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Abstract. Identifying the type of a code, whether in a file or byte stream, is a 

challenge that many software companies are facing. Many applications, security 

and others, base their behavior on the type of code they receive as an input.  

Today‟s traditional identification methods rely on file extensions, magic 

numbers, propriety headers and trailers or specific type identifying rules. All 

these are vulnerable to content tampering and discovering it requires investing 

long and tedious working hours of professionals. This study is aimed to find a 

method of identifying the best settings to automatically create type signatures 

that will effectively overcome the content manipulation problem.  

In this paper we lay out a framework for creating type signatures based on 

byte N-Grams. The framework allows setting various parameters such as N-

Gram sizes and windows, selecting statistical tests and defining rules for score 

calculations. The framework serves as a test lab that allows finding the right pa-

rameters to satisfy a predefined threshold of type identification accuracy. We 

demonstrate the framework using basic settings that achieved an F-Measure 

success rate of 0.996 on 1400 test files. 

Keywords: File Type; Content type revealing framework; Code type; Byte N-

Gram statistical analysis. 

1 Introduction 

In today‟s connected environment, most businesses increasingly rely on the 

Internet as a source of information and a platform for communication and 

Electronic commerce. One of the main motivating factors driving the in-

creased use of the net is the ability to use technologies based on active content 

such as Active-x, Java applets, Java Script and Executable files, in order to 

implement Web Based Applications. The flexibility of these technologies 

convey great benefits, but at the same time, allow using Web based applica-

tions as Malware carriers, capable of harming the organization by damaging 

its infrastructures, stealing information or performing other illegal activities. 

One of the most difficult parts of the attack is to penetrate and infuse the 

code into the system. Attackers develop new approaches to disguise the true 

nature of the penetrating file, if by using naive methods such as changing File 

Extensions or by manipulating file content such as the file header. Recent 
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research in this area was undertaken in order to find efficient ways to identify 

the true nature of a code in a file, without relying on external characteristics. 

One of the most common methods applied for this purpose is the analysis of 

the N-Grams, which are variable sequences of bytes (usually consecutive but 

not necessarily), present in the file [1, 2, 8]. 

The main contribution of this paper is a new Framework,  called CTR – 

Code Type Revealing, that enable in a convenient manner the  finding of the 

most efficient parameters (such as N-Gram size, Statistical classifier and other 

qualifiers), for the creation of characteristic signatures for different file types. 

The CTR Framework serves as an infrastructure for automatic creation of a 

signature for every file type, based on training data constructed from files of 

that type. Moreover, the CTR Framework can scan unknown files and deter-

mine their type based on that signature. Experiments that were made using the 

CTR Framework, presented very good results with 1394 files out of 1400 that 

were correctly identified. This is when taking into consideration closely relat-

ed files, such as EXE and DLL, as one type. The F-Measure value, based on 

these tests, was 0.996. 

The rest of this paper is structured as follows. In Section 2 we discuss relat-

ed work, in section 3 we describe the CTR framework and in Section 4 the 

results of the evaluation. Section 5 is the summary. 

2 Related Work 

Using statistical measures on the content of a file has been investigated as a 

text classification technique, and later on was used to explore new methods 

for type classification and malware detection. Some of these techniques are 

based on statistical measurements and analysis of N-Gram distribution. 

McDaniel and Heydari [1] focus their early paper on automatic methods of 

creating file signatures, called file type “fingerprints”. They suggest three 

algorithms based on 1-gram frequency distribution. The first algorithm creat-

ed a fingerprint using training data of files from the same type. The second 

algorithm used similar methods but based the fingerprint on cross correlation 

between byte pairs. The third one simply tested the file header and trailer for 

repeating patterns and their correlation strength. The first algorithm achieved 

a success rate of 27.5%, which is not far from a random guess. The second 

one did a better job (45.83%) but performed much slower. The third algorithm 

did much better (95.83%) but is much more vulnerable to content manipula-

tion. Wei-Jen Li et al. [2] continued this approach and claimed reaching better 

results by refining the fingerprints using a set of centroids, which were care-

fully selected by using clustering methods to find the minimum set that pro-

vides good enough performance. Overall, the results were improved compared 

to [1]. Karresand and Shahmehri [3] continued with developing a similar 

method using Centroids with the goal of identifying file type based on binary 



data fragments. The Centroids were based on the Mean and Standard Devia-

tion of byte frequency distribution. Later they extended their work, introduc-

ing the interesting concept of „Rate of Change‟ between consecutive bytes 

[4].The calculation of the distance to the Centroid were made using two meth-

ods, 1-norm (also known as Manhattan Distance) and the frequency distribu-

tion of the Rate of Change of the fragment to be identified. The results were 

not conclusive. JPEG files achieved the best results, gaining more than 86.8%, 

but with 20% of False Positives. For other types the results were much worse. 

For instance, executable file gained 45% - 85% with up to 35% of FP. 

Kolter et al. [5] suggested the use of fixed length N-Grams to identify mali-

cious content in executable files. They translated binary content to textual 

representation and extracted 4-Grams of known malicious and benign bina-

ries, resulting in about 255M unique 4-Grams. A number of classification 

methods have been used, such as Naive Bayes, Support Vector Machines 

(SVM) and Decision Trees, which yielded the best results. Dash et al. [6] 

Continued this approach and introduced the use of variable length N-Grams to 

identify malicious code. They claimed better performance over fixed size N-

Grams due to essential data loss of significant longer N-Grams. Indeed, the 

results indicate less errors of type I (FP). Irfan et al. [7] suggest two approach-

es for type identification. First approach uses the cosine similarity for byte 

frequency comparison; the second is divide-and-conquer approach to group 

similar files, based on repeating byte patterns, regardless of their type. The 

results were not conclusive and the later approach improved the classification 

accuracy of some types, while getting worse results on others, comparing to 

methods not using divide-and-conquer approach. Moskovitch et al. [8] deal 

with methods of identifying malicious code based on concepts taken from text 

categorization. They introduce the class imbalance problem, which basically 

arises when the classes (in this case, benign and malicious code classes) are 

not balanced so that most inspected objects belong to one larger class, while 

other classes remain much smaller. This may result, in some extreme cases, in 

mistakenly labeling all data as member of the larger class. The results showed 

that when selecting about 10% of malicious code in the test data, which close-

ly represent real life according to the authors, they achieved over 95% accura-

cy when using 16.7% of malicious code in the training data. The overall con-

clusion was that 10% - 40% of malicious code in the training data will provide 

optimal results in a true life distribution. 

As was shown in the cited papers, different file types may require different 

parameters of analyzing the file content, and the framework discussed next is 

based on this approach. 



3 Identifying File Type by its Content 

The challenge that we are facing, is to find an automatic procedure to create 

type identifiers, called signatures, which will be accurate enough and resistant 

to content manipulation up to some degree.  

We can deduce, based on previous work, that there is some correlation be-

tween the type of a file and its content. To be more precise, we can find a di-

rect link, very strong in some cases and weaker in others, between repeating 

N-Grams and the type. The problem is that the general N-grams method has 

several parameters (e.g. the size N) and they are not equivalent for the differ-

ent file types. 

The aim of this paper is to describe the CRT framework, acting as an exper-

iments lab, which will allow performing experiments on automatic type signa-

tures creation, while changing settings such as N-Gram size, Window size, 

Statistical measures, Score calculation rules and others. In this section we 

describe the idea and the architecture of the framework. In the following sec-

tion we present an implementation of the idea, which will serve as a proof of 

concept, and the results of our tests. 

3.1 Implementation 

The Framework makes use of the N-Gram Statistics Package (NSP) [9]. 

The package, which was developed by Pedersen et al., is a suite of Perl utili-

ties, aimed to analyze N-Grams in text files. It collects information on the 

appearance of N-Grams and allows running association tests such as Fisher‟s 

exact test and log likelihood ratio on the collected data. Since the Framework 

goal is to analyze files of any type, binary or text, a preliminary step was add-

ed to translate files content to their hexadecimal textual representation.  

3.2 The CTR Framework Architecture 

The Framework consist of 2 paths, Signature creating and File test paths, 

which are schematically presented in Figure 1. The right side flow describes 

the Signature creation path based on training data files, while the left one de-

scribes the test flow. Both paths use the same preparation procedure, which is 

the "Count N-grams and Calculate statistics" step (see 3.3). We next describe 

each step in the two paths. 

 



 
Figure 1: Framework Workflow 

3.3 Count N-Grams and calculate statistics 

This step is common to both paths. The input for the step is a folder con-

taining files. In case of signature creation path, the files will be training data, 

representing a type. In the case of the test path, the folder contains files of 

unknown type. The step accepts, as an input, the following parameters: 

1. N-Gram Size. The size of N-Grams, which will be collected. 

2. Window Size. Allows extracting non-contiguous N-Grams. For instance, in 

case of N-Gram with size 2 and Window with size 3 for bytes XYZ, the ex-

tracted N-Grams will be XY, XZ, YZ. Window size should be greater or 

equal to the N-Gram size. 

3. N-Gram Threshold. Allows settings the minimum support of the N-Grams 

that will be counted. 

4. Statistical measures, e.g. Fisher‟s exact test, Log-likelihood, Chi-squared 

test etc.   



Figure 2: N-Gram Count file 

The result of the step is a set of files, one for each source file, containing a 

list of extracted N-Grams, together with the collected statistics on each.   

A sample output is presented in Figure 2. The first few lines describe the 

settings, such as N-Gram size (3-Gram, in this case) and required statistics 

measures. Following are column headers and the data. Each data line presents 

an N-Gram, followed by the results for the statistic calculation (percentage 

appearance in the file, in this case) and quantity information on the number of 

N-Grams that were found in the file. For each N-Gram that was found, the 

first frequency value states the number of occurrences that the N-Gram ap-

pears in the file. The following columns list the number of times that each 

subset of the N-Gram appeared in its current position. For instance, inspecting 

the marked line in Figure 2 reveals that „000000‟ appeared 8563 times in the 

file, „00‟ appeared 17770 times on the left hand side, 17771 times in the mid-

dle and 17772 times on the right hand side. Also, „0000‟ appeared 11103 

times on the left hand side, and so on.  

3.4 Create Signature path 

3.4.1 Consolidate N-Grams from files 

In this step, result files from the Count N-Grams step are collected and con-

solidated into one summary file per type. The step accepts, as an input, a file 

describing the columns to be collected from the N-Grams count files, together 

with some statistical measures that should be made on them. These measures 

can be Minimum and Maximum value, Standard Deviation etc. The step ac-

cepts, the following parameters: 



1. Files Threshold. This value set the threshold, in percentage, of files that 

should contain an N-Gram, in order for it to be counted as part of the signa-

ture. 

2. Type Name. This value assigns the type to a summary file. 

Figure 3: Type Consolidation Summary File 

A sample output is presented in Figure 3. The type is specified on the first 

line. Lines, following the column headings, list N-Grams, together with their 

relevant collected statistics. The second column presents the number of files, 

the N-Gram was found in and the third column presents this value in percent-

age of files. Next values present the collected columns for the Count N-Gram 

step, with statistical measures. For instance, the fourth column presents the 

Mean of the percentage value, taken from the second column in Figure 2, and 

the fifth column presents the Standard Deviation of this value.  

3.4.2 Create Signature 

A Signature can be constructed using two methods. One uses consolidation 

files as a direct input for the step. The second one allows comparing consoli-

dation files, in order to eliminate N-Grams that repeat in more types then a 

predefined threshold. Both methods accept a list of data columns to be col-

lected from consolidation files. In case of choosing the „Compare Consolida-

tion‟ method, a threshold value should be added. For instance, if N-Gram 

00<>00<>00 appears in 5 different types and the threshold is 4, it will not be 

included in the Signature. This feature was designed to get more unique type 

signatures. 

 



 
Figure 4: Signature Sample File 

A sample of a signature file is shown in Figure 4. It contains the signature 

information for all types. The first line on each section states the type on the 

first column and the maximum available score for it on the second column. 

Following lines list the N-Grams, together with their collected information. 

This information includes, in the second and third columns, the number of 

files and percentage that the N-Gram appears in. The fourth column contain 

the statistics collected from the consolidated files (see 3.4.1), separated by a 

„^‟ sign. In Figure 4, the min and max N-Grams appearance was collected. In 

the first row, for instance, the N-Gram 6e<>74<>65 appeared in each training 

file between 1 and 547 times. 

3.5 Test Files path 

In this path, we use the type signatures to test files and estimate their type. 

Tested files are processed through the count N-Grams step (see 3.3), which 

was also applied on training data. It is important to emphasize that, in order to 

get reliable results, the Count N-Grams step should be set with the same set-

ting as used in the signature path. 

The step accepts, as an input, the list of files to be tested, the signature file 

and a Score rules file.  

3.5.1 Score Rules file 

The score rules file is assembled from Rules, containing sequential Condi-

tions. Each Rule applies to a specific file type. A Condition, within the rule, 



determines the score that a found N-Gram will contribute to the final score of 

a file, in case that the condition will be found to be true. Conditions are or-

dered and the first Condition that will be found as true will be applied.  

Following is a sample set of two conditions in a rule: 

For a specific N-Gram 

 Condition 1:  

 If the N-Gram was found X times in the file, where  

X >= ‘Min times in the signature’ and X <= ‘Max times 

in the signature’ 

   Grant it the score Y.  

 Condition 2:  

If the N-Gram was found X times in the file, where  

X > ‘Max times in the signature’  

   Grant it the score Z. 

According to these sample conditions, if an N-Gram was found in a file be-

tween the min and max times, defined by the signature, it will add Y to the 

total score, otherwise, if it will be found more than the max, it will add Z to 

the total score. These Rules and the order between the conditions, which is 

important, can be created by setting preliminary Rules, creating a signature 

and using it on test data. Then, repeating this step again and again, using dif-

ferent settings, until the results accuracy is acceptable. Section 3.6 discusses 

this issue further. Since an N-Gram may be missing from some type training 

files because of the file threshold, a factor of N-Gram contribution weight is 

taken into consideration. It is calculated based on the percentage of files, the 

N-Gram was found in. The following algorithm describes the contribution of a 

specific N-Gram to the score:  

For each         

 If        matches current type 

  For each                

   If   is true 

 Add S = (                    ) to the file 
    type total score 

    Break 

S is the score that this N-Gram contributes to the total score of the file for 

the type. The total score that will be granted to a file for the type is based on 

the formula: 

       
∑    
∑  

 

Where Si is the score for N-Gram i and Wi is its weight. 

 



 

 

 

Figure 5: Test Sample Output file 

A test output sample file is shown in Figure 5. The first column list all test 

files. Second one presents the best guess, meaning, types that received the best 

score. Following are one column per type, and the score that the file received 

for it.  

3.6 Methodology  

In this section we describe the methodology that can be used by the re-

searcher, when creating a new type signature. The methodology can also be 

adopted by an automatic process. Following are the methodology steps. These 

steps should be processed for each type separately.  

1. Set an accuracy threshold, which serves as an indication for success, when 

achieved.  

2. Choose training and test files from reliable sources. All training set files 

must be of the same type, which the signature is created for. More files in 

the training set will result in a smaller and more accurate signature since 

each additional file in the set may lack of some N-Grams, which otherwise, 

could be part of the signature. This means that the removed N-Gram could 

negatively affected the accuracy of the signature. Test set should contain 

files from different types with existing signatures, in order to identify FP 

and FN errors. 

3. For each set of parameters, run the following steps: 

(a) Choose settings, not tested before, such as N-Gram size, Window size, 

Statistical measures and Score Rules. For better performance, start from 

easy settings. e.g., start from smaller N value for the N-Gram size, 

choose simple statistical measures (min and max for example) before 

using complex ones etc.  

(b) Create a signature. 

(c) Run Tests. 



(d) If results exceeds success threshold then stop. 

The methodology is very simple and should be justified. Generally, if we 

take all possible options for N-Gram size, window size, possible score rules 

syntax, parameters of score rules and statistical measures and run an exhaus-

tive test, it will take exponential time. One can use a Genetic algorithm for 

generating a close to best configuration, but as can be seen from Sections 4.2 

and 4.3 below, the above simple methodology gave very good results. It‟s 

quite easy to replace it with a genetic algorithm or another learning method. 

4 Experiments 

We performed the Experiments with very basic tests settings. The goal was 

to demonstrate the strength of the process, while keeping it simple. All exper-

iments were done on Windows, although the framework does not enforce spe-

cific OS. Performance was not taken into consideration, since the framework 

is not considered to be part of a runtime or production environment, but fur-

ther development of the test file path, using C# on .NET environment, yielded 

an average of 70ms scan time for a 0.5MB size file on an i5 core Desktop, 

which is a quite small overhead.   

4.1 Data  

Test and training files of 6 different types were collected from a few 

sources, such as a repository of tested benign files of known types, files resid-

ed on a well-protected PC and Google. In order to reduce the chance of ran-

dom guesses, we collected a large set, containing a total of 3920 files. Col-

lected files distribution is listed in table 1. 

Total  
Files 

Test  

Files 
Training  

Files 
File 

Type 

700 022 022 EXE 

1199 966 022 DLL 

682 280 022 DOCX 

419 26 022 PDF 

755 000 022 RTF 

165 00 202 ZIP 

0293 2022 0002 Total 

Table 1: Files Used for Experiments 



4.2 Tests Settings 

For the first experiment we used 3-Grams, with the same window size. No 

statistical measures were collected, except for N-Grams Minimum and Maxi-

mum distribution information. Although the Framework allows different set-

tings for different file types, the experiment reported here used the same set-

tings for all types for simplicity. The following simple score rule was applied 

to all types: 

If an N-Gram was found then 

 If it appeared between Min and Max Times 

  Grant the score 100 

 Else 

  Grant the score 80. 

Else 

 Grant the score 0. 

In order to maintain strong signatures, we set the training files percentage 

threshold, which defines the min percentage of files that an N-Gram should 

appear in (see 3.4.1, 1), to a value that will assure at least 100 N-Grams in a 

signature. We succeeded in keeping this rule of thumb for all types except zip 

files, which seems to have less N-Grams in common due to high entropy of 

bytes sequences in compressed files. Table 2 lists the threshold for different 

types. 

 

Threshold Type 

99% DLL 

79% PDF 

94% EXE 

55% ZIP 

84% RTF 

100% DOCX 

Table 2: Files Percentage Threshold 

4.3 Results for the first experiment 

Tests were two-folded. The first part was a K-Fold Cross Validation with K 

= 5. Training files for each type were split into 5 subsets. For each subset, a 

signature was made from the other 4 and the subset was used as a test set. This 

step was done on all types except zip, due to the small number of available zip 

files. DOCX files received the best scores, all in the range between 95 and 

100 out of 100, while 92% of the DOCX files received the perfect score 100. 



RTF files received the worst results. In one subset case, about 33% of the files 

scored in the range 40 and 49 out of 100 and 17% scored in the range between 

50 and 59. But nevertheless, in the actual tests, RTF files detection rate 

reached 100% success with no FP and FN (see Table 3). This can be ex-

plained if we understand that the score does not stand by itself and should be 

compared to other types score for the tested file, i.e., RTF files received low 

scores for the type RTF, but much lower for other types, so they were recog-

nized as RTF.  

In the second part, file scanning was made on test files, based on signatures 

that were created using all training data. A total of 1400 test files from all 6 

different types were used. 1293 files, which are about 92%, were accurately 

recognized. 

When closely inspecting the remaining 8% files, an interesting picture is 

raised as shown in Figure 6.  

 
Figure 6: No Match File and their distribution 

A total of 97 files, which are about 90% of non-matched files, are EXE 

files that were mistakenly identified as DLL files (one file was also identified 

as PDF). 5 DLL files (4%) were identified as EXE files. Also, MU_ file, 

which is a compressed file, was recognized as ZIP. Since DLL and EXE files 

are executable files with very similar characteristics, we can consider them as 

executable files. This changes the picture entirely and leaves us with 6 non-

recognized files out of 1440, which is about 0.4% error. We also calculated 

the F-Measure values for the results in order to get a sense of the Precision 

and Recall. The results are presented in Table 3. 

  



 

Type Files TP FP FN Precision Recall F-Measure 

DOCX 182 182 0 0 1 1 1 

RTF 255 255 0 0 1 1 1 

PDF 19 19 3 0 0.864 1 0.927 

DLL 699 693 97 6 0.877 0.991 0.931 

EXE 200 99 5 101 0.952 0.495 0.651 

ZIP 45 45 3 0 0.938 1 0.968 

Total 1400 1293 108 107 0.923 0.924 0.923 

        

Exec. 899 894 0 9 1 0.993 0.997 

Total 

Exec. 

2022 2360 9 9 29669 29669 29669 

Table 3: Results Precision, Recall and F-Measure 

As can be seen, DOCX and RTF achieved the best results, scoring perfect 

F-Measure value of 1. PDF, DLL and ZIP files also did well, scoring 0.931-

0.968. EXE files gained a poor Recall value of 0.651, but when taking DLL 

and EXE files as Executable files, the gained Precision is 1 and Recall is 

0.993, resulting in an F-Measure value of 0.997.  

Overall, in the latter case, the total F-Measure for all 1400 files is 0.996. 

4.4 Improving accuracy 

As can be seen in the previous section, when isolating the EXE type, the 

settings of the first experiment gained poor results, with an F-Measure value 

of 0.651. Since the result revealed that, in most miss-identifications, EXE files 

were recognized as DLL and vice versa, we performed two additional experi-

ments, one using 4-Gram and the another using 5-Gram, only for the DLL and 

EXE types. N-Gram sizes for the rest of the types were left unchanged (3). 

Also, other settings for the experiment were left unchanged. The precision, 

recall and F-Measure for the EXE type for the different N-Gram sizes are pre-

sented in Table 4. 

N-Gram  
Size 

Files TP FP FN Precision Recall F-Measure 

3 200 99 5 101 0.952 0.495 0.651 

4 200 108 7 92 0.939 0.54 0.686 

5 200 132 8 68 0.943 0.66 0.777 

Table 4: EXE Precision, Recall and F-Measure for different N-Gram sizes 

As can be seen clearly, with the increasing of the N-Gram size, the accura-

cy of the Framework improved when identifying EXE files. This experiment 

demonstrates the strength of the Framework in finding the best settings for 

signature creation. 



From these experiments we can identify few factors that contribute to the 

results accuracy:  

 The increasing accuracy when improving the score rules.  

 Grouping of file types with a similar structure into categories. As shown, 

categorizing may contribute for increased accuracy. 

 Threshold values, which set the ground rules to determine if an N-Gram 

will be counted for the signature. 

4.5 Identifying tampered files  

One of the challenges, the Framework is facing, is the ability to correctly 

identify tampered files. For instance, in many file types, the first few bytes 

(magic numbers) are used to identify the file type. These can be easily manip-

ulated to obfuscate the type of the file. In order to test the ability of the 

Framework to overcome this challenge, we performed another experiment.  

We randomly picked 24 files, which were correctly identified in the first 

experiment. The file list contained 4 files from each of the 6 different types. 

The first 10 bytes of each file were set to zero (0). An attempt to open these 

files, using the relevant application completed with a failure, as expected. The 

4-Gram experiment settings were used for the experiment.  

All 24 files were correctly identified by the Framework. This result demon-

strates the strength of the method used by the Framework to overcome com-

mon cases of file content tampering. More complex forms of content tamper-

ing, which affect the whole content of the file, will be dealt with in a future 

work. Furthermore, the tests were performed on six file types and it is possible 

that the identification accuracy may be reduced when adding more type signa-

tures. This may be overcome by removing mutual N-Grams of many different 

type signatures and will be investigated in the future. 

5 Conclusions 

This paper presents the CTR framework, which is a general framework for 

revealing the true type of various files. Using very simple settings, the frame-

work demonstrated promising results, successfully identifying 1394 out of 

1400 files and achieving F-Measure value of 0.996, when taking EXE and 

DLL files into account as executable files. There is no need of prior 

knowledge or manual process of finding patterns in file structures. The pro-

cess can be done automatically without any human intervention. 

Not all tested types achieved the same signature strength. While DOCX 

files have many repetitive patterns, strong structure characteristics and simi-

larities, ZIP files, for example, demonstrated very weak signature with small 

number of descriptive N-Grams. Investigation of additional file types using 

the CTR framework is planned in future work. 



File content tampering is still an option, but it is much harder since the sig-

nature usually covers large amount of N-Grams and the scan is made on full 

content, or at least large portion of the file. This was clearly shown by the 

results in 4.5.  

In future work we intend to use the framework as a basis for identifying 

anomalies in files, in order to mark them as suspicious or benign. Also, we 

will explore new directions in text classification, trying to identify content 

language or identify data leakage.  
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