerabilities, anomaly detection and
control flow analysis have gained popularity in the recent years. When considered alone,
neither approach is however sufficient for effective detection of XSS attacks. First, the
complexity of XSS attacks prohibits any approach that solely relies on anomaly detec-
tion [17]. Anomaly detection is in fact unable to detect most XSS subtle attacks, that
are often deployed by exploiting obfuscation techniques. For example, XSS attacks are



written using JavaScript or ActionScript, where the output of the script is dynamic in
nature, thus obfuscating the attack. Second, control flow analysis is effective for detect-
ing subtle attacks, but it is very inefficient for real time detection [10] as it is slow and
results in a high number of false positives. Real time detection is important with XSS
attacks since the output of the attack script is often developed on the fly.

In order to overcome these limitations, we have devised a hybrid solution that com-
bines the benefits of control flow analysis and anomaly detection to protect client sys-
tems against XSS attacks. Specifically, we suggest a security-by-Proxy solution, re-
ferred to as XSS-Dec. XSS-Dec relies on a Proxy component for vulnerability analysis
and detection. The Proxy acts as a middle-man between the servers of the sites visited
by the client, and a client-side Plug-in. This design upholds users’ browsing activities
while thoroughly monitoring the sites’ vulnerabilities before any attack is carried out.

Fig. 1. XSS-Dec main flow

An overview of the XSS-Dec main functionality is reported in Figure 1. As shown,
a first bootstrapping step is executed at time t0. The server (or servers, if more than
one is in fact connected to the Proxy) sends the encrypted copies of the source files
of its Web pages to the Proxy. Subsequently, as the source of a Web site is updated or
changed at the server end, more updates are sent to the Proxy by the server (possibly
before the newer site is launched to the public). We assume that the Web sites’ source
codes collected by the Proxy at this point of time are valid, that is, there has been no
chance for an attacker to insert any malicious script. The Proxy generates an abstract
and accurate representation of the site, using control flow analysis, and stores it for
later use. When the user starts browsing (at any point of time t1, t1 > t0), the client-
side Plug-in deploys the actual defense mechanism. Precisely, the Plug-in keeps a local
record of the pages visited by the user. Further, it communicates to the Proxy the client
input and the source code of the Web -page as it appears to the client. Upon receiving
the client-end input, which is again encoded using control flow techniques, the Proxy



detects whether there exists any features indicative of malicious code or script, at time
t2, using both anomaly-based and signature-based detection.

Using signature-based detection, the Proxy searches and extracts features, which it
uses to calculate the likelihood of an actual attack taking place. This attack likelihood
is used to drive the Plug-in to either work pro-actively by blocking certain user actions
and sites, or reactively by waiting for the attack to actually take place before notifying
the user. This information regarding the attacks is sent back to the Plug-in at time t2.
The Plug-in, using the information obtained from the Proxy, deploys the actual defense
mechanism, by either stopping the attack or preventing it from being executed (time t3).

Note that the server and client side representations of the page being compared are
different: the server source code is free of any injected malicious code, while the input
received from the client-side may include malicious content.Although the client’s actual
input actions may differ from those simulate on the server side, injection of malicious
scripts always result in a particular set of code features, like certain HTML tags being
manifested in a compromised site. These features are the ones analyzed by the Proxy.

It is worth noting that our security-by-Proxy design assumes that the Proxy is re-
sistant to basic attacks. The servers of the sites frequented by the client are assumed to
be semi-trusted, and able to send to the Proxy non-corrupted data. That is, we trust the
server to send the source code of its Web sites to the Proxy before the malicious scripts
are injected. In line with current solutions based on client systems ( e.g. [13]), we also
assume that the Plug-in is not compromised.

4 The Proxy

The core algorithms behind our defense mechanism reside at the Proxy. The Proxy
is composed of two logically distinct modules, Calculator and Analyser. These two
modules serve the complementary tasks of analysis and detection.

4.1 The Calculator

The Calculator is in charge of computing a normalized and detailed view of the server’s
pages’ content. The source code for both client and server’s pages are modeled through
a control flow graph (CFG), for accurate and efficient computation. The CFG is an ab-
stract representation of the source code of the Web page, including any possible redirec-
tions for the URLs contained in it, and execution paths for active components, such as
JavaScript or Flash components. In the context of our system, the CFG is represented
as a directed graph. The nodes represent either HTML tags or actual program state-
ments and variables. The edges represent the paths of execution, while the directions
are dictated by the loops and the conditions present in the code.

CFGs have been often successfully used in static analysis [13, 5]. However, given
the complexity of certain pages, CFGs can be computationally expensive to generate,
and hard to navigate. This makes it very difficult to construct the dynamic CFGs for
such pages on the fly, which is essential to identify the possible malicious effects of any
code that has been added to the page. Our challenge is then to compute CFGs that are
both accurate and efficient for the scope of our detection. To cope with these limitations,



we construct different types of CFGs, based on the specific Web page structure and of
its content, as specified below.

1. Page with no active components: If a page has no active components, its CFG is de-
rived from the control flow information available from the design model of the Web
page such as its HTML or XML [18]. Specifically, the Abstract Syntax Tree (AST)
[18] is first created, and then any flow information between the nodes is added. In
what follows, this CFG is also referred to as model-based.

2. Pages with active components: If a page has a lot of active components, the CFG is
again derived from the control flow information available from the design model of
the Web page, and it is then augmented with the control flow information available
from the actual code about active nodes. In particular, Flash-based elements and
JavaScript components are expanded to uncover potentially obfuscated attack code.
That is, when a 〈script〉 tag, or a 〈∗.swf〉 file is encountered in a node of the model-
based CFG, the node is further expanded based on the component’s source code (i.e.,
the JavaScript, or the ActionScript respectively), and a new sub-CFG is obtained.
The new CFG is constructed by representing each command in ActionScript in the
code as a node. The flow from one statement to the next is given by directed edges.
Notice that for the construction of this sub-CFG (i.e. the one containing expanded
active nodes), we do not consider the user’s inputs. Instead, we construct all possible
execution paths based on all the possible inputs. Therefore, the CFG shows the call
relations at the basic block level, while also containing all the possible nodes and
edges. An example of a portion of an enriched CFG is given in Fig 2.

3. JavaScript Rich Pages: If active components are only JavaScripts, a simpler form of
CFG is generated, to save both space and time complexity. Instead of generating the
augmented dynamic control flow graph as described above, the JavaScript elements
are rendered as augmented ASTs. The grouping parentheses (such as 〈script〉 tag,
or a 〈∗.swf〉) are still left implicit in the tree structure, and the syntactic representa-
tion of any conditional nodes are represented using branches, but the call relation-
ships at the block level are still explicitly shown. Therefore in the augmented AST,
the nodes are used to represent the commands in the code like in a simple AST, the
loops are simply represented by if-then clauses with a given set of steps repeated in
between. Any goto statements are also simplified to if-then-else clauses. Any user
actions that can alter the loop (e.g. open a new page, click a link, move mouse over
some objects of the page) are represented on the edges.

4. Access Restricted Pages: The CFG for a site which is access restricted (requires a
login to gain access to portions of the site), is developed using a different method-
ology. Clearly, the site structure and corresponding CFG depend on whether the
CFGs are built before or after the user’s login. Further, the CFG for each user will
be different as users may have customized Web spaces within the site. In case of
such access-restricted sites, only the CFG before login remains the same across all
users. The Calculator can easily obtain the CFG for this portion of the site. This
CFG is very important, as any injected code on this page can potentially allow the
attacker to take over the user accounts. Yet, damaging script can be injected in the
pages after login too. To compute the CFG of user-restricted portions of the sites,
the Calculator logs in using a test account. Intuitively, this CFG will not contain



Fig. 2. Portion of the model-based CFG for the Yahoo site

user-specific information. It is however still useful for attack analysis, in that it gives
the actual structure of the pages of the site, thus allowing the Proxy to detect any
attacks that are launched by modifying the structure of the site. In particular, it helps
detect any changes to the DOM structure and is therefore useful in detecting Per-
sistent or DOM-based vulnerabilities. However, it cannot detect non-persistent vul-
nerabilities, which form the most common type of XSS attacks. This is because all
the non-persistent vulnerabilities are exploited by data injected in the user-specific
pages when the site is a login-based site. To detect the non-persistent vulnerabilities,
we depend on the feature extraction capabilities of the Analyzer as explained next.
If the Analyzer encounters a JavaScript or ActionScript environment, it requests the
Calculator to compute the sub-CFG for that particular portion of the site, to detect
possible malicious code injected within these environments.

4.2 The Analyzer

The Analyzer has two main tasks. First, it extracts features indicative of potential ex-
ploits. Second, it estimates the likelihood of the attacks being carried out.

Feature Extraction: The Analyzer, upon obtaining a client-side CFG, compares the
client-side and the server-side CFGs to extract relevant features that may be indicative
of attacks. In the following, we provide a broad classification of the features searched
by the Analyzer. The features refer to non-access restricted sites, and are presented in
the order of the severity of the attack.

(1) Redirection to a site not contained in the server-side CFG: If a CFG generated at
the client contains a redirection to some site not contained in the server-side CFG,
it likely means the user will be redirected to a site unknown to the original server.
This feature, which is the most common and strongest indicator of an XSS attack, is
often observed in DOM-based attacks [7].

(2) SQL Injection Via XSS: A script capable of inserting input on behalf of the user
is potentially indicative of an attack. Specifically, if the script is added to the site
without any actual action or permission from the user, and therefore appears to the



client-side CF , it may denote a SQL Injection attack. The SQL statements are used
to commit changes to the database on the victim’s behalf. Given below is an example
of the code:
< TableID = “TNAME” >
< / Table >
< Script Language = “JavaScript” src = “addjscript.js” >
< Script Language = “JavaScript” >
sql(“insert+ TNAME+ values(‘Victim‘, ‘pwnd‘, ‘again‘)”);
< /Script>
This script attempts to insert the values “Victim”, “pwnd” and “again” into the table
named TNAME. Using such statements, the attacker can change the passwords or
other information of the victim.
To identify potentially malicious actions, the Proxy specifically monitors for server-
side database actions being committed through SQL commands such as “UPDATE”,
“DELETE” etc. That is, it scans the JavaScript and ActionScript for any embedded
SQL queries as in the above example. The Proxy also checks the CFG for all possible
SQL commands including “SELECT”, so as to identify a large range of attacks. This
feature occurs often, though not exclusively, in stored attacks [20].

(3) JavaScript based manipulation on the client-side CFG: If the client side CFG in-
cludes nodes with <submit> and < META > tags, forms may be submitted on
the user’s behalf, or cookies may be manipulated without the user’s knowledge.
Although each of these tags can occur for legitimate purposes in non-malicious
JavaScript, when combined with any of the other features (especially redirection
to a site contained on the server-side), these tags are typically representative of an
attack. This feature is most often observed with reflected XSS attacks [7].

(4) Text changed from original server site to the site rendered at the client: Differ-
ences in the way text is rendered on the client’s browser versus the way it was stored
on the server-side are also to be treated as a warning sign. To check for any changes,
the Proxy looks for alterations in the text formatting tags such as the <header>
tags, the <para> tags, the use of bold or emphasis tags, etc. In this way, the Proxy
can detect subtle attacks, where the attacker simply changes the way a Web site looks
with intentions of slander or misrepresentation. Text manipulation can be carried out
by any type of XSS attack, but is most commonly observed with DOM-based and
reflected XSS attacks [16].

For access restricted sites, extracting the features of a latent attack is more compli-
cated, as comparing the client-side and the server side-side CFGs is not sufficient. This
is because the server-side CFG is derived using login information different from the lo-
gin of the user being monitored. The CFG at the server side, while structurally similar,
does not contain the actual information contained in the client-side CFG. For instance,
the server-side CFG for a GMail page is constructed using a login different from the
login used by the user, and therefore it has the same UML structure as the client-side
CFG, but it will differ with respect to the exact content in the CFG.

For such sites, the Analyzer exploits the similar CFG structure of the two versions
of the site to identify if the basic representation of the page is altered. In this way, text
changes to non-user generated texts such as logos can be detected in the same way



as it was for non-access restricted sites. Further, the SQL Injection feature also does
not change, as identifying SQL statements which cause actions to be committed on the
user’s behalf can be detected without the need for comparing the client-side and the
server-side CFGs. Yet, the attacker can still inject the malicious script in those portions
of the page that are actually user-specific. Referring again to our GMail example, the
attacker would insert a URL for redirection in the actual mail content. To address this,
the Analyzer checks whether any of the URLs that appear in the user-specific portions of
the page link to a potentially malicious page. JavaScript manipulations are also hard to
extract for access restricted pages, as the manipulation of the JavaScript can take place
within pre-existing environments, which occur only on the user specific portion of the
page. For example, the attacker can inject malicious scripts between two < META >
tags present in the user’s profile on a Facebook page for a link to his personal Web
site. Since these < META > tags will vary for each user’s Web site, there is no way of
identifying whether any code has been injected between them by simply comparing the
client-side and the server-side CFGs. Therefore, the Analyzer requests the Calculator to
derive the CFG for the user specific parts of the page. Based on this input, the Analyzer
checks for any possible malicious execution paths.

Attack Analysis. The Analyzer, upon detecting one or more of these features, com-
putes the likelihood (denoted as α) of an actual attack. Each of the features is assigned
a weight. The weight is set to correlate with the amount of past security-relevant infor-
mation about the feature including the frequency of mentioning in incident reports. For
example, the most common condition observed in XSS attacks is redirection or some
sort of URL submission [7]. Therefore, the feature of redirection to a site not contained
in the server-side CFG is to be assigned a high weight. α is simply calculated using the
weighted sum: α =

∑|F |
f=1 wf ∗nf . In the equation, wf represents weight of the feature

f , and nf indicates the number of times the feature has occurred on the page. |F | is the
cardinality of all possible features the Proxy analyses. The equation can be extended to
capture additional features, and strings which may be injected by the attacker. For ex-
ample, a combination of features or a specific pattern of extracted features can be given
an additional weight, or an additional attack string can be considered in the equation.
For simplicity, however we stick to the formula specified above. As shown in Section
6, it is sufficient to guarantee a very good detection rate.

α is matched against anomaly based thresholds. We consider two threshold levels, a
detection threshold and a prevention threshold. These thresholds are dynamic thresholds
in that they are constructed based on the actual set of features which is extracted from
a page. The detection threshold is indicative of a suspected attack, in that a number of
limited features are verified true. It is therefore set based on the total number of features
that have been extracted for a given page, and the lowest weight found in the set of
features extracted. Using the lowest weight found ensures that the evidence presented
to the Plug-in is just enough to register some suspicious but not necessarily harmful
activity. The second threshold, which is is instead higher, models cases where there is
enough evidence (in terms of features occurrence and importance) to believe that the
attack is in fact imminent. This threshold is referred to as prevention threshold as it
triggers mechanisms to prevent an attack, upon being passed. It is, also set using the
total number of features extracted. However, it is based on the highest weight feature



that has been extracted for the given page thus making it higher than the detection
threshold. For example, page X may contain added redirections to URLs, JavaScript
manipulations and text changes from the original page on the server, while page Y may
contain redirections, SQL Injections via XSS and JavaScript manipulations. The highest
weight extracted for both page X and page Y is the same. However, the lowest weight
extracted for page X is the weight associated with text changes, and the one extracted
for page Y is the weight associated with JavaScript manipulations.

5 The Client-Side Plug-in

The client-side Plug-in is in charge of providing the Proxy with information about the
pages the user is visiting, encoded as a CFG. Further, it deploys protection mechanisms
against latent or ongoing attacks, upon being notified by the Proxy.

To complete these tasks, the Plug-in has two main modules: the Auditor and the De-
tector. The Auditor obtains information from the Proxy about all the possible attacks
on an open page, while the Detector is in charge of stopping or preventing the identi-
fied vulnerabilities from being carried out. In order to help identify the possible attack
vectors of an open page, the Auditor keeps a record of the pages visited by the user,
and calculates a model-based CFG for each of such pages. Once created, each CFG is
stored in an encrypted form. The CFG is subsequently updated or replaced as needed,
according to any changes of the page’s code, due to script injections or server-side mod-
ifications. The Plug-in sends the latest encrypted CFG to the Proxy, every time the user
visits the page, as soon as it is opened on the browser.

The other module of the Plug-in is the Detector. The Detector is the component
obtaining instructions from the Proxy if the features detected are deemed indicative of a
potential attack. Precisely, it receives information about the possible attacks in the form
of the attack likelihood α and the specific features extracted by the Analyzer. Each of
the features results in a particular type of anomaly. The anomalies consist of execution
of a script on a site to which the user has been redirected, personal information of the
user being sent to a remote system, and actions such as submission of forms taking
place without any corresponding input on the user’s part. The first two anomalies are
often observed in case of redirection and JavaScript based manipulation, while the third
one is often observed with SQL Injection via XSS.

The Detector monitors the client machine for any of such anomaly using dedicated
modules. Each module corresponds to a specific monitoring activity and is activated if
the Proxy verifies the feature they implement. Specifically, the module checks for spe-
cific user actions which actually start the attack based on the features it has detected. If
one of the extracted attack features consists of unwanted redirections (see feature (1) in
Section 4.2) and the estimated likelihood is high, the Detector prevents the user from
being redirected to the targeted page. Otherwise, (i.e. likelihood is below the prevention
threshold) the Plug-in simply pops up an alert box to the user when the link is opened.
In case an attack presents one or more features (i.e. feature (2), (3) and (4)) beyond redi-
rection, and has an estimated high likelihood value, the Detector prevents the malicious
script from being executed. Specifically, it does not render a portion of the page or an
entire page and displays an error message to the user. In case of a low likelihood value,



it simply pops up an alert to the user before rendering the malicious content. Intuitively,
stopping ongoing attacks is less desirable as preventing them. As shown in the next
section, the XSS-Dec is efficient enough to stop the attack before any major damage of
the client system.

6 Evaluation

We deployed and thoroughly tested a running prototype of the XSS-Dec. Before dis-
cussing our evaluation, we briefly describe the prototype developed.

6.1 XSS-Dec Prototype

The Plug-in was developed by logically distinguishing the Auditor from the Detector.
Both components were implemented primarily in JavaScript, to guarantee portability.
The Auditor uses a separate JavaScript component to construct the CFG based on the
HTML and DOM structure of the page. Each of the possible user actions are edges’
labels. In case the node contains a URL (i.e., a href tag) to some other site or page,
this node becomes the second node of the CFG of that page. To reduce the risk of
interceptions of the user’s browsing history, the Plug-in sends the CFG in an encrypted
form. In the current prototype, the Plug-in uses Merkle hash trees [14] for easy graph
comparison and reduced graph size. Alternatively, we could serialize the tree and rely
on more traditional encryption schemes.

The Detector is organized into four JavaScript modules, one for each of the features
possibly extracted by the Proxy. Each module is activated if the Proxy verified true the
corresponding feature they implement.

The prototype of the Proxy also has two modules. Both are implemented using Java
and JavaScript components. Specifically, the Calculator uses JavaScript to build the
nodes for the model-based CFG. Java components are then used to expand the active
nodes, i.e. the nodes containing JavaScript or Flash elements. The resulting enriched
CFG is built as a serialized tree using the TreeMap Java class. The Calculator stores
a number of CFGs of the pages being most often visited by end users. This simplifies
both CFG analysis and comparison with Plug-in-received CFGs. The stored CFGs are
updated as the pages’ content is notified to have changed.

6.2 Experimental Evaluation

The goal of our evaluation was two-fold. First, we aimed at estimating the accuracy of
our solution in detecting XSS attacks. Second, we estimated the overhead incurred with
our protection mechanism. Estimating the Proxy overhead allows us to make some ini-
tial considerations on the scalability of our solution. The Plug-in was tested from a Dell
Latitude D630 Laptop, with 2G Ram and a Intel(R) Core(TM)2 Duo CPU T7500@
2.20GHz processor. The Proxy was run from an Apache server hosted on the same
machine, to maintain a conservative estimate of the system efficiency. The server was
running the Apache Web server (version 2.2) and PHP version 5.3.3. Apache was con-
figured to serve requests using threads through its worker module. Our tests do not



account for any network delays, and are carried out without conducting any fine-tuning
or training.

Detection Accuracy
Experimental Settings. Using a trial-and-error approach, we defined two simple anomaly
threshold values for assessing whether an attack was latent or not. We express the fea-
tures’ weights of equation in Section 4.2 by means of totally ordered integers, ranging
from 1 to k, where k ≤ |TF |, and |TF | is the possible total number of features (4,
in our case). Given a set of extracted features F = {f1, . . . , fn}, we compute the pre-
vention threshold as follows: Thigh=|F | + wfmax

, where wfmax
is the highest weight

among all the weights of the extracted features. |F | represents the total number of fea-
tures extracted (regardless of their actual weight). If a same feature appears more than
once, it is counted as a new feature, therefore increasing the overall probability of an
attack. Intuitively, from this equation, we can determine whether the feature of highest
weight is significant enough to influence α to a point where an attack is most likely to
happen. Our detection threshold, referred to as Tlow is computed in a similar fashion of
Thigh: Tlow = |F | + wfmin

and wfmin
is the lowest weight assigned to the features in

{f1, . . . , fn}, n > 1. When Tlow < α < Thigh, the Proxy suspects an attack. It sends
a warning message to the client Plug-in, providing details about the warning features
verified true. When α > Thigh, the Proxy deems that the likelihood of an attack is very
high.
Methodology We evaluated our system on several real-world, publicly available Web
applications and on simulated environments. We recorded the number of false positives
generated when testing the application with attack-free data and the number of attacks
correctly detected when testing the application with malicious traffic. In detecting the
attacks we tracked whether they were detected at the time of prevention (i.e. α was
above Thigh) or detection (i.e. α was above Tlow).

Overall, we ran the XSS-Dec system for a total of 100 pages, in a non-deterministic
order. 20 of them were hand-evaluated real-world clean pages. The remaining pages
were constructed by us, and contained one or more XSS vulnerabilities. The clean
pages were selected from popular Web sites with active components, like MSN, Ya-
hoo, Google, social networking and forum sites. The vulnerable pages were created
using the real-world XSS vulnerabilities reported in the security mailing list, Bugtraq
[2]. We deployed the given vulnerabilities in similar sites than those listed as vulner-
able, and injected the malicious script in the variables described. We constructed 80
sites, and tested 80 different vulnerabilities. Each of these sites hosting the malicious
files had benign components. The actual attack code varied for each try, so as to create
polymorphic attack code. To create the variations of the attack code, we introduced ran-
dom NOP blocks in each attack to introduce random delays. Further, we combined one
or more attacks with each other, i.e. some vulnerabilities were tested multiple times.
Also, the page invoking the malicious content was different for each try. The elements
we included in each page consisted of one or more of the following: images, videos,
audio components, other benign JARs carried in applets but not embedded in images,
text documents, hyperlinks, Java components, JavaScript components, forms, zip files,
Microsoft Office Open XML documents, XPI files,benign SWFs and simple games.



Attack Type Detected Prevented False Positive False Negative Total Attacks
Normal XSS 0 All 0 0 15
Image XSS 0 All 0 0 13

HTML entities 0 All 0 0 12
Style-Sheet based XSS 0 All 0 0 13

Flash-Based XSS 5 3 0 2 13
XSS in pre-existing environments 0 All 3 0 14

Table 1. Evaluation Results

Results Table 1 summarizes our results organized according to the classification in the
Rsnake Cheat Sheet [7]. The results reported in the table group the different 80 attacks
according to the location of the attack vector. As shown, XSS-Dec stopped all but 2
attacks. Both were Flash-Based. Out of the stopped attacks, 94% of them were pre-
vented before being carried out. The remaining 6.2% were stopped at detection time.
We reported 3 false positives. A false positive occurred when an attack was detected in
a part of the page where there was no attack code.We noticed that false positives were
detected on the forums of users sharing coding tips on JavaScript. The code displayed
on the pages as part of the discussions was considered as an injection by the XSS-Dec.
To improve the false positives on forums, we plan on adding string checking to the
Proxy as part of our future work. String checking will help differentiate between the
code being discussed in the forums and some malicious script. The sites that were not
prevented but only detected were typically sites with a huge number of Flash compo-
nents. Flash components enable the attacker to hide the consequences of the redirections
due to script injection, reducing the overall likelihood of the attack being prevented by
the Proxy. We expect that training the model would mitigate these issues. Below, we
summarize our results for three of the most challenging categories of attacks: In case
of Flash-Based attacks, our approach prevents most of these attacks by not execut-
ing the Flash file. For those attacks that are only detected, the file is executed but the
user is alerted as soon as some malicious activity is seen on the client end. In case of
Cookie stealing XSS attacks, our approach specifically monitors for manipulation of the
〈META〉 tags to reset the cookies, and detects all possible instances of this vulnerability.
For XSS attacks where the vectors are injected into pre-existing elements (e.g. between
pre-existing 〈script〉 and 〈/script〉 tags), our approach monitors for manipulation
of JavaScript and we achieve a 100% prevention rate.
Performance Evaluation

We computed the average time for the most resource consuming activities of our
system, i.e. constructing the CFGs and extracting features. Our tests show that the av-
erage time for constructing a CFG of level 40 with no dynamic components is 3.25
seconds, and for constructing the CFG with 50% dynamic components is 3.39 seconds.
The time grows linearly with respect to the size of the CFG. For these tests, we used
CFGs of increasing complexity from 10 to 80 nodes, each corresponding to real sites.
The CFGs of level 80 correspond to popular sites, with a large number of active com-
ponents (3/4 of the nodes), such as Youtube and Bigfish. The complexity of the CFGs
increased as the ratio of active nodes to inactive nodes increased. For the simpler CFGs,
the ratio of active nodes to inactive node was 1:4, while for the more complex CFGs,



the ratio was greater than 3:4. The highest complexity for a CFG of level 80 was 83% of
the nodes were active nodes. The time taken for constructing the CFG of level 80, with
83% active nodes was 4.183 seconds, while the time taken to calculate the least complex
CFG was 3.2432 seconds. This makes the overhead for the most complex CFG com-
pared to the least complex CFG less than 1 second different. We notice that while this
time is not negiglible, CFGs are only calculated periodically, and cached for efficient
reuse.

The time for extracting features on an average for a CFG of level 40 is 2 seconds,
while the maximum time for a level 80 CFG is 2.673 seconds. Since the CFGs are com-
puted at the Proxy, these results confirm that the Proxy is indeed scalable. In real-world
settings, the Proxy would be hosted on a dedicated server with larger processing power
than our system. Further, we notice that since most of the pages maintain a similar
structure the Proxy can improve the size of the cached directory of model-based CFGs,
for similar Web sites. This would likely improve the performance substantially. Finally,
the Proxy in the real world would not be running in parallel with the Plug-in as was the
case for our system.

7 Related Work

XSS attacks have been identified as a threat since the 1990s. Since then, various solu-
tions to detect and prevent these attacks have been explored. Traditional solutions focus
on sanitizing the input at the server side, but recently client side approaches have also
been proposed. There also exist Proxy-based solutions which aim to protect Web appli-
cations by analyzing the HTTP requests. Despite these efforts, XSS attacks still remain
on the top of Web security attacks in the OWASP lists [15].
Server-side solutions or Proxy-based solutions are commonly used for Web -based at-
tacks, since they enable users’ inputs sanitization [3, 19, 11, 22]. In particular, Scott and
colleagues proposed an interesting Proxy-based solution [19]. The Proxy is similar to
an application firewall; it enforces pre-written security policies. Their proposed mech-
anism requires that all Web applications patch themselves to prevent an XSS attack. In
case a Web application is not patched, the end user is left defenseless. Our focus, on the
other hand, is how to ensure that any malicious script does not affect the user. Conse-
quently, it does not require any patching from either the user or the server. Similar to
the above is a commercial product called AppShield [1]. AppShield also inspects the
HTTP messages to prevent application level attacks. While it is similar to our system
in inspecting the HTML of the pages outbound from the server, it does not specifi-
cally look for any code injection. Hence, Appshield can recognize attacks based on the
(proprietary) rules that it uses to validate the HTTP requests. Wurzinger also propose a
proxy-based solution to detect HTML responses and any injected scripts [23]. To iden-
tify malicious scripts, any legitimate script calls in the original web page are changed
into unparsable identifiers called script IDs. Therefore, if any unparsed script is found,
it is assumed ti be indicatory of an attack. This system focuses on stored and reflected
XSS but not on DOM Based attacks. Further, the parsing of a script may be a significant
bottleneck of the system.
Bisht et al. [4], propose to remove any server side script in the output of a Web appli-
cation, when the script is not originally inserted by the application itself. This approach



is complementary to ours in that we focus on preventing the attacks at the client-end,
rather than relying on servers’ filters only. Further, as any other server-based solution,
Bisht’s approach relies on the server ability to patch and remove server side scripts. The
fact that a solution focusing on protecting the servers may leave end-users vulnerable
has inspired some interesting client-oriented solutions. One of these is the Noxes sys-
tem, proposed by Kirda et al [13]. Noxes is a Web firewall aiming at protecting the client
from XSS attacks. Noxes’ detection is based on the analysis of the server-side scripts.
In XSS-Dec, we also use server-side scripts. However, our detection of code injection
relies on a detailed comparison of the server-side scripts with client-side scripts. Kirda
and colleagues instead choose to rely on validating the HTTP referrer headers. The
HTTP headers, however, do not represent a useful indicator in case the attacks come
from trusted sites. Further, the information leaked via embedded URLs is contained by
limiting the information sent through each.

We borrowed the idea of using control flow analysis from some recent interesting
work [9, 21, 5, 6]. The Swaddler system [9], for example, focuses on detecting any vio-
lations in the workflow of a stateful application or input violations by users. We differ
from this work both in scope and in the detection mechanism: our focus is on script
injections rather than state violations. Further, our solution accounts for both stateful
and stateless applications. Bonfante et al. in [5] used control flow graphs for extracting
malware signatures. The authors present a system for extracting signatures of malware
by using CFGs composed at the assembly language instruction set level. While simi-
lar to our approach in spirit, our CFGs are derived based on high level languages. We
employed control-flow analysis in our previous work, the DeCore [21]. The DeCore is
aimed at detecting content repurposing attacks, from the client-side end, and therefore
focuses on a different set of attacks. Close to the notion of control flow analysis is script
analysis, which has been leveraged to detect XSS vulnerabilities. A specific example of
this approach is the Pixy tool proposed by Jovanovic et al.[12]. We take a complemen-
tary approach, in that we analyze JavaScript, ActionScript and HTML. Further, the Pixy
tool relies on taint analysis of the data whereas we leverage the notion of control flow
analysis by using CFGs. The CFGs allows the XSS-Dec to detect any malicious script
injection using any type of script, while the taint analysis in the Pixy tool helps detect
any input violation.

8 Conclusion

In this paper, we presented XSS-Dec, a security-by-Proxy approach to protect end-users
against XSS attacks. Our solution combines the benefits of both server-side and client-
side protection mechanisms. We leverage the information obtained from both the client
and the server-side to provide an anomaly based detection approach complemented by
control flow analysis. In the future, we will study whether a server can use the Proxy
features without having the server’s sending pages beforehand. Finally, we will test the
scalability of the XSS-Dec in distributed settings.
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