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Abstract. In a corporate network, the situation awareness (SA) of a security 

analyst is of particular interest. A security analyst is in charge of observing the 

online operations of a corporate network (e.g., an online retail company with an 

external webserver and an internal fileserver) from threats of random or 

organized cyber-attacks. The current work describes a cognitive Instance-based 

Learning (IBL) model of the recognition and comprehension processes of a 

security analyst in a simple cyber-attack scenario. The IBL model first 

recognizes cyber-events (e.g., execution of a file on a server) in the network 

based upon events’ situation attributes and the similarity of events’ attributes to 

past experiences (instances) stored in analyst’s memory. Then, the model 

reasons about a sequence of observed events being a cyber-attack or not, based 

upon instances retrieved from memory and the risk-tolerance of a simulated 

analyst. The execution of the IBL model generates predictions of the 

recognition and comprehension processes of security analyst in a cyber-attack. 

An analyst’s decisions are evaluated in the model based upon two cyber SA 

metrics of accuracy and timeliness of analyst’s decision actions. Future work in 

this area will focus on collecting human data to validate the predictions made 

by the model.  

Keywords: cyber-situation awareness; cyber-attack; dynamic decision-making; 

instance-based learning theory; intrusion-detection system; security analyst; 

threat event. 

1   Introduction 

Recently, President Barack Obama declared that the “cyber threat is one of the most 

serious economic and national security challenges we face as a nation” [1]. According 

to his office, the nation’s cyber-security strategy is twofold: (1) improve our resilience 

to cyber incidents; and, (2) reduce the cyber threat [1]. Similarly, in the United 

Kingdom, organizers of the London 2012 Olympic Games believe that there is an 
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increased danger of cyber-attacks that could fatally undermine the technical network 

that supports everything from recording world records to relaying results to 

commentators at the Games [2]. At the lowest level, meeting both the objectives of 

the Whitehouse and those of the organizers of the Olympic Games in a corporate 

network requires cyber situation-awareness (SA), a three stage process which 

includes: recognition (or the awareness of the current situation in the network); 

comprehension (or the awareness of malicious behavior in the current situation in the 

network); and, projection (assessment of possible future courses of action resulting 

from the current situation in the network) [3, 4]. 

In cyber SA, the ability of a security system to protect itself from a cyber-attack 

without any interventions from a human decision-maker is still a distant dream [5]. 

Thus, the role of human decision-makers in security systems is one that is crucial and 

indispensible [6, 7]. A key role in the cyber-security process is that of a security 

analyst: a decision-maker who is in charge of observing the online operations of a 

corporate network (e.g., an online retail company with an external webserver and an 

internal fileserver) from threats of random or organized cyber-attacks. The purpose of 

this paper will be to describe a cognitive model of the recognition and comprehension 

processes of a security analyst, where the model is based on the Instance-Based 

Learning Theory (IBLT, hereafter, IBL model) [8]. Furthermore, we evaluate the IBL 

model of the security analyst using two cyber SA measures: accuracy and timeliness 

[5]. The IBLT is well suited to modeling the decisions of a security analyst as the 

theory provides a generic decision-making process that starts by recognizing and 

generating experiences through interaction with a changing decision environment, and 

closes with the reinforcement of experiences that led to good decision outcomes 

through feedback from the decision environment. 

2   A Simple Scenario of a Cyber Attack 

The cyber-infrastructure in a corporate network typically consists of a webserver and 

a fileserver [9, 10]. The webserver handles customer interactions on a company’s 

webpage. However, the fileserver handles the working of many workstations that are 

internal to the company and that allow company employees to do their daily 

operations. A bidirectional firewall (firewall 1 in Figure 1) protects the path between 

the webserver and the company’s website on the Internet. Thus, firewall 1 allows both 

the incoming “request” traffic and the outgoing “response” traffic between the 

company’s website and the webserver. Another firewall (firewall 2 in Figure 1) 

protects the path between the webserver and the fileserver. Firewall 2 is a much 

stronger firewall than the firewall 1 as it only allows a very limited Network File 

System (NFS) access of the fileserver from the webserver, but an easy access of the 

webserver from the fileserver (this latter access allows company employees to make 

changes on the webserver that would later show-up on the company’s website). For 

this cyber-infrastructure, attackers follow a sequence of an “island-hopping” attack[5, 

pg. 30], where the webserver is compromised first, and then the webserver is used to 

originate attacks on the fileserver and other company workstations (the workstations 

are directly connected to the fileserver). 



 

 
Fig. 1. A simple scenario of a cyber-attack. The attacker (shown as a black person) tries to 

gain access of a company’s fileserver indirectly through the company’s webserver. Source: 

[10]. 

 

Ou et al. [9] and Xie et al. [10] defined a simple scenario of an island-hopping cyber-

attack within the cyber-infrastructure discussed above (see Figure 1). In the simple 

scenario, a security analyst is expose to a sequence of 25 network events (consisting 

of both threat and non-threat events) whose nature (threat or non-threat) is not 

precisely known to a security analyst. Out of the total of 25 events, there are 8 

predefined threat events in the sequence that are initiated by an attacker. The attacker, 

through some of these 8 events, first compromises the webserver by remotely 

exploiting vulnerability on the webserver and getting a local access to the webserver. 

If the cyber-attack remains undetected by the security analyst by the 8
th

 event out of a 

total of 25 events, then the attacker gains full access of the webserver. Since typically 

in a corporate network and in the simple scenario, a webserver is allowed to access 

the fileserver through only a NFS event, the attacker then modifies data on the 

fileserver through the vulnerability in the NFS event. If the cyber-attack remains 

undetected by the security analyst by the 11
th

 event out of a total of 25, then the 

attacker gains full access of the file server. Once the attacker gets an access to modify 

files on the fileserver, he then installs a Trojan-horse program (i.e., a virus) in the 

executable binaries on fileserver that is used by different workstations (event 19
th

 out 

of 25). The attacker can now wait for an innocent user on a workstation to execute the 

virus program and obtain control of user’s workstation (event 21
st
 out of 25). 

During the course of the simple scenario, a security analyst is able to observe all 

the 25 events corresponding to file executions and packets of information transmitted 

on and between the webserver, fileserver, and different workstations. He is also able 

to observe alerts that correspond to some network events using an intrusion-detection 

system (IDS) [5]. The IDS raises an alert for a suspicious file execution or a packet 

transmission event that is generated on the corporate network. However, among the 

alerts generated by the IDS in the simple scenario, there is both a false-positive and a 

false-negative alert and one alert that correspond to the 8
th

 event, but which is 



received by the analyst after the 13
th

 event in the sequence (i.e., a time delayed alert). 

Most importantly, due to the absence of a precise alert corresponding to a potential 

threat event, the analyst does not have precise information on whether a network 

event and its corresponding alert (from the IDS) are initiated by an attacker or by an 

innocent company employee. Even through the analyst lacks this precise information, 

he needs to decide, at the earliest possible and most accurately, whether the sequence 

of events in the simple scenario constitutes a cyber-attack. The earliest possible or 

proportion of timeliness is determined by subtracting the percentage of events seen by 

the analyst before he makes a decision about cyber-attack in the simple scenario to the 

total number of events (25) in the scenario from 100%. The accuracy of the analyst is 

determined by whether the analyst’s decision was to ignore the sequence of events or 

declare a cyber-attack based upon the sequence of observed network events. 

3   Motivation 

Prior literature has shown that the SA of a security analyst is a function of the a priori 

experiences and knowledge level of the analyst about a cyber-attack scenario [5], and 

the willingness of the analyst to take risks, i.e., analyst’s risk-tolerance [11, 12]. Prior 

research in judgment and decision making (JDM) has also discussed how our prior 

experiences of events in the environment shape our decision choices [13, 14]. 

Typically, having a greater number of bad experiences in memory about an activity 

makes a decision-maker avoid the activity; whereas, good experiences with an 

activity boost the likelihood of a decision-maker to undertake the same activity [13, 

14]. Although there is abundant literature that discusses the role of prior experiences 

in general and the relevance of risk-tolerance in network security, there exists lack of 

a study that empirically investigates the role of both these factors together on the SA 

of a security analyst. 

We believe that an analyst’s correct and timely classification of a sequence of 

network events in the simple scenario as a cyber-attack or not, is based upon the 

following two factors: 

  

1. The knowledge level of the analyst in terms of the mix of experiences stored in 

analyst’s memory, and,  

 

2. The analyst’s risk-tolerance level, i.e., the willingness of an analyst to classify a 

sequence of events as a cyber-attack.  

 

The above two factors as well as many other cognitive factors that may limit on 

enhance the cyber-SA of an analyst can be studied through computational cognitive 

modeling. In this paper, we use IBLT to develop a model of the security analyst and 

we assess the effects on the two factors on the accuracy and timeliness of the analyst 

to detect a cyber-attack in the simple scenario. 



4   Instance-based Learning Theory (IBLT) and IBL model of 

Security Analyst 

IBLT is a theory of how people make decisions from experience in a dynamic task 

[8].  In the past, computational models based on IBLT have proven to be accurate in 

generating predictions of human behavior in many dynamic-decision making 

situations like those faced by the security analyst [15, 16]. 

IBLT proposes that people represent every decision making situation as instances 

that are stored in memory. For each decision-making situation, an instance is retrieved 

from memory and reused depending on the similarity of the current situation’s 

attributes to the attributes stored in instances in memory. An instance in IBLT is 

composed of three parts: situation (S) (the knowledge of situation attributes in a 

situation event), decision (D) (the course of action to take for a situation event), and 

utility (U) (i.e., a measure of the goodness of a decision made or the course of action 

taken for a situation event). 

In the case of the decision situations faced by the security analyst, these attributes 

are those that characterize potential threat events in a corporate network and that 

needs to be investigated continuously by the analyst. The situation attributes that 

characterize potential threat events in the simple scenario are the IP address of the 

location (webserver, fileserver, or workstation) where the event took place, the 

directory location in which the event took place, whether the IDS raised an alert 

corresponding to the event, and whether the operation carried out as part of the event 

(e.g., a file execution) by a user of the network succeeded or failed. 

In the IBL model of the security analyst, an instance’s S slots refers to the situation 

attributes defined above; the D slot refers to the decision, i.e., whether to classify a 

sequence of events as constituting a cyber-attack or not; and, the U slot refers to the 

accuracy of the classification of an situation as a threat. IBLT proposes five mental 

phases in a closed-loop decision making process: recognition, judgment, choice, 

execution, and feedback (see Figure 2). The five decision phases of IBLT represent a 

complete learning cycle where the theory explains how knowledge is acquired, 

reused, and learnt by human decision-makers. Because the focus of this study is on 

the recognition and comprehension process in the SA of a security analyst, we will 

only focus on and discuss the recognition, judgment, choice, and execution phases in 

the IBLT (for details on the feedback phase, refer to [8, 15]). In addition to the 

IBLT’s decision-making process, IBLT borrowed some of the proposed statistical-

learning mechanisms from a popular cognitive architecture called ACT-R [17, 18]. 

Thus, most of the previous cognitive models that have used IBLT were developed 

within the ACT-R architecture. 

The IBLT’s process starts in the recognition phase in search for alternatives and 

classification of the current situation as typical or atypical. The current situation is 

typical if there are memories of similar situations (i.e., instances of previous trials that 

are similar enough to the current situation). If the situation is typical, then in the 

judgment phase, the most similar instance is retrieved from memory and is used in 

determining the value of the expected utility of the situation being evaluated. In the 

IBL model of the security analyst, the decision alternatives refer to whether a 

sequence of events constitutes a cyber-attack or not. For the model, the determination 

of the utility in the judgment phase means whether to comprehend a potential network 



event as a threat to the network or not. The actual determination of the utility is based 

upon the value in the utility slot of an instance retrieved from memory. The decision 

to retrieve an instance from memory for a situation event is determined based upon a 

comparison of the instance’s memory strength, called activation. Thus, an instance is 

retrieved from memory if the instance has the highest activation among all instances 

in memory. 

However, if the situation event in the network is atypical (i.e., no instance similar 

to the situation event is found in memory), then a judgment heuristic rule is applied to 

determine the value of the utility of a new instance corresponding to a decision 

alternative. In the IBL model of the security analyst, we prepopulate the memory of a 

simulated analyst with certain instances to start with.  These are assumed to be pre-

stored experiences of past situations in the analyst's memory, and thus all situation 

events are treated by the model as typical. 

 
 

Fig. 2. The five phases of IBL theory (right) and an environment, i.e., a decision task with 

which a model developed according to the IBLT interacts (left). 

  

Next, in the choice phase, a decision alternative is selected based upon the utility 

determined in the judgment phase (above). Thus, the choice phase in the IBL model 

of the security analyst consists of whether to classify a set of network events seen up 

to the current event in the scenario as constituting a cyber-attack, or whether to 

accumulate more evidence by further observing incoming situation events before such 

a classification could be made. According to IBLT, this decision is determined in the 

“necessity level” which represents a satisficing mechanism to stop search of the 

environment and be “satisfied” with the current evidence (e.g., the satisficing 

strategy) [19].  In the IBL model of the security analyst, we will call this parameter 

the “risk-tolerance level” (a free parameter) to represent the number of events the 

model has to classify as threats in the simple scenario before it classifies the scenario 

to constitute a cyber-attack. For the risk-tolerance level, each time the model 



classifies a situation event in the network as a threat (based upon retrieval of an 

instance from memory), a counter increments and signifies an accumulation of 

evidence in favor of a cyber-attack. If the value of the accumulated evidence 

(represented by the counter) becomes equal to the analyst’s risk-tolerance level, the 

analyst will classify the scenario as a cyber-attack based upon the sequence of already 

observed network events; otherwise, the model will decide to continue obtaining more 

information from the environment, and observe the next situation event in the 

network. We manipulate the risk-tolerance parameter in this study at different number 

of events 2, 4, or 6 (more details ahead). Regardless, the main outcome of the choice 

phase in the model is whether to classify a set of network events as a cyber-attack or 

not.   

The choice phase in the model is also based upon a property of analyst to exhibit 

“inertia,” i.e., simply not to decide to classify a sequence of observed network events 

as a cyber-attack due to lack of attention and continue to wait for the next situation 

event. The inertia in the model is governed by a free parameter called probability of 

inertia (Pinertia) [15, 20]. If the value of a random number derived from a uniform 

distribution between 0 and 1 is less than Pinertia, the model will choose to observe 

another event in the scenario and will not classify the sequence of already observed 

events as a cyber-attack; otherwise, the model will make a decision to classify the 

sequence of already observed events based upon the set risk-tolerance level. We 

assumed a default value of Pinertia at 0.3 (or 30%). 

The choice phase is followed by the execution of the best decision alternative. The 

execution phase for the IBL model of the security analyst means either to classify a 

sequence of observed events as a cyber-attack and stop online operations in the 

company, or not to classify the sequence of events as a cyber-attack and to let the 

online operations of the company continue undisrupted. 

In IBLT, the activation of an instance i in memory is defined using the ACT-R 

architecture’s activation equation:  

 

 . 
(1) 

where, Bi is the base-level learning parameter and reflects the recency and 

frequency of the use of the ith instance since the time it was created, which is given 

by: 

 

 . 

(2) 

The frequency effect is provided by , the number of retrieval of the i
th

 

instance from memory in the past. The recency effect is provided by , i.e., the 

event since the 
th

 past retrieval of the ith instance (in equation 2, t denotes the current 

event number in the scenario). The d is the decay parameter and has a default value of 

0.5 in the ACT-R architecture and it is the value we assume for the IBL model of the 

security analyst. 



The  summation is the similarity component and represents the 

mismatch between a situation event’s attributes and the situation (S) slots of an 

instance i in memory. The k is the total number of attributes of a situation event that 

are used to retrieve the instance i from memory. In the IBL model of the security 

analyst, the value of k = 4, as in the simple scenario, there are 4 attributes that 

characterize a situation event in the network and that are also used to retrieve 

instances from memory. As mentioned above, these attributes are IP, directory, alert, 

and operation in an event. The match scale ( ) reflects the amount of weighting 

given to the similarity between an instance i’s situation slot l and the corresponding 

situation event’s attribute.  is generally a negative integer with a common value of -

1.0 for all situation slots k of an instance i. We assume a value of -1.0 for the  in the 

IBL model of the security analyst. The or match similarities represents the 

similarity between the value l of a situation event’s attribute that is used to retrieve 

instances from memory and the value in the corresponding situation slots of an 

instance i in memory. Typically,  is defined using a squared distance between the 

situation event’s attributes and corresponding situation slots in instances in memory 

[21]. Thus, in the IBL model of the security analyst,  is equal to sum of squared 

differences between a situation event’s attributes and the corresponding situation slots 

of an instance. In order to find the sum of these squared differences, the situation 

events’ attributes and the values in the corresponding slots of instances in memory 

were coded using numeric codes. Table 1 shows the codes assigned to the SDU slots 

of instances in memory and the situation events’ attributes in the simple scenario. 

Table 1.  The coded values in the slots of an instance in memory and attributes of a situation 

event.  

Attributes Values Codes 

IP (S) Webserver 1 

 
Fileserver 2 

 Workstation 3 

Directory (S) Missing value -100 

 
File X 1 

Alert (S) Present 1 

 
Absent 0 

Operation (S) Successful 1 

 
Unsuccessful 0 

Decision (D) Cyber-attack 1 

 
No Cyber-attack 0 

Threat (U) Yes 1 

 
No 0 

 

Due to the  specification, instances that encode a similar situation to the 

current situation event’s attributes, receive a less negative activation (in equation 1). 

In contrast, instances that encode a dissimilar situation to the current situation event’s 

attributes receive a more negative activation.  



Furthermore,   is the noise value that is computed and added to an instance i’s 

activation at the time of its retrieval attempt from memory. The noise value is 

characterized by a parameter s. The noise is defined as,  

 . 
(3) 

where,  is a random draw from a uniform distribution bounded in [0, 1] for an 

instance i in memory. We set the parameter s in an IBL model to make it a part of the 

activation equation (equation 1). The s parameter has a default value of 0.25 in the 

ACT-R architecture and we assume the default value of s in the IBL model of the 

security analyst. 

5   Implementation and execution of the IBL model 

The IBL model of the security analyst was created using Matlab software (the Matlab 

representation has already been evaluated to work similarly to the ACT-R 

representation, see [22]). The IBL model of the security analyst goes over a sequence 

of 25 network events in the simple scenario (Figure 1). We pre-populated the memory 

of a simulated analyst in the model with instances encoding all possible sequences of 

network events based upon values of events’ attributes. Some of these instances in 

memory contained a threat value as the utility and some which do not (more 

information below). Unbeknownst to the model (but known to the modeler), out of the 

25 events in the scenario (mentioned above), there are 8 pre-defined threat events that 

are executed by an attacker outside the company [9-10]. For each event in the 

scenario, the IBL model uses equation 1 – 3, to retrieve an instance that is most 

similar to the encountered event. Based upon the value of the utility slot of a retrieved 

instance, the situation event is classified as a threat or not a threat. Depending upon 

the inertia mechanism and the risk-tolerance level of a simulated analyst in the model, 

a decision is made to classify a sequence of observed events as a cyber-attack and 

stop company’s online operations, or to let the company continue its online operations 

(no cyber-attack). 

The IBL model was executed for a set of 500 repeated simulated trials of the same 

scenario where each simulated trial made the model to process 25 situation events in 

the network. For each set of 500 simulated trials, we manipulated the mix of threat 

and non-threat instances in memory of a simulated analyst, i.e., experience of the 

analyst, and the risk-tolerance level of the analyst. 

The mix of threat and non-threat instances in the IBL model’s memory could be 

one of the following three kinds: ambivalent analyst (Ambi): 50% of threat instances 

and 50% non-threat instances for each situation event in the scenario; an extra-careful 

analyst (Extra): 75% of threat instances and 25% of non-threat instances for each 

situation event in the scenario; and, a less-careful analyst (Less): 25% of threat 

instances and 75% of non-threat instances for each situation event in the scenario. The 

risk-tolerance level of analyst was manipulated as the following three levels: low (2 

events out of a possible 25 event need to be classified as threats before the analyst 

classifies a sequence of observed events as cyber-attack); medium (4 events out of a 



possible 25 event to be classified as threats before the analyst classifies a sequence of 

observed events as cyber-attack); and, High (6 events out of a possible 25 event to be 

classified as threats before the analyst classifies a sequence of observed events as 

cyber-attack). 

We wanted to derive predictions of the effect of the above manipulations in the 

IBL model upon the performance of the analyst. The performance of a simulated 

analyst was measured using the accuracy and timeliness of the analyst. The accuracy 

was evaluated using two different cyber-SA metrics, recall and precision, and the 

timeliness was evaluated in the model using a single timeliness cyber-SA metric [5]. 

Recall is the percent of events correctly detected as threats out of the total number of 

known threat events observed by the model before the model stopped (Recall is the 

same as hit rate in Signal Detection Theory). Precision is percentage of events 

correctly detected as threats out of the total number of threat events detected by the 

model before the model stopped. Timeliness is 100%-percentage of events, out of a 

total 25, after which the model stops and classifies the scenario to be a cyber-attack 

(the timeliness could be defined as the number of events out of 25, but defining it as a 

percentage allows us to compare it to other two SA measures). We expected best 

performance for the IBL model representing an extra-careful analyst with a low risk-

tolerance, and the worst performance for the IBL model representing a less-careful 

analyst with a high risk-tolerance. This is because an extra-careful analyst with a low 

risk-tolerance will be classifying network events more cautiously as constituting a 

cyber-attack compared to a less-careful analyst with a high risk-tolerance. 

6   Results 

Figure 3 shows the predictions from the IBL model of the effects of manipulating the 

memory and the risk-tolerance upon the performance of the security analyst. 

Generally, as per our expectation, an extra-careful analyst with a low risk-tolerance 

did better on all three performance measures compared to a less-careful analyst with a 

high risk-tolerance. Furthermore, risk-tolerance and memory seem to impact all three 

performance measures; however, the Precision is always smaller than the Recall and 

Timeliness measures and this observation is to do with the fact that a model that is 

able to retrieve more threat instances from memory not necessarily retrieves them 

correctly, i.e., retrieve a threat instance from memory that always corresponds to a 

network threat event. Also, the effect of memory appears to be more impacting that 

the risk-tolerance of the analyst. 



 
Fig. 3. (A) The interaction effect of memory and risk-tolerance on cyber SA of an analyst. (B) 

The effect of memory alone on cyber SA of an analyst. (C) The effect of risk-tolerance alone 

on cyber SA of an analyst. A greater percentage on all three cyber SA measures is more 

desirable as it makes the simulated analyst more efficient. 

 

7   Discussion 

In this paper, we have proposed that computational models based on the IBLT can be 

used to make predictions of the SA of a security analyst.  Particularly, the model can 



make concrete predictions of the level of recall, precision, and timeliness of the 

security analyst given some level of experience (in memory) and risk-tolerance. 

We created an IBL model of the analyst for a simple scenario of a typical island-

hopping cyber-attack. Then, using the scenario, we evaluated the performance of a 

simulated analyst on three commonly used measures of cyber-SA. These measures are 

based upon accuracy of analyst (Precision and Recall) and the timeliness of the 

analyst (Timeliness). Our results reveal that both the risk-tolerance level of an analyst 

and the mix of threat and non-threat instances in analyst’s memory affect the analyst’s 

cyber SA with the effect of the analyst’s experiences (in memory) slightly more 

impacting compared  to analyst’s risk-tolerance. The less impact of the risk-tolerance 

factor compared to memory could be due to the nature of IBL models that are strongly 

dependent upon retrieval of instances from memory to make choice decisions. 

When the simulated analyst is less-careful, then for any situation event the model 

has only a 25% chance of retrieving threat instances and 75% chance of it retrieving 

non-threat instances. As a consequence, the model has a lesser chance to classify 

actual threats in the simple scenario as threats and it takes more time for the model to 

accumulate evidence that is more than the risk-tolerance level (decreasing the 

Timeliness). However, when the simulated analyst is more-careful, then for any 

situation event there is a 75% chance of the model retrieving threat instances and 25% 

chance of it retrieving non-threat instances. As a consequence, the model has a greater 

chance to classify actual threats in the simple scenario as threats and it takes less time 

for the model to accumulate evidence that is equal to the risk-tolerance level 

(increasing the Timeliness). 

The important aspect of the model is the fact that although the Recall and 

Timeliness increase as a direct function of the ability of the model to retrieve threat 

instances from the memory and its risk-tolerance, there is not a substantial increase in 

model’s Precision when either of the two factors is favorable (Figure 3 A, B, and C). 

The slow increase in Precision is expected because a model that is able to retrieve 

more threat instances from memory and is less risk-tolerant, might not necessarily be 

more precise in its actions. However, there is still an increase in Precision with a 

manipulation of both factors and this suggests that making a security analyst less risk-

tolerant as well as extra-careful might help increase the job-efficiency of the analyst.  

These are only some of the many predictions that the IBL model is able to make 

regarding the Cyber-SA of human analysts. 

Although the current model is able to make precise predictions, these need to be 

validated with human data, i.e., observed behavior from a human security analyst 

operating in the simple scenario. We plan to run laboratory studies in the near future 

to assess human behavior in this simple scenario. An experimental approach will 

allow us to validate our model predictions and improve the relevance of the model 

and assumptions made in it on its free parameters. In these experimental studies, we 

believe that some of the interesting factors to manipulate would include the 

experiences of the human analyst (stored in memory). One method we have thought 

currently is to make the analyst read examples of more and less threat scenarios 

before the analyst participates in the act of detecting cyber-attacks in the simple 

scenario. Also, we plan to record the risk-taking and risk-averse behavior of the 

analyst in the study to control for the risk-tolerance factor. Thus, our next goal will be 

to validate the predictions from the IBL model. 



If our model is able to represent the Cyber-SA of human analysts accurately, this 

model would have significant potential to contribute towards the design of training 

and decision support tools for security analysts. 
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