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Abstract. In today’s ever-increasingly digital world, the concept of data
privacy has become more and more important. Researchers have devel-
oped many privacy-preserving technologies, particularly in the area of
data mining and data sharing. These technologies can compute exact
data mining models from private data without revealing private data, but
are generally slow. We therefore present a framework for implementing
efficient privacy-preserving secure approximations of data mining tasks.
In particular, we implement two sketching protocols for the scalar (dot)
product of two vectors which can be used as sub-protocols in larger data
mining tasks. These protocols can lead to approximations which have
high accuracy, low data leakage, and one to two orders of magnitude
improvement in efficiency. We show these accuracy and efficiency results
through extensive experimentation. We also analyze the security proper-
ties of these approximations under a security definition which, in contrast
to previous definitions, allows for very efficient approximation protocols.3

1 Introduction

Privacy is a growing concern among the world’s populace. As social networking
and cloud computing become more prevalent in today’s world, questions arise
about the safety and confidentiality of the data that people provide to such
services. In some domains, such as medicine, laws such as HIPAA and the Privacy
Act of 1979 step in to make certain that sensitive data remains private. This is
great for ordinary consumers, but can cause problems for the holders of the
data. These data holders would like to create meaningful information from the
data that they have, but privacy laws prevent them from disclosing the data
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to others. In order to allow such collaboration between the holders of sensitive
data, privacy-preserving data mining techniques have been developed.

In privacy-preserving data mining, useful models can be created from sen-
sitive data without revealing the data itself. One way to do this is to perturb
the data set using anonymization or noise addition [7] and perform the compu-
tation on that data. This approach was first pioneered by Agrawal and Srikant
[3]. These methods can suffer from low utility, since the data involved in the
computation is not the actual data being modeled. In addition, these protocols
can suffer from some security problems[18, 13, 21], which can lead to the retrieval
of private data from the perturbed data given.

The other way to do this is using secure multiparty computation techniques to
compute the exact data mining result, on the actual data. Secure computation
makes use of encryption schemes to keep the data secret, but relies on other
tactics, such as encrypting the function itself, or homomorphic properties of
the encryption, to perform the computation. This approach was first used by
Lindell and Pinkas [20]. These schemes generally rely on very slow public key
encryption, which results in a massive decrease in information output. The exact
computation of data mining models can take thousands of times longer when
using these public key cryptosystems.

While many functions are very difficult to compute using secure multiparty
computation, some of these functions have approximations which are much easier
to compute. This is especially true in those data mining tasks that deal with
aggregates of the data, since these aggregates can often be easily estimated.
Approximating the data mining result, however, can lead to some data leakage if
the approximation is not done very carefully. The security of approximations has
been analyzed by Feigenbaum, et al., [8], but the results of their analysis showed
that to make an approximation fully private, the process of the computation must
be substantially more complex. Sometimes, this complexity can make computing
the approximation more difficult than computing the function itself!

Here, we present another security analysis that, while allowing some small,
parameter defined data leakage, creates the opportunity to use much simpler
and less computationally expensive approximations securely. We then use this
model of security to show the security of two approximation methods for a sub-
protocol of many vertically partitioned data mining tasks: the two-party dot
product. The dot product is used in association rule mining, classification, and
other types of data mining. We prove that our approximations are secure under
our reasonable security definitions. These approximations can provide one to
two orders of magnitude improvement in terms of efficiency, while sacrificing
very little in accuracy.

1.1 Summary of Contributions

A summary of our contributions are as follows:

– We outline a practical security model for secure approximation which allows
simple protocols to be implemented securely.



– We showcase two sketching protocols for the dot product and prove their
security under our model.

– Through experimentation, we show the practicality of these protocols in ver-
tically partitioned privacy-preserving data mining tasks. These protocols can
lead to a two order of magnitude improvement in efficiency, while sacrificing
very little in terms of accuracy.

In section 2, we summarize the current state of work in this area. Section
3 provides the standard definitions of secure approximations, and our minor
alteration thereof. Section 4 outlines the approximation protocols we use. Section
5 gives the proof that these simple approximation protocols are secure under our
definition of secure approximation. In section 6, we give experimental results for
different data mining tasks using the approximations. Finally, we offer our overall
conclusions and future directions in section 7.

2 Related Work

Privacy-preserving data mining (PPDM) is a vast field with hundreds of publica-
tions in many different areas. The two landmark papers by Agrawal and Srikant
[3] and Lindell and Pinkas [20] began the charge, and soon many privacy pre-
serving techniques emerged for computing many data mining models [16, 27, 5,
24]. Other techniques can be found in the survey [2]. For our purposes, we will
focus on those works which are quite closely related to the work in our paper.

There are quite a few protocols previously proposed for the secure compu-
tation of the dot product. The protocol proposed by [27] is quadratic in the
size of the vector (times a security parameter). It does, however, have some pri-
vacy concerns accoring to [11]. This same work, along with several others [6, 14]
propose other protocols which are based on very slow public key cryptography.
[26] proposes a sampling-based algorithm for secure dot product computation
which relies on secure set intersection as a sub-protocol. However, the secure set
intersection problem is also nontrivial. It either relies on a secure dot product
protocol [27] (which would lead to a circular dependency with [26]), or a large
amount of extremely expensive cryptographic operations [30].

The sketching primitives used in this work have been applied to data min-
ing in several different capacities. [25] uses Bloom filters to do association rule
mining. However, the model employed in this framework requires a server hi-
erarchy, in which the association rule mining is done at the top level, and rep-
resents transactions, not itemsets, as Bloom filters. The Johnson-Lindenstrauss
theorem is employed for data mining by [22], however, they employ the Johnson-
Lindenstrauss theorem as the sole means of preserving privacy, whereas we are
using it as part of a process. Other works [9, 31] use Johnson-Lindenstrauss
projection as an approximation tool. These, however, do not make use of the
projection in a privacy-preserving context, and are merely concerned with fast
approximations.

The work of [17] presents a sketching protocol for the scalar product based
on Bloom filters. However, its experimentation and discussion of actual data



mining tasks was insufficient. Our protocols perform better on real data mining
tasks, especially at high compression ratios.

3 Secure Approximations

Much has been written about secure computation, and the steps one must go
through in order to compute functions without revealing anything about the
data involved. Securely computing the approximation of a function poses another
challenge. In addition to not revealing the data through the computation process,
we must also assure that the function we use to approximate the actual function
must not reveal anything about the data! To this end, we outline a definition
of secure approximations given by [8], and then propose an alteration to this
framework. This alteration, while allowing a very small amount of data leakage,
allows for the use of very efficient approximation protocols, which can improve
the efficiency of exact secure computation by orders of magnitude.

3.1 A secure approximation framework

The work of Feigenbaum, et. al. [8] gives a well-constructed and thorough defi-
nition of secure approximations. In the paper, they first define a concept called
functional privacy, then use this definition to define the notion of a secure ap-
proximation. First, we examine the definition of functional privacy, as follows:

Definition 1 Functional Privacy : Let f(x) be a deterministic, real valued

function. Let f̂(x) be a (possibly randomized) function. f̂ is functionally private
with respect to f if there exists a probabilistic, expected polynomial time sam-
pling algorithm S such that for every input x ∈ X, the distribution S(f(x)) is

indistinguishable from f̂(x).
Note that the term “indistinguishable” in the definition is left intentionally

vague. This could be one of the standard models of perfect indistinguishabil-
ity, statistical indistinguishability, computational indistinguishability [23], or any
other kind of indistinguisability. In these cases, the adjective applied to the indis-
tinguishablity is also applied to the functional privacy (i.e., statistical functional
privacy for statistical indistinguishability).

Intuitively, this definition means that the result of f̂ yields no more informa-
tion about the input than the actual result of f would. Note, however, that this
does not claim that there is any relation between the two outputs, other than
the privacy requirement. This does not require that the function f̂ be a good
approximation of f . Feigenbaum, et al., therefore, also provide a definition for
approximations, which is also used in the final concept of a secure approximation.

Definition 2 P-approximation: Let P (f, f̂) be a predicate for determining

the “closeness” of two functions. A function f̂ is a P -approximation of f if
P (f, f̂) is satisfied.

Now, for this definition to be useful, we need to define a predicate P to use
for the closeness calculation. The most commonly used predicate P is the 〈ε, δ〉
criterion, in which 〈ε, δ〉 (f, f̂) is satisfied if and only if ∀x, P r[(1 − ε)f(x) ≤



f̂(x) ≤ (1 + ε)f(x)] > 1− δ. We do not refer to any other criterion in our work,
but the definition is provided with a generic closeness predicate for the sake of
completeness.

Finally, we present the liberal definition of secure two party approximations
as outlined in Feigenbaum, et al.

Definition 3 Secure Approximation (2-parties): Let f(x1,x2) be a determin-
istic function mapping the two inputs x1 and x2 to a single output. A protocol p
is a secure P -approximation protocol for f if there exists a functionally private
P -approx-imation f̂ such that the following conditions hold:

Correctness The outputs of the protocol p for each player are in fact equal
to the same f̂(x1,x2).

Privacy There exist probabilistic polynomial-time algorithms S1,S2 such
that

{(S1(x1, f(x1,x2), f̂(x1,x2)), f̂(x1,x2))}(x1,x2)∈X
c≡

{(viewp1(x1,x2), outputp2(x1,x2))}(x1,x2)∈X ,

{(f̂(x1,x2),S2(x1, f(x1,x2), f̂(x1,x2)))}(x1,x2)∈X
c≡

{(outputp1(x1,x2), viewp2(x1,x2))}(x1,x2)∈X

where A
c≡ B means that A is computationally equivalent to B. Note that in the

above definition all instances of f̂(x1,x2) have the same value, as opposed to

being some random value from the distribution of f̂ . This limits the application
of the simulators to a single output. This definition essentially says that we have
a functionally private function f̂ which is a P -approximation of f which itself is
computed in a private manner, such that no player learns anything else about
the input data.

3.2 Our definition

Having defined the essential notions of functional privacy, approximations, and
secure approximations, we now define another notion of functional privacy, which,
while less secure than the above model, allows for vastly more efficient approxi-
mations.

Definition 4 〈ε, δ〉-functional privacy : A function f̂ is 〈ε, δ〉-functionally pri-
vate with respect to f if there exists a polynomial time simulator S such that
Pr[|S(f(x), R) − f̂(x)| < ε] > 1 − δ, where R is a shared source of randomness

involved in the calculation of f̂ .
Intuitively, this definition allows for a non-negligible but still small accept-

able information loss of at most ε, while still otherwise retaining security. In
practice, the amount of information revealed could be much smaller, but this
puts a maximum bound on the privacy of the function. In addition, we allow the
simulator access to the randomness function used in computing f̂ , which allows
the simulator to more accurately produce similar results to f̂ .

The acceptable level of loss ε can vary greatly with the task at hand. For
example, if the function is to be run on the same data set several times, the



leakage from that data set would increase with each computation. Thus, for
applications with higher repetition, we would want a much smaller ε. The ε can
be adjusted by using a more accurate approximation.

In their work describing the original definition above, Feigenbaum, et al. [8]
dismissed a simple, efficient approximation protocol based on their definition
of functional privacy. This approximation was a simple random sampling based
method for approximating the hamming distance between two vectors. The claim
was that even if the computation was done entirely securely, some information
about the randomness used in the computation would be leaked into the final re-
sult. Thus, we simply explicitly allow the randomness to be used by the simulator
in our model. We feel this is realistic, as the randomness is common knowledge
to all parties in the computation.

In short, the previous definition of [8] aims to eliminate data leakage from the
approximation result. Our definition simply seeks to quantify it and reduce it to
acceptable levels. In return, we can use much simpler approximation protocols
securely. For example, the eventual secure hamming distance protocol given by
[8] has two separate protocols (one which works for high distance and one for low
distance) each of which requires several rounds of oblivious transfers between the
two parties. Under our definition, protocols can be used which use only a single
round of computation and work for any type of vector, as we will show in the
next section.

4 Scalar Product Approximation Techniques for
Distributed Data Mining

Data mining is, in essence, the creation of useful models from large amounts
of raw data. This is typically done through the application of machine learning
based model building algorithms such as association rules mining, naive bayes
classification, linear regression, or other model creation algorithms. Distributed
data mining, then, is the creation of these models from data which is distributed
(partitioned) across multiple owners. The dot product of two vectors has many
applications in vertically partitioned data mining. Many data mining algorithms
can be reduced to one or more dot products between two vectors in the vertically
partitioned case. Vertical partitioning can be defined as follows:

Let X be a data set containing tuples of the form (a1, a2, ..., ak) where each
a is an attribute of the tuple. Let S be a subset of {1, 2, ..., k}. Let XS be the
data set where the tuples contain only those attributes specified by the set S.
For example, X{1,2} would contain tuples of the form (a1, a2). The data set X
is said to be vertically partitioned across n parties if each party i has a set Si,
and the associated data XSi

, and

n⋃
i=1

Si = {1, 2, ..., k}

In previous work, it has been shown that the three algorithms we test in
this paper can in fact be reduced to the dot product of two zero-one vectors in



the vertically partioned case. These algorithms are association rules mining[17],
naive Bayes classification[28], and C4.5 decision tree classification[29].

We developed two sketching protocols for the approximation of the dot prod-
uct of two zero-one vectors. These protocols are used to provide smaller input
to an exact dot product protocol, which is then used to estimate the overall
dot product, as outlined in figure 1. First, we present a protocol based on
the Johnson-Lindenstrauss theorem [15] and the work of [1] and [19]. Then,
we present a simple sampling algorithm which is also secure under our model.
Finally, we present a proof of the security of these approximations in our security
model.

Fig. 1. Dot Product Approximation Concept

4.1 Johnson-Lindenstrauss (JL) Sketching

The Johnson-Lindenstrauss theorem [15] states that for any set of vectors, there
is a random projection of these vectors which preserves Euclidean distance within
a tolerance of ε. More formally, for a given ε, there exists a function f : Rd → Rk
such that for all u and v in a set of points,

(1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2

It is shown in that because of this property, the dot product is also preserved
within a tolerance of ε. As with any sketching scheme, the probability of being
close to the correct answer increases with the size of the sketch.

As outlined in [1] and [19], to do our random projection, we generate a k×n
matrix R, where n is the number of rows in the data set, and k is the number
of rows in the resultant sketch. Each value of this matrix has the value 1, 0, or
-1, with probabilities set by a sparisity factor s. The value 0 has a probability of
1− 1

s , and the values 1 and -1 each have a probability of 1
2s . In order to sketch a

vector a of length n, we do
√
s√
k
Ra, which will have a length of k. This preserves

the dot product to within a certain tolerance. So, to estimate the dot product

of two vectors a and b, we merely compute
√
s√
k
Ra ·

√
s√
k
Rb. Note that this will

be equal to sRa·Rbk , and in practice, we typically omit the
√
s√
k

term from the

sketching protocol, and simply divide by the length of the sketch and multiply



by the sparsity factor after performing the dot product. This yields the same
result. This is shown below as Algorithm 4.1.

According to [19], the sparsity factor s can be as high as n
logn before significant

error is introduced, and as s increases, the time and space requirements for the
sketch decrease. Nevertheless we still used relatively low sparsity factors, to show
that even in the slowest case, we still have an improvement.

Algorithm 4.1 Johnson-Lindenstrauss(JL) Dot Product Protocol

RandomMatrixGeneration(n,k):
Matrix R
for i← 1...n do

for j ← 1...k do

Rj,i
$← { 1

2s
: −1, 1− 1

s
: 0, 1

2s
: 1}

end for
end for
return R
———————————————————————–
DotProductApproximation(Vector u,Vector v, k):
Matrix R← RandomMatrixGeneration(|u|, k)
u′ ← Ru
v′ ← Rv
return s·SecureDotProduct(u′,v′)

k

4.2 Random Sampling

In addition to the more complicated method above, to estimate the dot product
of two vectors, one could simply select a random sample of both vectors, compute
the dot product, then multiply by a scaling factor to estimate the total dot
product. Note that this works fairly well on vectors where the distribution of
values is known, such as zero-one vectors, but can work quite poorly on arbitrary
vectors. The sampling algorithm is shown below in Algorithm 4.2.

5 Approximation Protocol Security

We now provide a proof that each of the above protocols provides a secure
approximation in the sense outlined above. We first show the

〈
2ε, δ2

〉
-functional

privacy of the protocols, then show that the protocols are secure under the liberal
definition of secure approximations.

Theorem The protocols outlined in section 4 are both
〈
2ε, δ2

〉
-functionally

private, and meet the liberal definition for secure approximations (definition 3).
Proof:
Functional Privacy Let ε, δ be the approximation guarantees granted by

the above protocols. That is, Pr[|u ·v−DotProductApproximation(u, v)| > ε] <



Algorithm 4.2 Sampling Protocol

Sketch(Vector v, samplingFactor ∈ [0...1]):
sketch← []
for i← 1...n do

r
$← [0...1]

if r < samplingFactor then
sketch.append(vi)

end if
end for
return sketch
———————————————————————–
DotProductApproximation(u,v,samplingFactor)
u′ ← Sketch(u)
v′ ← Sketch(v)

return SecureDotProduct(u′,v′)·|u|
|u′|

1− δ. For JL, these bounds are provided by the Johnson-Lindenstrauss theorem
itself, as shown by the work of [22]. For sampling, we can use the Hoeffding
inequality [12] to establish a bound on the error:

Pr[|f̂(x)− f(x)| ≥ ε] ≤ 2e−2ε
2n2

Where n is the sample size. As f̂ can be taken to be an estimate of the mean
of the product of the random variables, the Hoeffding inequality holds for the
dot product of the samples. So, we set our δ to 2e−2ε

2n2

.
Note that, with both of these approximation protocols, adjusting the size

(for JL, the matrix size, and for sampling, the sample size), allows us to adjust
the ε of the functional privacy requirement. This would allow us to adjust the ε
value to be as low as we deemed necessary for our purposes.

Now, let our simulator S(f(x), R) generate two random zero-one vectors u
and v such that f(u, v) = u · v = f(x). We then apply the randomness given to

perform a calculation of the dot product approximation β = f̂(u, v). Now, the

probability that |f(x)− f̂(x)| ≥ ε is 1− δ. The probability that |f(x)−β| ≥ ε is
also 1− δ, since f(x) = f(u, v). As these are independent events, the probability

that neither occurs is δ2. In the case this occurs, we have |f(x)− f̂(x)| ≤ ε and

|f(x)− β| ≤ ε, which means that −ε ≤ f(x)− f̂(x) ≤ ε and −ε ≤ f(x)− β ≤ ε.
Because of this, the difference between the two quantities (f(x)− f̂(x))−(f(x)−
β) = β − f̂(x) can be no more than 2ε. If our simulator returns β, then we have

shown that f̂ is
〈
2ε, δ2

〉
-functionally private with respect to f .

Secure Approximation (under Definition 3) For the approximation to
be considered secure, it must compute the same value for both players (which
is trivially true for both protocols), and be private with respect to the views of
each player. Now, consider, in each case, what each player sees. Player 1 sees
his input, a sketch of that input, and the inputs and outputs of a secure dot
product protocol. Our simulator can take that input, sketch it, and simulate the



secure dot product protocol, altering its output to be f̂(x) to player 1. Since this
output is all player 1 sees outside of the secure dot product protocol, it cannot
distinguish this from the true output. Player 2 sees the same thing, his input, a
sketch of that input, and the operations of a secure dot product protocol on the
inputs. Since the subprotocol is secure, neither player can learn anything about
the inputs that the sketches would not tell them.

Having shown that the sketching protocols are 〈ε, δ〉-functionally private, and
that the computation protocol is secure under definition 3, we now claim that
the entire protocols are secure under our model. ut

6 Experiments

In order to determine the efficiency and effectiveness of the algorithms proposed,
we conducted several experiments. Each of the sketching protocols presented
were inserted into the data mining process for three different data mining tasks:
association rules mining, naive Bayes classification, and C4.5 decision tree clas-
sification. We used three separate sparsity values for JL sketching: s = 1, which
results in a matrix completely full of 1 and -1, s = 100, and s = 1000. The
efficiency of JL increases with s, and these values are much lower than what is
required to achieve good accuracy [19].

For association rules mining, we used the retail data set found at [10], which
lists transactions from an anonymous Belgian retail store. We considered three
variables in the association rules experiments: the required support, the required
confidence, and the compaction ratio of the sketching protocol. For testing the
required support, we used 2%, 3%, 4%, 5%, and 6%, while holding the confidence
constant at 70% and the compaction ratio constant at 10%. For the confidence,
we used 60%, 65%, 70%, 75%, and 80% while holding the support constant
at 4% and the compaction ratio constant at 10%. Finally, for the compaction
ratio, we used 1%, 5%, 10%, 15%, and 20%, holding the support constant at
4% and the confidence constant at 70%. For naive Bayes and C4.5 decision tree
classification, we used the Adult data set from the UC Irvine Machine Learning
Repository [4], which consists of data from the 1993 US Census. As there were
no paramaters to set for naive Bayes or the decision tree, we varied only the
compaction ratio as above. We did, however, discretize each attribute of the data
set before performing the data mining, as continuous data would not function
under our model. For each task and variable set, we ran ten separate experiments,
using different initialization values for the inherent randomness in the sketching
protocols. We employed ten-fold cross-validation for the classification tasks. The
accuracy results were then averaged over all ten trials to come up with the final
result.

6.1 Accuracy

Association Rules Mining To assess the accuracy of the algorithms on as-
sociation rules mining, we look at both the number of false positives (that is,



False Positives False Negatives

Fig. 2. Association Mining Results Varying Sketch Size

False Positives False Negatives

Fig. 3. Association Mining Results Varying Confidence

False Positives False Negatives

Fig. 4. Association Mining Results Varying Support



the number of invalid associations returned by the algorithm) and false nega-
tives (the number of valid assocations not returned by the algorithm). For the
association rules mining, this is a better picture of the accuracy than overall ac-
curacy, since the true positives are so much rarer than the true negatives. Figure
2 shows the results when we varied the compaction ratio. JL and sampling are
very similar in terms of accuracy, with a slight overall edge to JL. Note that by
the time we reach a compression ratio of 10%, no more false negatives arise in
any JL sketching (regardless of sparsity), or in the sampling protocol.

Figures 3 and 4 show the results varying the required confidence and required
support, respectively. As one might expect, there is no discernable correlation
between these variables and the accuracy of the approximation for it. A larger
error rate generally indicates that there are more itemsets near the exact re-
quired value, which means a smaller error in the dot product might result in
the incorrect rejection or acceptance of an itemset. This is especially true for a
support value of 2%, since below 2%, the number of supported itemsets increases
dramatically.

Naive Bayes C4.5 Decision Tree

Fig. 5. Naive Bayes and C4.5 Results Varying Sketch Size

Naive Bayes Classification Figure 5 (left side) shows the results for naive
Bayes classification. JL and sampling, again, perform quite similiarly. The ac-
curacy, as expected, increases with the sketch size. The thin black line on the
graph represents the accuracy of the naive Bayes classification on the original,
uncompacted data. The accuracy of the approximation for both JL and sampling
hovers right around the original accuracy, and in some cases performs better.
This is understandable due to the machine learning phenomenon of overfitting.
When a model is built on some data, it performs quite well on the data it was
trained with, but the model will not perform as well on test data. When this
happens, the model is said to overfit the training data. Often some noise is added
to the model to remove the overfitting problem. The approximation of the dot
product can provide such noise. Thus, the approximations can achieve higher
accuracy than the exact result.



C4.5 Decision Tree Figure 5 (right side) shows the results for C4.5 decision
tree classification. The results are consistent with our findings in other tasks. In-
terestingly enough, the more sparse versions of JL outperformed the unabridged
(s = 1) version. This is likely due to the fact that the sparse vectors provided
slightly less distortion in the multiplication, resulting in a closer approximation
for the dot product. In this case, as opposed to the naive Bayes case, the origi-
nal tree provides a higher degree of accuracy, mainly because the C4.5 algorithm
implements noise introduction by pruning the tree after building it.

6.2 Efficiency

In order to gauge the efficiency of our sketching protocols, we ran several timing
experiments. The machine used was an AMD Athlon(tm) 64X2 dual core proces-
sor 4800T at 2.5 GHz with 2GB of RAM, running Windows Vista, and running
on the Java 6 Standard runtime environment update 24. As our sub-protocol
for exact dot product computation, we use the protocol of Goethals, et al [11],
as it is provably secure, and lends itself well to improvement from our sketching
protocols.

First, we ran several timing experiments computing the complete dot product
of zero-one vectors of size 1000. The average time for the computation was 105
seconds. To ensure that the algorithm scaled linearly, we then ran it on vectors of
size 2000, and the average computation time was 211 seconds. So, we determined
the time-per-element in the dot product protocol to be .105 seconds. From this
point forward, we computed the runtime of the approximate protocol in terms
of the run time of the exact protocol by counting the time not involved in
the computation of dot products, then adding it to the estimated dot product
calculation time based on the previous timing experiments. The actual formula
used was:

ti + .105s · nd · compactionRatio · n
.105s · nd · n

Where ti is the time involved in the sketching, nd is the number of dot products
performed, n is the length of the vectors involved, and compactionRatio is the
fraction of the original vector’s size which is retained by the sketching protocol.
The results for three different sketching algorithms and five different compaction
ratios are be are seen in figure 7.

In all cases, the algorithms are much faster than the exact algorithm. Because
it produces a matrix with 1 or -1 for every value, JL with s = 1 has a large amount
of pre-processing before it can apply the projection to each vector, which again,
takes time. This runtime can be improved by using the sparsity factor. We chose,
however, to present the worst case, as it is still much better than the original
runtime. The association rules mining process involved the fewest number of
dot products computed. Therefore, the preprocessing and other portions of the
algorithms took up a greater percentage of the time in association rules mining.
The Naive Bayes process had orders of magnitude more dot product calculations,
so the overall time was dominated by the number of dot product calculations
necessary.



In the decision tree case, the number of dot products computed varied with
the algorithm involved. This is because we use the dot products to determine if
a node is to be split. If a split is found to be not useful, the split will not occur.
The compaction introduced enough error into the calculation that splits with
very little information gain were not even attempted, resulting in much fewer
dot products being calculated. The different algorithms all calculated far fewer
dot products at every compaction level, resulting in a much greater efficiency
increase.

Mining Sketching Compaction Ratio
Task Protocol 1% 5% 10% 15% 20%

Association Mining

JL(s=1) 1.23301% 5.97532% 12.06352% 17.93215% 23.90036%
JL(s=100) 1.10189% 5.50682% 11.01542% 16.62495% 22.19586%

JL(s=1000) 1.09683% 5.43911% 10.97853% 16.49222% 22.01157%
Sampling 1.07975% 5.09715% 10.08799% 15.07924% 20.08823%

Naive Bayes

JL(s=1) 1.10388% 5.50989% 11.01977% 16.52684% 22.03317%
JL(s=100) 1.09024% 5.36809% 10.86241% 16.24925% 21.25196%

JL(s=1000) 1.08882% 5.33216% 10.71943% 15.98638% 21.05157%
Sampling 1.01317% 5.01338% 10.01391% 15.01437% 20.01472%

C4.5 Decision Tree

JL(s=1) 0.20356% 0.22841% 0.65546% 1.89563% 2.72094%
JL(s=100) 0.18926% 0.19452% 0.59234% 1.71828% 2.64378%

JL(s=1000) 0.17586% 0.19623% 0.58419% 1.65025% 2.61224%
Sampling 0.02198% 0.19146% 0.80031% 1.44452% 2.53887%

Fig. 6. Efficiency Results: Percent of the Exact Algorithm Runtime

7 Conclusions

We have presented several interesting approximation techniques for the secure
compuation of the dot product of two vectors. These protocols can be applied
to many different data mining tasks, and can provide an efficiency increase to
any protocol that uses a secure dot product as a sub-protocol.

7.1 Future Work

In the future, we plan to explore the use of these dot product protocols in other
data mining tasks, such as support vector machines, neural networks, and clus-
tering. We also plan to consider carefully the notion of a secure approximation,
and determine to what extent the restrictions posed by our security model can
be relaxed.
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