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Abstract. Masquerade attack refers to an attack that uses a fake identity, to gain 

unauthorized access to personal computer information through legitimate access 

identification. Automatic discovery of masqueraders is sometimes undertaken 

by detecting significant departures from normal user behavior. If a user's nor-

mal profile deviates from their original behavior, it could potentially signal an 

ongoing masquerade attack. In this paper we proposed a new framework to cap-

ture data in a comprehensive manner by collecting data in different layers 

across multiple applications. Our approach generates feature vectors which con-

tain the output gained from analysis across multiple layers such as Window Da-

ta, Mouse Data, Keyboard Data, Command Line Data, File Access Data and 

Authentication Data. We evaluated our approach by several experiments with a 

significant number of participants. Our experimental results show better detec-

tion rates with acceptable false positives which none of the earlier approaches 

has achieved this level of accuracy so far.  

Keywords: Masquerade Detection, Intrusion Detection System, Anomaly De-

tection, User Profiling. 

1 Introduction 

Masquerade attacks are ranked second on the top five lists of electronic crimes 

perpetrated after viruses, worms or other malicious code attacks. The most common 

information, which can be used to detect masquerade attacks, is contained within the 

actions a masquerader performs. This set of actions is known as a behavioral profile. 

Behavior is not something that can be easily stolen. Masquerade detection techniques 

are based on the premise that when a masquerader attacks the system he will 

sufficiently deviate from the user’s behavior and thus can be recognized using 

machine learning techniques [9]. In this paper we demonstrate an approach for 

detecting masqueraders in an efficient manner. We show how multiple layers of user 

data records together can construct a meaningful behavioral profile in order to have 

better detection results. The paper is organized as follows: next section introduces the 

related works on masquerade detection. Then, we describe architecture for the layered 

approach, which is followed by the experimental designs including data collection, 
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feature extraction, learning and classification phases. Results of several experiments 

and conclusion are presented in last sections.  

2 Background and Related Work 

Masquerade detection was done by observing the command line data and watching a 

user‟s behavior and then finding anomalies in their usage. In the category of the 

command line approaches, the initial activity was done by Schonlau et al. [6] which 

collected a dataset of Unix command line data from 50 users called the SEA dataset 

for testing and comparing and was used with different intrusion detection techniques. 

This research utilized different statistical techniques on the dataset and then compared 

the results. The NaïveBayes classifier was first applied on Schonlau‟s dataset by Roy 

A. Maxion [7]. They extended their previous work by applying the NaïveBayes clas-

sifier on Greenberg‟s enriched command line data [8]. Kim [5] applied SVM with a 

voting engine on SEA, 1v49 and Greenberg datasets. 

However command line data detection mechanisms could not truly detect masquerade 

attacks in the modern graphical user interface (GUI) systems like windows and va-

riants of Unix like Linux or Mac OSx. Today working with GUI systems is more 

common and the study of their different aspects is crucial. GUI based data is mostly 

related to data which comes from the interaction between the user and their mouse 

and keyboard. Poursa[12] considered Analysis of mouse data which was taken from 

users who worked with browsers. This approach has its disadvantages mainly because 

their work focused on the browser data, even though users may be working with ap-

plications other than browsers. Later works then focused on comprehensive GUI be-

havior. For this purpose, [1] developed an active system logger by using C# on a 

Windows XP System. This logger examined GUI event data captured from users and 

then useful parameters are extracted to construct the feature vectors. This profiling 

method, while good, comes with the disadvantage that they only implemented it for 

Microsoft GUI systems with much of the focus set only on mouse usage. Moreover, 

their detection rate was not impressive. [2] designed a logger in the KDE environ-

ment. The disadvantages of their work were that they collected data only from a sin-

gle window and did not consider the complexity of profiling multi applications. It was 

[4] who later showed the advantages of user profiling across multiple applications. 

Other activity regarding GUI based detections can be found in [3] which does not use 

mouse movements or keystroke dynamics but rather profiles how the user manipulates 

the windows, icons and menus. They do not appear to consider time as a factor, which 

is crucial for intrusion analysis. 

3 Our Layered Approach 

We propose a new approach for detecting a masquerader in a system. A layered ap-

proach is introduced to collect comprehensive data across multiple applications. Fig.1 

shows an overview of the architecture which will be discussed in this paper.  As it is 

shown, the training phase is based on collecting the genuine user data from which a 



behavioral profile will be created for each user and started with an event logger tool 

which is designed and implemented to collects all events during a session. Then a 

feature extraction tool is designed to generate the useful features. It constructs feature 

vectors which are generated from different layers; namely layer-1 as GUI data con-

tains window data, mouse data, keyboard data, layer-2 as command line data, layer-3 

as file access data and layer-4 as authentication data. This will then be used in the 

detection phase. In the detection phase the new user profile will be generated from the 

new user records and compared to the genuine profile. Any significant deviation be-

tween them can be recognized as an attack. This task can be possible with the help of 

a binary classifier which we can call the detection engine. We took the help of two 

well known classifiers for this task namely SVM and NaïveBayes. More details re-

garding the experiment will be addressed in later sections. 

 

Fig. 1.    Architecture of the Layered Approach 

4 Data Collection & Calculation of Features 

In the absence of a real-world data set for the study of masquerade attacks, we devel-

oped our own data collection project. In this section we described the data collection 

and feature extraction phases. For collecting the data our own logger was developed 

to collect the information from system. Since we needed data passing through Win-

dow Manager, we chose C as the programming language using X library which 

helped us communicate with Window Manager for capturing the events. The details 

of each event were logged to a file for processing in the next phase. The collected 

event details include identification of the window, the name of that window and time 

of occurrence along with different attributes of that particular event. At the prepro-

cessing phase, by analyzing and observing the impact of each feature on detection rate 

and false positive rates, it was concluded that the following features were to be consi-

dered in the training phase. The features are generated from 6 categories including 

window data, keyboard data, mouse data as GUI data, command line data, file access 

data and authentication data as below: 



4.1 Window Data(9features) 

Users in the GUI environment try to interact with a particular window such as 

Maximizing, Minimizing, Opening, Closing and switching between windows. In total 

9 features were extracted. Here is a window event sample:  

 Event Occurred at: Tue Feb 8 10:03:13 2011 

 WID=65011715-WName=Openoffice msg:The active window  changed   

from previous WID=69206091- Wname=Firefox 

Window coordination and size (4). The average number of times that the user 

changes the x, y coordinates of a window or width or height of it per user session. 

Window Maximize, Minimize (4). The average number of times that the user mini-

mizes, maximizes, restores from the minimized or maximized position of a window 

per user session. 

Window Switching (1). The average number of times that a user switches between 

different windows per user session. 

4.2 Mouse Data(6featurs) 

In this category mouse-related user activities like mouse click, mouse right click, 

mouse movement, etc. were captured for every application. In total 6 features were 

extracted. Here is a mouse event sample: 

 Event Occurred at: Tue Feb 8 09:58:22 2011 

 WID=650117—WName=Firefox--msg:Mouse left button clicked 

Mouse Enter and Exit (2). The average number of times that the mouse enters to a 

window or exit from a window for each application per user session. 

Mouse Clicks (2). The average number of left and right mouse clicks for each appli-

cation per user session. 

Mouse Scroll Up and Down (2).  The average number of times that the mouse scrolls 

up or scroll down for each application per user session.  

4.3 Keyboard Data(5features) 

All the keyboard events are logged and stored separately for each application. The 

different keyboard events are key press, key release, and shortcut key (Ctrl, Alt, shift 

modifiers). In total 5 features were extracted. Here is a keyboard event sample: 

 Event Occurred at: Tue Feb 8 10:00:33 2011 

 WID=692060--WName=Firefox--msg:Shortcut key Pressed—Ctrl+z 

Key Pressed (1). The average number of keys pressed in each application per user 

session. 

Shortcut key Pressed (1). The average number of shortcut keys pressed in each ap-

plication per user session. 



Ctrl, Alt, Shift Modifier (3). The average number of times that Ctrl, Alt or Shift 

modifiers pressed for each application per user session. 

4.4 Command Line Data(2features) 

All the commands which are entered in command prompt are logged. They are di-

vided into 2 major categories, Normal and Critical. Normal commands are those 

which are harmless and can be used with normal user privileges such as ls, clear, cd, 

etc. Critical commands are those used by administrators and contain any commands 

that are critical for the system and need root privileges such as su, sudo, etc. 

Normal and Critical Commands (1). Number of normal and critical commands that 

the user enters to the command prompt. 

4.5 File Access Data(38 features) 

In this layer, users' accesses to crucial files were logged. Attackers usually try to 

access the victim's data. Analyzing this pattern of behavior can be helpful in order to 

determine when such an act is being conducted by a masquerader within the system. 

For example attackers try to access password files to obtain the users' password.  

Another example can be seen by the attempt to access log files by the attacker in or-

der to delete any evidence they may have left behind. We used the Auditd tool to log 

the user access to specific files or folders. It is part of the Linux kernel auditing toolkit 

and captures auditing trails created by the kernel auditing facility from /proc/audit. 

Using the feature extraction tool, data was preprocessed and a total of 38 features are 

created. The first 19 features are successful attempts to access specific files or folders 

and the rest of them are features regarding failed access.  

Successful and Unsuccessful access (38). Number of successful attempts to access 

particular files and folders include password file, log folder, etc folder, var folder, 

home directory, proc and bin folder as well as the number of unsuccessful attempts. 

4.6 Authentication Data(2features) 

Normal users rarely perform actions of administrative domain, so when unusual 

numbers of authentication occur, it can be suspected as malicious activity. From this 2 

features are extracted, the first one is the total number of authentication request and 

the second one is the total number of failed authentication request. 

Successful and Unsuccessful Authentication (2). Number of successful and unsuc-

cessful authentications. 

5 Learning and Classification 

We collected the data from 16 distinct users who were the students of a particular 

course in our department. For each user an account was created on a shared computer 

in our lab and they were given an individual choice of operating conditions and appli-



cations. The data collection phase took about two months and the data was collected 

for multiple sessions, each lasting about 10 minutes. Roughly 3140 minutes of user 

data was collected and profiled which was significant due to the considerable number 

of users. 

The dataset contains the different number of sessions for different users including 2 

users with 21 sessions, 10 users with 20 sessions, 3 users with 19 sessions, and 1 user 

with 15 sessions as it is shown in table 1. This data was fed into the parsing engine to 

sanitize and extract features for each application per session. The methodology to 

train and test the data is explained below. 

Table 1.   Data Sets Description 

Users No of Sessions (each 10minutes) 

A,B 2*21 
C,D,E,F,G,H,I,J,K,L 10*20 

M,N,O 3*19 

P 1*15 

Sum 314  (3140 minutes) 

 

- The Collected feature vectors were then divided into different training and test 

sets. From these, the training sessions were used for the learning phase and for the test 

phase due to the lack of real masquerade records the other user‟s records were treated 

as non genuine or as masquerade records. Obviously if the real masquerade data was 

available, the anomaly detection would be easier due to the fact that masqueraders 

tend to put more effort into changing the system state than a normal user would.  

- We started with the proportion of 50 percent for the training set vs. 50 percent of 

the testing set. To show the effect that the number of training sets has in relation to 

accuracy we repeated the experiments, increasing the proportion of the training set by 

5 percent for each case. In total 8 different cases were constructed and it ended up 

with proportion of 85 percent for the training set and 15 percent for the testing set. 

Results show a better performance, with an increase in the number of training sets. 

- The Collected feature vectors were divided into different training and test ses-

sions per user.  We defined a binary classification problem for our data due to the fact 

that users should be tagged as positive (genuine) or negative (masquerader). SVM 

[10] [11] and NaïveBayes [14] classifiers are used to classify the data and measure the 

detection rate, false positive and false negative rates. We used the Weka tool [13] to 

perform the classification. For improving the performance of classifiers we used the 

SMOTE filter [15]. 

6 Results and Discussion  

We evaluated the performance of our approach with different experimentations as 

explained in previous section. Our best result was the detection rate of 97.5% with a 

false positive rate of 10.18% and false negative rate of 1.5% for SVM. Following 

sections explain more about the results and comparison between different approaches.  



6.1 Detection Rate Evaluation by Different Number of Training and Test Sets 

Table 2 shows the average detection rate for different numbers of training sets and 

test sets using different classifiers. In all cases the detection accuracy of SVM is far 

better than the other classifier. We can also see an improvement in detection rate by 

increasing the number of training sets.  

Table 2. Average Detection Rate with Different Training and Test sets Size  

Classifiers 
50%Train 

50%Test 

55%Train 

45%Test 

60%Train 

40%Test 

65%Train 

35%Test 

70%Train 

30%Test 

75%Train 

25%Test 

80%Train 

20%Test 

85%Train 

15%Test 

SVM 95.83 96.02 96.59 96.55 96.92 96.89 97.05 97.55 
NaïveBayes 91.06 91.2 91.51 91.65 91.61 91.83 91.28 91.34 

6.2 ROC score Evaluation by Different Number of Training and Test Sets 

A receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot of 

the sensitivity, or true positive rate vs. false positive rate with equivalent value be-

tween 0 and 1. 1 means we have 100% detection rate with 0 false positive and 0 false 

negative. ROC analysis provides tools to select the optimal classifier. We calculated 

the average ROC scores for different numbers of training and test sets. For each user 

the ROC score is calculated and we then computed the average ROC for each classifi-

er. Table 3 shows the better performance of SVM for our approach. Concretely SVM 

is famous for its use in this type of problem because it is a maximal-margin classifier 

as compared to NaïveBayes which is probabilistic and it has been known to be highly 

effective in text classification and providing better classification results with less 

training data. 

Table 3. Average ROC Score with Different Number of Train and Test sets Size  

Classifiers 
50%Train 

50%Test 

55%Train 

45%Test 

60%Train 

40%Test 

65%Train 

35%Test 

70%Train 

30%Test 

75%Train 

25%Test 

80%Train 

20%Test 

85%Train 

15%Test 

SVM 0.894 0.905 0.914 0.914 0.919 0.924 0.932 0.941 
NaïveBayes 0.848 0.851 0.861 0.863 0.868 0.883 0.895 0.902 

6.3 Comparison With Other Approaches 

To show the advantages of the layered approach, a brief comparison between the 

detection rate of our approach vs. the previous research works is been shown. As 

indicted in table 4, layered approach shows better detection rate than other methods 

either GUI [1] [2] [4] or Command line [5] [7] [8] approaches. 

Table 4. Comparison of detection rate results achieved by different approaches 

Metrics 
Layered 

Approach 

GUI Data Command Line Data 

[1] [2] [4] [7]/[8] [5] [5] 

Number of Users or Database Used 16 3 8 3 Greenburg Greenburg SEA/1vs49 

Detection Rate 97.55 91.41 94.88 91.7 70.9/82.1 87.3 80.1/94.8 



7 Conclusion  

In this paper, we described and developed a new framework for constructing compre-

hensive feature vectors in different layers for the improvement of masquerade detec-

tion accuracy. After capturing the events of a user we went through preprocessing and 

then extracted relevant features for each application to then construct the relevant 

feature vectors. We considered six different layers to collect the data, consisting of 

window data, mouse data, keyboard data, command line data, file access data and 

authentication data. These feature vectors are classified for masquerade detection 

using two classifiers namely SVM and NaïveBayes. Our experiments show that this 

layered approach is well classified using SVM and thus provides better masquerade 

detection capabilities than single layer approaches. Moreover we observed the impact 

of increasing the number of training sets which led to an improvement of the detec-

tion rate.  
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