
Code Type Revealing Using Experiments

Framework

Rami Sharon, Sharon.Rami@gmail.com, the Open University,

Ra'anana, Israel.

Ehud Gudes, ehud@cs.bgu.ac.il, Ben-Gurion University,

Beer-Sheva, Israel.

Abstract. Identifying the type of a code, whether in a file or byte stream, is a

challenge that many software companies are facing. Many applications, security

and others, base their behavior on the type of code they receive as an input.

Today‟s traditional identification methods rely on file extensions, magic

numbers, propriety headers and trailers or specific type identifying rules. All

these are vulnerable to content tampering and discovering it requires investing

long and tedious working hours of professionals. This study is aimed to find a

method of identifying the best settings to automatically create type signatures

that will effectively overcome the content manipulation problem.

In this paper we lay out a framework for creating type signatures based on

byte N-Grams. The framework allows setting various parameters such as N-

Gram sizes and windows, selecting statistical tests and defining rules for score

calculations. The framework serves as a test lab that allows finding the right pa-

rameters to satisfy a predefined threshold of type identification accuracy. We

demonstrate the framework using basic settings that achieved an F-Measure

success rate of 0.996 on 1400 test files.

Keywords: File Type; Content type revealing framework; Code type; Byte N-

Gram statistical analysis.

1 Introduction

In today‟s connected environment, most businesses increasingly rely on the

Internet as a source of information and a platform for communication and

Electronic commerce. One of the main motivating factors driving the in-

creased use of the net is the ability to use technologies based on active content

such as Active-x, Java applets, Java Script and Executable files, in order to

implement Web Based Applications. The flexibility of these technologies

convey great benefits, but at the same time, allow using Web based applica-

tions as Malware carriers, capable of harming the organization by damaging

its infrastructures, stealing information or performing other illegal activities.

One of the most difficult parts of the attack is to penetrate and infuse the

code into the system. Attackers develop new approaches to disguise the true

nature of the penetrating file, if by using naive methods such as changing File

Extensions or by manipulating file content such as the file header. Recent

mailto:ehud@cs.bgu.ac.il

research in this area was undertaken in order to find efficient ways to identify

the true nature of a code in a file, without relying on external characteristics.

One of the most common methods applied for this purpose is the analysis of

the N-Grams, which are variable sequences of bytes (usually consecutive but

not necessarily), present in the file [1, 2, 8].

The main contribution of this paper is a new Framework, called CTR –

Code Type Revealing, that enable in a convenient manner the finding of the

most efficient parameters (such as N-Gram size, Statistical classifier and other

qualifiers), for the creation of characteristic signatures for different file types.

The CTR Framework serves as an infrastructure for automatic creation of a

signature for every file type, based on training data constructed from files of

that type. Moreover, the CTR Framework can scan unknown files and deter-

mine their type based on that signature. Experiments that were made using the

CTR Framework, presented very good results with 1394 files out of 1400 that

were correctly identified. This is when taking into consideration closely relat-

ed files, such as EXE and DLL, as one type. The F-Measure value, based on

these tests, was 0.996.

The rest of this paper is structured as follows. In Section 2 we discuss relat-

ed work, in section 3 we describe the CTR framework and in Section 4 the

results of the evaluation. Section 5 is the summary.

2 Related Work

Using statistical measures on the content of a file has been investigated as a

text classification technique, and later on was used to explore new methods

for type classification and malware detection. Some of these techniques are

based on statistical measurements and analysis of N-Gram distribution.

McDaniel and Heydari [1] focus their early paper on automatic methods of

creating file signatures, called file type “fingerprints”. They suggest three

algorithms based on 1-gram frequency distribution. The first algorithm creat-

ed a fingerprint using training data of files from the same type. The second

algorithm used similar methods but based the fingerprint on cross correlation

between byte pairs. The third one simply tested the file header and trailer for

repeating patterns and their correlation strength. The first algorithm achieved

a success rate of 27.5%, which is not far from a random guess. The second

one did a better job (45.83%) but performed much slower. The third algorithm

did much better (95.83%) but is much more vulnerable to content manipula-

tion. Wei-Jen Li et al. [2] continued this approach and claimed reaching better

results by refining the fingerprints using a set of centroids, which were care-

fully selected by using clustering methods to find the minimum set that pro-

vides good enough performance. Overall, the results were improved compared

to [1]. Karresand and Shahmehri [3] continued with developing a similar

method using Centroids with the goal of identifying file type based on binary

data fragments. The Centroids were based on the Mean and Standard Devia-

tion of byte frequency distribution. Later they extended their work, introduc-

ing the interesting concept of „Rate of Change‟ between consecutive bytes

[4].The calculation of the distance to the Centroid were made using two meth-

ods, 1-norm (also known as Manhattan Distance) and the frequency distribu-

tion of the Rate of Change of the fragment to be identified. The results were

not conclusive. JPEG files achieved the best results, gaining more than 86.8%,

but with 20% of False Positives. For other types the results were much worse.

For instance, executable file gained 45% - 85% with up to 35% of FP.

Kolter et al. [5] suggested the use of fixed length N-Grams to identify mali-

cious content in executable files. They translated binary content to textual

representation and extracted 4-Grams of known malicious and benign bina-

ries, resulting in about 255M unique 4-Grams. A number of classification

methods have been used, such as Naive Bayes, Support Vector Machines

(SVM) and Decision Trees, which yielded the best results. Dash et al. [6]

Continued this approach and introduced the use of variable length N-Grams to

identify malicious code. They claimed better performance over fixed size N-

Grams due to essential data loss of significant longer N-Grams. Indeed, the

results indicate less errors of type I (FP). Irfan et al. [7] suggest two approach-

es for type identification. First approach uses the cosine similarity for byte

frequency comparison; the second is divide-and-conquer approach to group

similar files, based on repeating byte patterns, regardless of their type. The

results were not conclusive and the later approach improved the classification

accuracy of some types, while getting worse results on others, comparing to

methods not using divide-and-conquer approach. Moskovitch et al. [8] deal

with methods of identifying malicious code based on concepts taken from text

categorization. They introduce the class imbalance problem, which basically

arises when the classes (in this case, benign and malicious code classes) are

not balanced so that most inspected objects belong to one larger class, while

other classes remain much smaller. This may result, in some extreme cases, in

mistakenly labeling all data as member of the larger class. The results showed

that when selecting about 10% of malicious code in the test data, which close-

ly represent real life according to the authors, they achieved over 95% accura-

cy when using 16.7% of malicious code in the training data. The overall con-

clusion was that 10% - 40% of malicious code in the training data will provide

optimal results in a true life distribution.

As was shown in the cited papers, different file types may require different

parameters of analyzing the file content, and the framework discussed next is

based on this approach.

3 Identifying File Type by its Content

The challenge that we are facing, is to find an automatic procedure to create

type identifiers, called signatures, which will be accurate enough and resistant

to content manipulation up to some degree.

We can deduce, based on previous work, that there is some correlation be-

tween the type of a file and its content. To be more precise, we can find a di-

rect link, very strong in some cases and weaker in others, between repeating

N-Grams and the type. The problem is that the general N-grams method has

several parameters (e.g. the size N) and they are not equivalent for the differ-

ent file types.

The aim of this paper is to describe the CRT framework, acting as an exper-

iments lab, which will allow performing experiments on automatic type signa-

tures creation, while changing settings such as N-Gram size, Window size,

Statistical measures, Score calculation rules and others. In this section we

describe the idea and the architecture of the framework. In the following sec-

tion we present an implementation of the idea, which will serve as a proof of

concept, and the results of our tests.

3.1 Implementation

The Framework makes use of the N-Gram Statistics Package (NSP) [9].

The package, which was developed by Pedersen et al., is a suite of Perl utili-

ties, aimed to analyze N-Grams in text files. It collects information on the

appearance of N-Grams and allows running association tests such as Fisher‟s

exact test and log likelihood ratio on the collected data. Since the Framework

goal is to analyze files of any type, binary or text, a preliminary step was add-

ed to translate files content to their hexadecimal textual representation.

3.2 The CTR Framework Architecture

The Framework consist of 2 paths, Signature creating and File test paths,

which are schematically presented in Figure 1. The right side flow describes

the Signature creation path based on training data files, while the left one de-

scribes the test flow. Both paths use the same preparation procedure, which is

the "Count N-grams and Calculate statistics" step (see 3.3). We next describe

each step in the two paths.

Figure 1: Framework Workflow

3.3 Count N-Grams and calculate statistics

This step is common to both paths. The input for the step is a folder con-

taining files. In case of signature creation path, the files will be training data,

representing a type. In the case of the test path, the folder contains files of

unknown type. The step accepts, as an input, the following parameters:

1. N-Gram Size. The size of N-Grams, which will be collected.

2. Window Size. Allows extracting non-contiguous N-Grams. For instance, in

case of N-Gram with size 2 and Window with size 3 for bytes XYZ, the ex-

tracted N-Grams will be XY, XZ, YZ. Window size should be greater or

equal to the N-Gram size.

3. N-Gram Threshold. Allows settings the minimum support of the N-Grams

that will be counted.

4. Statistical measures, e.g. Fisher‟s exact test, Log-likelihood, Chi-squared

test etc.

Figure 2: N-Gram Count file

The result of the step is a set of files, one for each source file, containing a

list of extracted N-Grams, together with the collected statistics on each.

A sample output is presented in Figure 2. The first few lines describe the

settings, such as N-Gram size (3-Gram, in this case) and required statistics

measures. Following are column headers and the data. Each data line presents

an N-Gram, followed by the results for the statistic calculation (percentage

appearance in the file, in this case) and quantity information on the number of

N-Grams that were found in the file. For each N-Gram that was found, the

first frequency value states the number of occurrences that the N-Gram ap-

pears in the file. The following columns list the number of times that each

subset of the N-Gram appeared in its current position. For instance, inspecting

the marked line in Figure 2 reveals that „000000‟ appeared 8563 times in the

file, „00‟ appeared 17770 times on the left hand side, 17771 times in the mid-

dle and 17772 times on the right hand side. Also, „0000‟ appeared 11103

times on the left hand side, and so on.

3.4 Create Signature path

3.4.1 Consolidate N-Grams from files

In this step, result files from the Count N-Grams step are collected and con-

solidated into one summary file per type. The step accepts, as an input, a file

describing the columns to be collected from the N-Grams count files, together

with some statistical measures that should be made on them. These measures

can be Minimum and Maximum value, Standard Deviation etc. The step ac-

cepts, the following parameters:

1. Files Threshold. This value set the threshold, in percentage, of files that

should contain an N-Gram, in order for it to be counted as part of the signa-

ture.

2. Type Name. This value assigns the type to a summary file.

Figure 3: Type Consolidation Summary File

A sample output is presented in Figure 3. The type is specified on the first

line. Lines, following the column headings, list N-Grams, together with their

relevant collected statistics. The second column presents the number of files,

the N-Gram was found in and the third column presents this value in percent-

age of files. Next values present the collected columns for the Count N-Gram

step, with statistical measures. For instance, the fourth column presents the

Mean of the percentage value, taken from the second column in Figure 2, and

the fifth column presents the Standard Deviation of this value.

3.4.2 Create Signature

A Signature can be constructed using two methods. One uses consolidation

files as a direct input for the step. The second one allows comparing consoli-

dation files, in order to eliminate N-Grams that repeat in more types then a

predefined threshold. Both methods accept a list of data columns to be col-

lected from consolidation files. In case of choosing the „Compare Consolida-

tion‟ method, a threshold value should be added. For instance, if N-Gram

00<>00<>00 appears in 5 different types and the threshold is 4, it will not be

included in the Signature. This feature was designed to get more unique type

signatures.

Figure 4: Signature Sample File

A sample of a signature file is shown in Figure 4. It contains the signature

information for all types. The first line on each section states the type on the

first column and the maximum available score for it on the second column.

Following lines list the N-Grams, together with their collected information.

This information includes, in the second and third columns, the number of

files and percentage that the N-Gram appears in. The fourth column contain

the statistics collected from the consolidated files (see 3.4.1), separated by a

„^‟ sign. In Figure 4, the min and max N-Grams appearance was collected. In

the first row, for instance, the N-Gram 6e<>74<>65 appeared in each training

file between 1 and 547 times.

3.5 Test Files path

In this path, we use the type signatures to test files and estimate their type.

Tested files are processed through the count N-Grams step (see 3.3), which

was also applied on training data. It is important to emphasize that, in order to

get reliable results, the Count N-Grams step should be set with the same set-

ting as used in the signature path.

The step accepts, as an input, the list of files to be tested, the signature file

and a Score rules file.

3.5.1 Score Rules file

The score rules file is assembled from Rules, containing sequential Condi-

tions. Each Rule applies to a specific file type. A Condition, within the rule,

determines the score that a found N-Gram will contribute to the final score of

a file, in case that the condition will be found to be true. Conditions are or-

dered and the first Condition that will be found as true will be applied.

Following is a sample set of two conditions in a rule:

For a specific N-Gram

 Condition 1:

 If the N-Gram was found X times in the file, where

X >= ‘Min times in the signature’ and X <= ‘Max times

in the signature’

 Grant it the score Y.

 Condition 2:

If the N-Gram was found X times in the file, where

X > ‘Max times in the signature’

 Grant it the score Z.

According to these sample conditions, if an N-Gram was found in a file be-

tween the min and max times, defined by the signature, it will add Y to the

total score, otherwise, if it will be found more than the max, it will add Z to

the total score. These Rules and the order between the conditions, which is

important, can be created by setting preliminary Rules, creating a signature

and using it on test data. Then, repeating this step again and again, using dif-

ferent settings, until the results accuracy is acceptable. Section 3.6 discusses

this issue further. Since an N-Gram may be missing from some type training

files because of the file threshold, a factor of N-Gram contribution weight is

taken into consideration. It is calculated based on the percentage of files, the

N-Gram was found in. The following algorithm describes the contribution of a

specific N-Gram to the score:

For each

 If matches current type

 For each

 If is true

 Add S = () to the file
 type total score

 Break

S is the score that this N-Gram contributes to the total score of the file for

the type. The total score that will be granted to a file for the type is based on

the formula:

∑
∑

Where Si is the score for N-Gram i and Wi is its weight.

Figure 5: Test Sample Output file

A test output sample file is shown in Figure 5. The first column list all test

files. Second one presents the best guess, meaning, types that received the best

score. Following are one column per type, and the score that the file received

for it.

3.6 Methodology

In this section we describe the methodology that can be used by the re-

searcher, when creating a new type signature. The methodology can also be

adopted by an automatic process. Following are the methodology steps. These

steps should be processed for each type separately.

1. Set an accuracy threshold, which serves as an indication for success, when

achieved.

2. Choose training and test files from reliable sources. All training set files

must be of the same type, which the signature is created for. More files in

the training set will result in a smaller and more accurate signature since

each additional file in the set may lack of some N-Grams, which otherwise,

could be part of the signature. This means that the removed N-Gram could

negatively affected the accuracy of the signature. Test set should contain

files from different types with existing signatures, in order to identify FP

and FN errors.

3. For each set of parameters, run the following steps:

(a) Choose settings, not tested before, such as N-Gram size, Window size,

Statistical measures and Score Rules. For better performance, start from

easy settings. e.g., start from smaller N value for the N-Gram size,

choose simple statistical measures (min and max for example) before

using complex ones etc.

(b) Create a signature.

(c) Run Tests.

(d) If results exceeds success threshold then stop.

The methodology is very simple and should be justified. Generally, if we

take all possible options for N-Gram size, window size, possible score rules

syntax, parameters of score rules and statistical measures and run an exhaus-

tive test, it will take exponential time. One can use a Genetic algorithm for

generating a close to best configuration, but as can be seen from Sections 4.2

and 4.3 below, the above simple methodology gave very good results. It‟s

quite easy to replace it with a genetic algorithm or another learning method.

4 Experiments

We performed the Experiments with very basic tests settings. The goal was

to demonstrate the strength of the process, while keeping it simple. All exper-

iments were done on Windows, although the framework does not enforce spe-

cific OS. Performance was not taken into consideration, since the framework

is not considered to be part of a runtime or production environment, but fur-

ther development of the test file path, using C# on .NET environment, yielded

an average of 70ms scan time for a 0.5MB size file on an i5 core Desktop,

which is a quite small overhead.

4.1 Data

Test and training files of 6 different types were collected from a few

sources, such as a repository of tested benign files of known types, files resid-

ed on a well-protected PC and Google. In order to reduce the chance of ran-

dom guesses, we collected a large set, containing a total of 3920 files. Col-

lected files distribution is listed in table 1.

Total
Files

Test

Files
Training

Files
File

Type

700 022 022 EXE

1199 966 022 DLL

682 280 022 DOCX

419 26 022 PDF

755 000 022 RTF

165 00 202 ZIP

0293 2022 0002 Total

Table 1: Files Used for Experiments

4.2 Tests Settings

For the first experiment we used 3-Grams, with the same window size. No

statistical measures were collected, except for N-Grams Minimum and Maxi-

mum distribution information. Although the Framework allows different set-

tings for different file types, the experiment reported here used the same set-

tings for all types for simplicity. The following simple score rule was applied

to all types:

If an N-Gram was found then

 If it appeared between Min and Max Times

 Grant the score 100

 Else

 Grant the score 80.

Else

 Grant the score 0.

In order to maintain strong signatures, we set the training files percentage

threshold, which defines the min percentage of files that an N-Gram should

appear in (see 3.4.1, 1), to a value that will assure at least 100 N-Grams in a

signature. We succeeded in keeping this rule of thumb for all types except zip

files, which seems to have less N-Grams in common due to high entropy of

bytes sequences in compressed files. Table 2 lists the threshold for different

types.

Threshold Type

99% DLL

79% PDF

94% EXE

55% ZIP

84% RTF

100% DOCX

Table 2: Files Percentage Threshold

4.3 Results for the first experiment

Tests were two-folded. The first part was a K-Fold Cross Validation with K

= 5. Training files for each type were split into 5 subsets. For each subset, a

signature was made from the other 4 and the subset was used as a test set. This

step was done on all types except zip, due to the small number of available zip

files. DOCX files received the best scores, all in the range between 95 and

100 out of 100, while 92% of the DOCX files received the perfect score 100.

RTF files received the worst results. In one subset case, about 33% of the files

scored in the range 40 and 49 out of 100 and 17% scored in the range between

50 and 59. But nevertheless, in the actual tests, RTF files detection rate

reached 100% success with no FP and FN (see Table 3). This can be ex-

plained if we understand that the score does not stand by itself and should be

compared to other types score for the tested file, i.e., RTF files received low

scores for the type RTF, but much lower for other types, so they were recog-

nized as RTF.

In the second part, file scanning was made on test files, based on signatures

that were created using all training data. A total of 1400 test files from all 6

different types were used. 1293 files, which are about 92%, were accurately

recognized.

When closely inspecting the remaining 8% files, an interesting picture is

raised as shown in Figure 6.

Figure 6: No Match File and their distribution

A total of 97 files, which are about 90% of non-matched files, are EXE

files that were mistakenly identified as DLL files (one file was also identified

as PDF). 5 DLL files (4%) were identified as EXE files. Also, MU_ file,

which is a compressed file, was recognized as ZIP. Since DLL and EXE files

are executable files with very similar characteristics, we can consider them as

executable files. This changes the picture entirely and leaves us with 6 non-

recognized files out of 1440, which is about 0.4% error. We also calculated

the F-Measure values for the results in order to get a sense of the Precision

and Recall. The results are presented in Table 3.

Type Files TP FP FN Precision Recall F-Measure

DOCX 182 182 0 0 1 1 1

RTF 255 255 0 0 1 1 1

PDF 19 19 3 0 0.864 1 0.927

DLL 699 693 97 6 0.877 0.991 0.931

EXE 200 99 5 101 0.952 0.495 0.651

ZIP 45 45 3 0 0.938 1 0.968

Total 1400 1293 108 107 0.923 0.924 0.923

Exec. 899 894 0 9 1 0.993 0.997

Total

Exec.

2022 2360 9 9 29669 29669 29669

Table 3: Results Precision, Recall and F-Measure

As can be seen, DOCX and RTF achieved the best results, scoring perfect

F-Measure value of 1. PDF, DLL and ZIP files also did well, scoring 0.931-

0.968. EXE files gained a poor Recall value of 0.651, but when taking DLL

and EXE files as Executable files, the gained Precision is 1 and Recall is

0.993, resulting in an F-Measure value of 0.997.

Overall, in the latter case, the total F-Measure for all 1400 files is 0.996.

4.4 Improving accuracy

As can be seen in the previous section, when isolating the EXE type, the

settings of the first experiment gained poor results, with an F-Measure value

of 0.651. Since the result revealed that, in most miss-identifications, EXE files

were recognized as DLL and vice versa, we performed two additional experi-

ments, one using 4-Gram and the another using 5-Gram, only for the DLL and

EXE types. N-Gram sizes for the rest of the types were left unchanged (3).

Also, other settings for the experiment were left unchanged. The precision,

recall and F-Measure for the EXE type for the different N-Gram sizes are pre-

sented in Table 4.

N-Gram
Size

Files TP FP FN Precision Recall F-Measure

3 200 99 5 101 0.952 0.495 0.651

4 200 108 7 92 0.939 0.54 0.686

5 200 132 8 68 0.943 0.66 0.777

Table 4: EXE Precision, Recall and F-Measure for different N-Gram sizes

As can be seen clearly, with the increasing of the N-Gram size, the accura-

cy of the Framework improved when identifying EXE files. This experiment

demonstrates the strength of the Framework in finding the best settings for

signature creation.

From these experiments we can identify few factors that contribute to the

results accuracy:

 The increasing accuracy when improving the score rules.

 Grouping of file types with a similar structure into categories. As shown,

categorizing may contribute for increased accuracy.

 Threshold values, which set the ground rules to determine if an N-Gram

will be counted for the signature.

4.5 Identifying tampered files

One of the challenges, the Framework is facing, is the ability to correctly

identify tampered files. For instance, in many file types, the first few bytes

(magic numbers) are used to identify the file type. These can be easily manip-

ulated to obfuscate the type of the file. In order to test the ability of the

Framework to overcome this challenge, we performed another experiment.

We randomly picked 24 files, which were correctly identified in the first

experiment. The file list contained 4 files from each of the 6 different types.

The first 10 bytes of each file were set to zero (0). An attempt to open these

files, using the relevant application completed with a failure, as expected. The

4-Gram experiment settings were used for the experiment.

All 24 files were correctly identified by the Framework. This result demon-

strates the strength of the method used by the Framework to overcome com-

mon cases of file content tampering. More complex forms of content tamper-

ing, which affect the whole content of the file, will be dealt with in a future

work. Furthermore, the tests were performed on six file types and it is possible

that the identification accuracy may be reduced when adding more type signa-

tures. This may be overcome by removing mutual N-Grams of many different

type signatures and will be investigated in the future.

5 Conclusions

This paper presents the CTR framework, which is a general framework for

revealing the true type of various files. Using very simple settings, the frame-

work demonstrated promising results, successfully identifying 1394 out of

1400 files and achieving F-Measure value of 0.996, when taking EXE and

DLL files into account as executable files. There is no need of prior

knowledge or manual process of finding patterns in file structures. The pro-

cess can be done automatically without any human intervention.

Not all tested types achieved the same signature strength. While DOCX

files have many repetitive patterns, strong structure characteristics and simi-

larities, ZIP files, for example, demonstrated very weak signature with small

number of descriptive N-Grams. Investigation of additional file types using

the CTR framework is planned in future work.

File content tampering is still an option, but it is much harder since the sig-

nature usually covers large amount of N-Grams and the scan is made on full

content, or at least large portion of the file. This was clearly shown by the

results in 4.5.

In future work we intend to use the framework as a basis for identifying

anomalies in files, in order to mark them as suspicious or benign. Also, we

will explore new directions in text classification, trying to identify content

language or identify data leakage.

References

[1] M. McDaniel and M. H. Heydari, "Content Based File Type Detection

Algorithms," in Proceedings for the 36th Hawaii International Conference on

System Sciences, 2002.

[2] W.-J. Li, S. J. Stolfo, and B. Herzog, "Fileprints: Identifying File Types by n-

gram Analysis," in 2005 IEEE Workshop on Information Assurance, West Point,

NY, 2005.

[3] M. Karresand and N. Shahmehri, "Oscar – file type identification of binary data

in disk clusters and ram pages," in Proceedings of IFIP International

Information Security Conference: Security and Privacy in Dynamic, 2006, pp.

413-424.

[4] M. Karresand and N. Shahmehri, "File Type Identification of Data Fragments by

Their Binary Structure," in Proceedings of the 2006 IEEE Workshop on

Information Assurance United States Military Academy, West Point, NY, 2006.

[5] J. Z. Kolter and M. A. Maloof, "Learning to Detect Malicious Executables in the

Wild," in Tenth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2004.

[6] K. S. Dash, S. R. K. Dubba, and K. A. Pujari, "New Malicious Code Detection

Using Variable Length n-grams," in Algorithms, Architectures and Information

Systems Security. World Scientific, 2008, ch. 14, pp. 307-323.

[7] A. Irfan, L. Kyung, S. Hyunjung, and H. ManPyo, "Content-Based File-type

Identification Using Cosine Similarity and a Divide-and-Conquer Approach,"

IETE Technical Review, vol. 27, no. 4, Jul. 2010.

[8] R. Moskovitch, et al., "Unknown malcode detection and the imbalance

problem," Journal in Computer Virology, vol. 5, no. 4, pp. 295-308, 2009.

[9] T. Pedersen, S. Banerjee, A. Purandare, B. T. McInnes, and Y. Liu. (2009) NSP

- Ngram Statistics Package.

