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Abstract. Mashups empower users to easily combine and connect re-
sources from independent Web-based sources and domains. However,
these characteristics also introduce new and amplify existing security
and privacy problems. This is especially critical in the emerging field of
enterprise Mashups. Despite several contributions in the field of Mashup
security the issue of protecting exchanged resources against the Mashup-
providing Platform has generally been neglected. In this contribution
we address the security challenges of server-side Mashup-providing Plat-
forms with the aim of minimizing the required amount of trust. We
achieve this by implementing a privacy-enhancing identity management
system into the Mashup-providing Platform using Reverse Identity Based
Encryption.

1 Introduction

Mashups empower developers to combine and connect resources from indepen-
dent Web-based sources and domains. Mashups are dynamic and easy to create
[1]. This combination of resources provides a considerable added value to both
providers and end users, who can now manage a host of services inside one
consistent environment. On the other hand, these characteristics also introduce
new and amplify existing and arising security and privacy problems. These se-
curity shortcomings are especially relevant as Mashups are now moving into the
enterprise space, where enterprise Mashups offer the compelling perspective of
empowering business end users to compose business services as they are needed,
allowing for a direct adaptation to changing business needs [2]. There have been
several contributions in the field of Mashup security, such as De Keukelaere et
al’s SMash [3], Jackson and Wang’s Subspace [4], Crites et al’s OMash [5], or
Zaradioon et al.’s OMOS [6]. However, the issue of protecting exchanged re-
sources against the Mashup-providing Platform has generally been neglected.
Providing the necessary privacy is a key issue for the broad success of enterprise
Mashups [7], as especially smaller enterprises will not want to deploy their own
Mashup infrastructure, and prefer to consume hosted services [8], allowing them
minimum investment and maximum benefit from Mashups’ ease of use. In this
contribution we address the security challenges of server-side Mashup-providing
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Platforms. In the spirit of multilateral security we aim at minimizing the required
amount of trust of (enterprise and end) users in the platform. To achieve this
we implement a privacy-enhancing identity management system as described in
[9] into the Mashup-providing Platform. The further structure of this paper is
as follows: First we present a generic architecture of a Mashup-providing Plat-
form in section 2. We use this architecture to illustrate the security challenges
in section 3 and provide an overview and discussion of related work in section
4. We present our approach to address the security challenges in section 5. We
wrap up by discussing merits and limitations of our solution (section 6), before
we conclude our findings.

2 Mashup Architecture

This section describes general assumptions we make about Mashups, including
terminology, structure and API. We aim to give clear definitions based on earlier
work, to ensure applicability of our results and readability of this work. Figure
1 (taken from [2]) gives an overview of the platform we are envisioning.

Fig. 1. Overview of Mashup-providing Platform [2]

2.1 Definitions

As Hoyer and Fischer [2] point out in the course of a comprehensive literature
survey, there are various definitions of the term ’Mashup’. There seems to be a
strong tendency of authors, even in scientific literature, to establish their own
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definition of Mashups without referring to earlier work. To make our work more
readily comparable (and readable), we offer clear definitions based on earlier
work of the terms we are using in this section.

Mashup We slightly adapt the definition from [2] here, removing the enterprise
aspect, as we think the definition is quite precise and convincing also outside of
the enterprise setting, and in line with definitions used in other works, e.g. [3].
We define Mashup as: a Web-based resource that combines existing resources,
be it content, data or application functionality, from more than one resource
by empowering the actual end-users to create and adapt individual information
centric and situational applications.

Widgets and Backend service Still drawing on the definitions in [2], as well
as [10] and others, we define Widgets as the visual representations of afore-
mentioned Web-based resources that are combined into a Mashup. We refer to
backend services when referring to the Web-based services piping those resources
into the Mashup-providing Platform and to the Widgets.

Mashup-providing Platform (MPP) We define a Mashup-providing Plat-
form as a Web-based server-side platform offering APIs and hosting functional-
ities that enable the creation of Mashups, specifically offering functionality for
definition of Widgets and their Wiring as described in [2], and APIs such as the
one described in [3].

Pipes and Wiring We define Wiring as communication between Widgets
within the platform, and Piping as the transfer of external resources into the
platform via backend services and Widgets (Figure 1, [2]). Securing the Wiring-
based communications (as discussed in [3]) is of special interest to us. We also
address issues arising in the context of (cascaded) piping, as also described by
[11].

Adapter (Backend) Services We define an Adapter (Backend) Service as a
Backend Service who does not have direct access to the resources it pipes into
the Mashup. Consequently, it needs to cascade requests to other services which
do have the necessary resources (but which usually do not integrate with the
Mashup-providing Platform, making the adapter necessary). We are especially
interested in the case where those services holding the resources are following a
walled garden security model, requiring delegation of credentials to the adapter
(as described by [11]).

2.2 API and Relevant Implementation Details

There are many Mashup-providing Platforms in the market, with many differ-
ent approaches to communication between backend services. In this paper, we
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assume that the MPP implements an API and component model similar to the
one presented in [3], using communication channels that respect the services
home domain and thus do not break the browser security model, but still are
embedded in and communicate via the Mashup-providing Platform using layered
iFrames (see Figure 2). We deviate from the API presented in [3] in that we do

Fig. 2. Mashup Component Model (adapted from [3], now using direct tunneling)

not implement communication busses shared between different services, but use
the Wiring model illustrated in Figure 1. This is a choice made for the sake of
simplicity. As we use strong cryptography, shared busses would not be an issue
from the security standpoint. However, they introduce an unnecessary level of
complexity into the description of the system presented here. For simplicity, we
assume a simple but flexible API, where the Wiring is managed using the API
calls requestValues(), requestPermits() and sendMessage(), as illustrated
by Figure 3. Table 1 gives an overview of the API we assume the MPP imple-
ments. This is an abstraction of APIs given in related work such as Hasan et al
[12] and surveys of current Mashup systems [1][2]. It has also been verified by
checking compliance with current approaches, such as the Enterprise Mashup
Markup Language EMML [13] or JackBe Mashup Composer [14]. We also as-
sume that the Piping is used mainly to integrate legacy services, accessed over
HTTP, using passwords for authentication. However, we also demonstrate how
access control to those backend services could be secured using mechanisms we
describe in the context of the (more integrated) Wiring for Mashup Widgets.

3 Security Challenges of Mashup-Platforms

Since providing privacy is a key issue for the broad success of enterprise Mashups
[7], the issue of protecting exchanged resources against the Mashup-providing
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Table 1. Simplified Mashup API

Fig. 3. Simplified Communication API High Level Overview
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Platform is one of the major security challenges. In the component model we
assume, the communication channels between Widgets (Wires) are embedded in
and communicate via the Mashup-providing Platform. To protect these Wires
against the MPP itself as well as other services or attackers, the traffic that is sent
over the Wire should be encrypted. Therefore, we can formulate a first security
requirement.

Requirement I: Resources transmitted via Wiring should be kept confidential
against the MPP or other attackers

The way contemporary Mashups combine their underlying resources, the es-
tablished browser security model assumes that all services are from the identical
source, as services are integrated in a MPP acting as a web proxy. This behav-
ior of internet browsers is one of the most pressing security issues associated
with Mashups, because this enables external services to freely retrieve infor-
mation from other services inside the Mashup. A malicious service can read,
write and modify the content and even the behavior of all other services [3].
To mitigate this problem some sort of data flow control under the supervision
of the user should be established. This leads to a second security requirement:

Requirement II: A facility for controlling the flow of resources across the
Wiring should be established.

Another example for the lack of security in contemporary MPPs concerns
the user’s authentication credentials. The user provides her personal data to the
MPP or a service inside the MPP to enable it to access backend-services. Both
the MPP and individual services acting as adapters between the MPP and ex-
ternal data sources may impersonate the user to those external backend-services
[12]. Also, a malicious provider of this proxy-service could abuse the user’s au-
thentication information to gain access to services outside of the MPP if the user
has reused his password [15]. Therefore, the amount of credentials that have to be
stored at the adapter or proxy services should be minimized to reduce the risks of
impersonation.

Requirement III: The amount of credentials stored at adapter services
should be minimized.
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One possibility to address Requirement III is to store all credentials on the
user side. However, managing lots of different credentials can be very cumber-
some and will most likely overburden the users [16] [24], reducing the benefits
from Mashups’ ease of use. Therefore, we formulate a usability requirement:

Requirement IV: The burden placed on users for the management of
credentials should be minimized

Requirements III and IV can be achieved by storing the credentials with a
trusted third party on behalf and under the control of the user. This, however,
requires (as suggested by the name) that the user trusts the third party. In the
spirit of multilateral security we aim at minimizing the required amount of trust
of users in the platform. Introducing a trusted third party will not minimize the
required trust. It will only shift it to another stakeholder. This leads to another
security requirement.

Requirement V: The required amount of trust in the system should be
minimized, specifically, trust in third parties should be minimized

What is needed is a method which addresses the described security and
privacy problems associated with MPPs without restricting their role in creating
useful and functional combinations of services, such as acting as an intermediary
platform facilitating discovery of compatible services, and offering hosting of the
Mashup infrastructure. The focus is an end-to-end encrypted communication
between the services within the platform, without the help of an additional
trusted third party, and without trust in the platform.

4 Related Work

We are not the first to address security in Mashup environments. Hasan et al [12]
present a system for controlling data flow within a MPP, using an independent
’Permit Grant Service’ that acts on behalf of the MPP. Crites et al [5] propose a
new browser security model, while Jackson andWang [4] describe a solution using
the existing browser origin policies. Both are valuable contributions in fixing the
proxy/security model problem, however, none of the systems offer protection
versus the platform itself. In the same vein, Keukelaere et al [3] propose a secure
channel communication model. We extend on their work, adding encryption to
protect confidentiality of the users’ information versus the MPP. Zarandioon
et al [6][17] offer the most comprehensive approach to date, offering both a
client-side identity management providing data flow control as well as a single-
sign-on (SSO) solution. However, it requires that each user administers a specific
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identity-providing server outside the MPP, and understands a set of (non-trivial)
mediating components. It also requires that inter-Widget (which are referred to
as ’mashlets’) communication is executed using specialized Widgets, which is
a counterintuitive modification of Mashup programming practices, threatening
Mashups’ main selling point, namely their ease of modification by non-experts.
We also build on Close’s work [11], which describes transmitting fine-grained
access credentials in HTTPS fragments, and provide additional protection in
the cascading piping mechanism employed by adapter services.

5 Approach

We present an integrated approach, offering a comprehensive identity manage-
ment system that can be integrated in today’s mash-up platforms, while offering
advanced security guarantees. This is realized by building on two main compo-
nents: one system for securely delivering differentiated authorization tokens to
backend services, building on the solutions presented in [11][12], meeting Re-
quirements III, IV and V, and one system for preserving confidentiality and
permitting data flow control of data exchanged within the Mashup-providing
Platform, extending the work presented in [3][6][17], meeting Requirements I, II,
IV and V. This section illustrates how the components are integrated within the
platform, how data flows between them, and what functionality each component
offers in the context of the larger system. It also gives details of the underlying
system, specifically the cryptographic components used.

5.1 Key Management

To encrypt theWiring-based communication between twoWidgets in the Mashup,
it seems logical to employ some sort of asymmetric cryptography to address the
key distribution problem associated with n-to-n communication scenarios [18].
This approach has also been proposed in the context of Mashups by [17]. How-
ever, we want to avoid burdening the user with the management of a key server
specifically for the purpose of using it in our Mashup platform. Studies have
shown that it is hard for users to even use PKI systems [16], so having them
manage key distribution seems like a long shot, especially in the context of
Mashups, where the business value is in making things easier for users [1].

5.2 Identity-based Encryption

Identity-based Encryption (IBE) [19] offers a possibility to reduce the complexity
associated with key distribution and management, directly using identifiers (e.g.
users’ email addresses) as public keys. While early IBE systems were not feasible
for Web usage, recently a system has been proposed that can even be used as a
client side JavaScript implementation in the Web context (namely, Guan et al’s
WebIBC [20]). This should be sufficient to meet performance requirements asso-
ciated with Mashups. Conventional IBE requires a trusted third party acting as a
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Private Key Generator (PKG) for the individual entities communicating within
the system (usually users). We turn this system upside down in that in our ap-
proach, the user acts as a PKG for communicating Backend Services within a
MPP, using service identifiers as public keys. This results in only the receiving
Backend Service and the User being able to decrypt messages sent, which meets
our confidentiality requirement (I). In addition, it is much more efficient to gen-
erate keys for the CPK cryptosystem used in WebIBC [20], than for RSA (as
presented by Zarandioon et al [6]) as we do not need to perform primality tests,
and even a relatively small CPK master key matrix scales to very high numbers
of services (e.g. a 128x16 matrix supports 1032 services [20]). Thus, using asyn-
chronous threads with native code embedded in JavaScript [6] is not necessary,
and the system presented here stays much more responsive, and does not re-
quire native code running outside the browser sandbox, which adds a whole new
layer of vulnerability [21]. Using this reversed approach to IBE (where the user

Fig. 4. Initial Setup and Key Exchange

acts as PKG for Backend Services) enables an initialization phase where, after
mutual authentication between user and Backend Service, the key exchange can
be executed in a non-interactive manner (see Figure 4). To avoid impact on the
user interaction, we employ a cryptographically secure pseudorandom function
at the user side to derive the master key pair needed for IBE and the password
for authenticating to the service from a master credential supplied by the user
(e.g. a password, a cryptographic key on a smart card). In future usage, the
specific algorithms used will depend on the available (enterprise and/or Web)
infrastructure and Mashup-providing Platform, so the algorithms and identifiers
given here should only be seen as a proof-of-concept realization based on to-
day’s systems. The detailed steps executed are: 1. If there is only one credential
available (e.g. password supplied by user), harden it using e.g. iterated hashing
using the method described by Halderman et al [22] for hardening the password,
creating the hardened credential credhard. Apply PBKDF2 from PKCS #5 if
expansion is needed [23]. Then derive from the hardened credential a Master
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Key Pair for Identity Based Encryption. Also derive a credential for mutual au-
thentication with the Backend Service, using e.g. the method also described in
[22] to derive a service specific password, using a deterministic pseudorandom
function (PRF ) [24]. If an enterprise smart card infrastructure can be used, the
credentials may be stored directly on the smartcard, or passwords may be de-
rived for interoperability with legacy services not supporting authentication by
certificate, using e.g. the method proposed in [25]. Based on WebIBC, we use the
revised CPK cryptosystem [20], which is based on elliptic curve cryptography,
and generate keys as described in [24] [20], extracting them from matrices hold-
ing key pairs. We refer to them here as Master Public Key and Master Private
Key (MPuK, MPrK). Formalized in equations:

credhard = hn(cred)

(MPrK,MPuK, baseauth) = PBKDF2(credhard)

credauth = PRF (baseauth, id(S))

2. Perform mutual authentication of user and Backend Service (e.g. by using
certificates on both sides, or the user authenticating to a Backend Service provid-
ing an SSL certificate, generically referred to here as credauthSrv(id(S))). This
step can be performed within the Mashup-providing Platform if (and only if) it
provides direct contact to the backend service domains. Our architecture meets
this requirement by using the iFrame approach given in section 2.2 [3]. In that
case, direct communication with the service domain is possible, and e.g. SSL may
be used normally. This is used to establish an encrypted communication channel
between service and user (e.g. using SSL/TLS). Of course, more elaborate and
reliable mutual authentication schemes for the web would be preferable, but how
to realize them is still unclear, as pointed out by Dhamija and Dusseault [26],
among others.

credauth < −−−−−−−−−−−−−−−− > credauthSrv(id(S))
mutual authentication

3. Using the Master Private Key, the user extracts the service’s private
Key PrK(S) based on the service’s identifier also used as for the public key
(e.g. domain name or Widget identifier used for API calls within the MPP) (a
detailed description of the extraction procedure from the master matrices in
CPK/WebIBC is given in [20]). He then sends Master Public Key and the Back-
end Service’s private key he just generated to the service (across the established
encrypted connection).

PrK(S) = extract(id(S),MPrK)

(PrK(S);MPuK)−−−−−−−−−−−−−−−−−−− >
encrypted transmission
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5.3 Confidentiality of Personal Information (Wiring)

Using those keys, services can now establish encrypted communication channels
via the platform. Sent messages are encrypted with the target Backend Service’s
public key, which is derived from the MPuK and the service identifier id(S).
The extracted key may be cached when the credential certifying the receiving
Backend Service’s permission to access the data is received (as described in the
next section).

sendMessage(id(S), encextract(MpuK,id(S))(message))

5.4 Data Flow Control

As already described in section 2.2, the data flow control is realized by requiring
certification of the user’s permission for the transaction from the requesting
service. The sequence is generally similar to the one proposed by Hasan et al
[12], but we remove the need for the trusted third party. The general sequence of
the operation is given in Figure 5: Upon establishment of the Wiring, permits for
access of the relevant information are requested from the user via the requesting
Backend Service.

Fig. 5. Permit Granting Sequence

When a new Wiring is established (within the MPP’s Wiring editor), the user
is prompted to confirm (examples of Mashup permit dialogues are given in [12]).
This is represented by the user’s signature of a tupel consisting of requesting
Backend Service, target Backend Service, and transmitted attributes. Using the
terminology from 2.2:

Perm(id(A), id(B), attributes[]) =
Signextract(id(U),MPrK)(id(A), id(B), attributes[])

The pseudonymous communication via the MPP has the added advantage
that the identity of Backend Services providing infomation resources is not nec-
essarily revealed to consuming Backend Services.
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5.5 Delegated Authentication and Authorization (Piping)

To minimize the credential exposure versus adapter services, we apply an ap-
proach consisting of two components. We address phishing and man in the mid-
dle attacks by employing PRFs to seed the credential (e.g. password) with the
receiving domain (that is assumed to be able to authenticate itself using e.g.
an SSL cert), an approach also employed in [22][25]. Our basic approach is to
integrate with existing Single Sign On (SSO) systems to minimize credential
exposure. In the context of the current web, this means providing some sort of
Pseudo-SSO in the sense of de Clerq [27]. We chose to implement a password
hashing approach, as several such systems exist, e.g. Halderman et al [22] or
Zibuschka and Roßnagel [25], and are readily usable in all current browsers. To
this end, we aim to establish direct channels within the MPP’s Piping whenever
possible. We use cascading iFrames for this, as proposed by [3], and illustrated
in Figure 2. So, we derive the password, as already described in section 5.2, and
implemented in [22][25]:

credauth = PRF (baseauth, id(S))

To further minimize risk of exposure, the next step would be to employ trans-
mission in a HTTP fragment [5][11], which woild require minimal modifications
of current practices. If the Backend Service behind the adapter supports it, fine-
grained permits (based on the permits described in 5.4) can also be used to
further minimize exposure. However, this is not possible given the current state
of the art of Web SSO.

6 Discussion and Limitations

Our system does not require trust into the MPP. It is the first solution to offer
meaningful cryptographic security versus the MPP to end users of mashups. It
still supports the current practice of integrating Mashup building blocks into a
common MPP proxy, which is the basis of operations for current MPP providers.
Our solution goes beyond earlier work in that it provides strong security guaran-
tees for the user, using strong cryptography, without requiring substantially mod-
ified user interaction, neither during authentication and identity management,
nor during programming of Mashups. It integrates more readily into existing
Mashup-providing Platforms, as it does not need client-side JavaScript Wid-
gets. To realize this, we introduced the user as a private key generator within
an identity-based encryption scheme securing Widget communication against
the provider of a MPP. These mechanisms enable the providers of MPPs to
complete their service with an efficient business model. Futhermore it makes
mashups ready for enterprise use by offering a vector for integration in existing
enterprise PKIs, while offering security across perimeter on individual level. To
this end, we extend and integrate several earlier works, as well as propose new
mechanisms like having the user act as a PKG in IBE systems for service com-
munication. While the user-side components of our system may be implemented
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using JavaScript, this of course results in a high risk of phishing attacks. This is
not specific to our solution, but a general weakness of systems using JavaScript
and/or redirects [26][28]. In enterprise systems, which are our main focus, im-
plementing e.g. Browser plugins is plausible, and also allows for integration of
enterprise infrastructure, such as smart card infrastructures. Most of the MPPs
(e.g. Yahoo Pipes, Intel Mash Maker or iGoogle) provide a free playground to
the users, where they can combine several services. But thinking about the sce-
nario where a company provides business-critical, sensitive data to the Backend
Services in a Mashup, the necessity of an enduring security model can’t be dis-
missed. Only an elaborated MPP which protects privacy and offers a secure
encrypted and still usable communication, without making development and us-
ability significantly more complicated, will be viable in the field of enterprise
Mashups.

7 Conclusion

In this contribution we have presented a comprehensive privacy enhancing iden-
tity management system for implementation in the context of Mashup-providing
Platforms minimizing required trust in the platform. We achieved this by using
Reverse Identity Based Encryption to preserve the confidentiality of resources
that are transmitted via Wiring. Our system does not require trust into the MPP.
Our solution goes beyond earlier work in that it provides strong security guar-
antees for the user, using strong cryptography, without requiring substantially
modified user interaction, neither during authentication and identity manage-
ment, nor during programming of Mashups. Due to these advantages, it is now
possible for providers of MPPs to adapt their services to the enterprise domain,
where sensitive data will be processed. Having a robust security model is there-
fore a key prerequisite for developing business models in the context of enterprise
Mashups.
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