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Abstract. Publishing decision trees can provide enormous benefits to
the society. Meanwhile, it is widely believed that publishing decision
trees can pose a potential risk to privacy. However, there is not much
investigation on the privacy consequence of publishing decision trees. To
understand this problem, we need to quantitatively measure privacy risk.

Based on the well-established maximum entropy theory, we have devel-
oped a systematic method to quantify privacy risks when decision trees
are published. Our method converts the knowledge embedded in decision
trees into equations and inequalities (called constraints), and then uses
nonlinear programming tool to conduct maximum entropy estimate. The
estimate results are then used to quantify privacy. We have conducted
experiments to evaluate the effectiveness and performance of our method.

1 Introduction

Decision tree is a powerful data mining tool that has been widely used for clas-
sification and prediction in many areas, including financial industry, military af-
fairs, medical research, artificial intelligent, etc. Decision trees can also be used
in data publishing, i.e., instead of publishing the raw data, data owners can pub-
lish the decision trees built from their raw data. This type of data sharing and
dissemination can bring tremendous benefits to the society.

A critical concern faced by data publishing is privacy, because many of the
data contain personal information. Decision trees, a form of aggregate infor-
mation derived from the original dataset, can surely achieve a better privacy
preservation than publishing the original data. However, as long as a decision
tree is still useful, certain degree of private information is still embedded in it.
It is well known that data mining results, such as decision trees and association
rules, can lead to potential privacy breach, but it is not well understood how
much private information is actually disclosed by a published decision tree. In
other words, it is still an open problem to quantitatively measure how much
private information is disclosed by decision trees.

⋆ This work has partially supported by Awards No. 0618680 from the United States
National Science Foundation.
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1.1 Motivation

We briefly introduce the decision tree, followed by two examples to demonstrate
the potential privacy risk caused by the published decision trees.

Decision Tree. Consider table D1 in Figure 1(a), which has four attributes
Education, Country, Gender, and Salary. Attribute Salary is treated as sen-
sitive and the data publishers want to ensure that no adversary can infer the
salary of any individual with a relatively high confidence. We call this attribute
a Sensitive-Attribute (SA). The other three attributes are often used to identify
an individual. They are called Quasi-Identifier (QI) attributes. Usually, they can
be acquired by the adversary from other sources [1]. Combined with the exter-
nal data set, such as the voter registration list, an adversary can use linking
attack [1,2] to infer the salary of an individual. QIID refers to a distinct combi-
nation of QI attributes, i.e., if two people have identical QI values, their QIIDs
will be the same. We use it simply for presentation purposes.

QIID Education Country Gender Salary

q1 Masters USA Female ≤ 50K

q2 Masters USA Male > 50K

q3 Masters Canada Male ≤ 50K

q3 Masters Canada Male ≤ 50K

q4 Masters Canada Female ≤ 50K

q4 Masters Canada Female > 50K

q5 Doctorate Canada Female > 50K

q5 Doctorate Canada Female > 50K

q6 Doctorate USA Male ≤ 50K

q6 Doctorate USA Male > 50K

q7 Doctorate USA Female > 50K

(a) Microdata D1

Gender
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Country Gender

2.0/1.0 3.0/0

Masters Doctorate
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Female Male

2.0/1.0

2.0/1.0

2.0/0
≤ 50K

N1

N2 N3

L1

L2 L3

L4 L5

N4
> 50K> 50K > 50K

> 50K

(b) Decision tree for D1

Fig. 1. Dataset and Decision Tree

Figure 1(b) is a decision tree inducted from the data depicted in Figure 1(a)
using ID3 [3] algorithm. Each circle is an internal node, which denotes a test
on an attribute. The most informative attribute is selected as the test attribute
depending on the attribute selection measure. Branches from a circle denote the
outcome of the test. Each rectangle is a leaf node, which holds a class label. The
number of tuples a and the misclassified tuples b are listed in the form of “a/b”
for each leaf node. The tree predicts whether a person earns less than 50K based
on the education, country, and gender information. For any tuple X whose class
label is unknown, we can test the attribute values of X against the decision tree.
We can trace a path from the root node to a leaf node. The leaf node has the
class prediction for X. For instance, the path p, N1 → N3 → L4, states that the
probability that the female doctorates earn more than 50K is 100%.

Privacy Issues. As long as a decision tree contains useful aggregate information
so that it can be used to predict future data, certain degree of private individual
information for the training data is still embedded in it. For the path p: N1 →
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N3 → L4 that is induced from the training dataset D1, not only can it predict
future tuples, but also disclose the salary information of some tuples in D1.

We assume that the class attribute of the tree contains sensitive information
and adversaries have the QI part of the data in Figure 1(a). Also, we assume
that adversaries know that the domain of Salary is {≤ 50K, > 50K}. Based on
these assumptions, adversaries can learn the private information of others:

For the perfect classified nodes, such as L3 and L4, the private information
(salary) for q3, q5, and q7 is completely disclosed. For example, we can infer that
the salaries of q5 and q7 are > 50K because q5 and q7 are female doctorates. If q7
is linked to Alice according to the external data source, such as the voter’s regis-
tration list, her salary is disclosed. Other leaf nodes are not perfectly classified;
they only carry aggregate information for a group of individuals. Do they only
describe the aggregate information as it labels in the leaf node? For example,
the leaf node L5 is label with “> 50K (2.0/1.0)”. Do we only learn that the
probability that the male doctorates earn more than 50K is 50%? The answer
is NO. In the following example, we show that the adversaries can derive more
information when the internal (i.e. non-leaf) nodes are taken into consideration.

Example 1. Figure 2(b) is a decision tree built from the dataset depicted in
Figure 2(a) using ID3 [3] algorithm. Surprisingly, having the above assumptions,
we can derive the sensitive value for each tuple with 100% confidence. From the
leaf nodes L1 and L2 in Figure 2(b), we can derive that the sensitive values for
q1 and q4 in Figure 2(a) are ≤ 50K and > 50K, respectively. For the leaf node
L3, we learn that the sensitive value of q2 and q3 are different. One is ≤ 50K
and the other is > 50K. We make a guess. If the SA of q2 were > 50K and
the SA of q3 were ≤ 50K, Education would have been selected as the splitting
attribute for the internal node N1 because the split on Education can lead to
the most informative result. Masters would have all been classified to > 50K
while doctorates ≤ 50K. The decision tree would have been built as Figure 2(c).
However, Age is the selected attribute instead. This indicates that our guess is
incorrect, and therefore, the SA of q2 is ≤ 50K and the SA of q3 is > 50K.

QIID Age Education Salary

q1 Youth Doctorate ≤ 50K

q1 Youth Doctorate ≤ 50K

q2 Senior Masters ≤ 50K

q3 Senior Doctorate > 50K

q4 MiddleAge Masters > 50K

q4 MiddleAge Masters > 50K

(a) Microdata D2

Middle Age

Age

Youth Senior

2/0 2/12/0
> 50K≤ 50K > 50K

N1

L2L1 L3

(b) Real decision tree

3/0

DoctorateMaster

3/0

Education

≤ 50K

L2L1

N1

> 50K

(c) Unreal decision tree

Fig. 2. Dataset and decision trees for Example 1

Example 1 shows that an individual of a group does not necessarily follow the
aggregate information of the group. We can capture more precise information
for a single one than what is labeled in the leaf nodes, when some analysises are
performed.
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Challenges. For a simple data set and a simple decision tree, we can use manual
deduction as above to derive private information. In a realistic scenario, the
dataset often have many tuples and decision trees can become quite complicated.
It is infeasible to manually derive private information like what we have done
in the previous examples. We need a systematic method to analyze privacy;
the analysis results will help us understand the privacy risk of decision-tree
publishing, and thus improve our practice in data publishing. Once the data
publishers understand the privacy situation, they can take actions to preserve
it rather than directly publishing a raw tree. Some decision trees are published
simply because privacy is not placed enough emphasis on. Therefore, we want
to study the open problem: how much private information the adversaries can
infer from the published decision tree given the above assumptions?

We face two challenges to understand the privacy risk of a published decision
tree. First, we have to formulate the information in the leaf nodes. There are
many forms of a decision tree: some may publish the accurate error rate as
well as the class label while some only have the class label. We need to find a
generic formulation to accommodate the various types of information. Second,
we need to capture the explicit information in the internal nodes. That is, the
most informative attribute is selected.

1.2 Overview of Our Approach

We model the privacy quantification as a Non-Linear Programming (NLP) prob-
lem, in which P (SA | QI) for each QI and SA combination is represented by a
variable. We formulate all the knowledge available to adversaries as linear and
nonlinear equations (or inequalities) of these variables. We call them the con-
straints. Estimating P (SA | QI) now becomes finding the values for these vari-
ables such that all the constraints are satisfied. Very likely, many solutions exist.
However, we are not interested in finding just any solution, we are interested in
finding a solution that achieves the most unbiased estimate of P (SA | QI). This
is exactly what can be achieved by using the maximum entropy theory.

Based on this well-established theory, we propose a systematic method to
quantify the privacy disclosure risk in decision trees. The focus of this method
is how to formulate constraints from all the information available to adversaries.
Once the constraints are formulated, finding the maximum entropy solution is
given to software tools that are called solvers. There are a number of powerful
solvers (in particular, non-linear programming solvers) that we can choose. With
this systematic method, we are not only able to analyze privacy disclosure risk
in a decision tree; more importantly, we are able to help data publishers reduce
their privacy risk when publishing their decision trees.

The rest of the paper is organized as follows. The related work is reviewed in
Section 2. Section 3 formally defines the problem. Section 4 presents our main
method. Section 5 evaluates our method using a real dataset. Section 6 concludes
the paper and describes the future work.
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2 Related Work

Privacy-preserving data publishing (PPDP) has been extensively studied in the
literatures. The goal of PPDP is to publish a disguised version of the original
data, such that the private information of the original data is preserved, while
the data are still useful. Several methods have been proposed, including gener-
alization [4–6], bucketization [7, 8], and randomization [9–11].

Understanding privacy is one of the essential tasks in PPDP. The goal of this
research is to develop metrics to quantify privacy in data publishing. A number of
metrics have been proposed, including K-anonymity [4], L-diversity [12], (α, k)-
anonymity [13], t-Closeness [14], and m-invariance [15]. Our work fits into this
line of studies. The major difference between our work and others is two-fold.
First, instead of proposing a new metric, we focus on computing the conditional
probability between QI attributes and SA attributes, i.e., P (SA | QI). This
conditional probability is a building block for most of the existing metrics. Once
we can compute this probability, we can adopt the existing metrics to quantify
privacy. Second, the existing privacy metrics are intended for data publishing,
while the method proposed in this paper targets the publishing of decision trees.
Computing P (SA | QI) from a dataset (disguised in most cases) is significantly
different from computing the same probability from the decision trees.

The privacy consequence of data mining results is studied by Kantarcioglu et
al. [16]. This work tries to understand when data mining results violate privacy.
The assumption of the work is that the classifier is kept invisible from adversaries,
and adversaries can only request an instance be classified by the owner of a
classifier, without knowing other information about the classifier. Although this
model has its own merit in the client/server model, where mining results are
kept at a sever, the scenario it models is quite different from ours. In our work,
decision trees are fully accessible to adversaries. Their work performs a black-box
analysis while ours is a white-box analysis.

Another area closely related to PPDP addresses how multiple parties can
conduct data mining using their joint data, without disclosing to each other
their private data. This line of research uses secure multi-party computation
(SMC) protocols to protect private information [17, 18]. What is not addressed
by SMC studies is how much private information is actually disclosed by the
computation results. SMC guarantees that no one in the protocol knows more
than what they can derive from the results; however, the results themselves might
disclose enough private information. Analyzing how much private information is
disclosed by decision trees is exactly the objective of this paper.

Applying the maximum entropy model to estimate privacy is first explored
by Du et al. in [19]. They discuss the effect of background knowledge in privacy-
preserving data publishing. The work here is dedicated to solve a significantly
different problem, that is, to understand the privacy breach when a decision tree
is published. Besides, the modeling processes differ far from each other. In [19],
all the constraints are explicit according to the disguised dataset. For decision
trees, not only do we need to consider the information explicitly in decision trees,
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we also need to consider the implicit information in decision trees that might
cause privacy disclosure.

Another feature of our work is that we do exploit the knowledge about
decision-tree building algorithm when deriving private information from a pub-
lished decision tree. Exploiting the knowledge about algorithms to find private
information has also been pursued in several existing studies. Wong et al. [20]
explore that adversaries can take advantage of this feature to perform minimal-
ity attack. Similar attacks are also described by Zhang et al. in [21], and Zhu et
al. in [22]. These attacks are based on the information that is not published, but
is implied from the published information. Our work follows a similar approach,
but the way how we exploit the knowledge of algorithms is quite different from
the existing work.

3 Problem Formulation

Assumptions. We make several assumptions in this paper. We assume that the
training set consists of two parts: QI attributes and SA attributes. The QI part
consists of the information that can also be obtained from other sources. The SA
part consists of the information that the data owner wants to protect. This is a
general assumption in the field of PPDP. We assume that adversaries have all
the data of the QI attributes. This assumption is made because the information
in the QI part can be usually obtained via other means [4]. Although in practice,
attackers might not know every QI value, this assumption allows us to conduct
analysis on the worse-case scenario. For the sake of simplicity in this paper, we
assume that there is one SA attribute in the training set, and this attribute is
used as the class attribute in a decision tree. We assume that adversaries have
the knowledge of the domain of the sensitive attributes, i.e., they know all the
possible values of the sensitive attributes. In a decision tree, all the leaf nodes
have class labels which are SA values. It is reasonable to make this assumption.

Measuring Privacy. How successful the adversaries can derive an individual’s
correct SA value depends on the intrinsic conditional probability between QI
and SA attributes, i.e., P (SA | QI,O), where O represents all the information
available to the adversaries. In most of the existing studies, O consists of the
information from sanitized datasets [4,7,12–14]. In our study, it also comes from
the decision trees. For the sake of simplicity, we omit O from our notation, and
only use P (SA | QI) in the rest of the paper. Our privacy quantification task
can be formally defined as the following:

Problem 1. Let D be the training data set that is used to generate the decision
tree(denoted as Ω). Let variable X represent SA attributes, and variable Q
represent QI attributes. Given Ω and the QI part of all the tuples in D, derive
P (X | Q) for all the combinations of Q and X values.

The value of P (X | Q) is the primitive behind all the existing privacy mea-
sures, i.e., as long as we can compute this conditional probability, we can calcu-
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late the existing privacy metrics, such as L-diversity [12], (α, k)-anonymity [13],
etc.

Maximum Entropy Modeling. The problem to measure privacy boils down to
estimate the distribution of P (X | Q), i.e., to assign a probability value to every
variable p(x | q), where x ∈ X and q ∈ Q. Such assignment must be consistent
with the decision trees that are published. Very likely, there are more than one
distributions (we call them solutions) that are consistent with the published
decision trees. However, we can only choose one among these distributions; the
question is which one should be used to quantify privacy.

There are many ways to choose among these solutions. One way is to choose
the most informative solution. For example, we can choose a solution that has
p(x | q) = 1 for many x’s and q’s, as long as it is consistent with the published
decision tree. If we use this solution to quantify privacy, the privacy score will
not be very good, because for these people with QI = q, there is no uncertainty
at all for the SA attribute. Therefore, the uncertainty of this solution is low. The
question is whether selecting this solution is fair. If we have multiple choices,
one having a higher uncertainty and the other a lower uncertainty, to choose a
solution with lower uncertainty actually assumes some information we do not
possess, and is thus biased. The maximum entropy theory answers the above
question quite nicely. It says that based on the given information, the most
unbiased estimate of a distribution is the one that maximizes the entropy [23].
Based on this principle, our problem becomes finding a distribution of P (X | Q),
such that the following conditional entropy H(X | Q) is maximized:

H(X | Q) = −
∑
Q,X

P (Q)P (X | Q) logP (X | Q).

Obviously, when there are no constraints, the uniform distribution is the
solution that maximizes the entropy. However, the published decision trees do
give us a lot of constraints, i.e., the estimated distribution must be consistent
with the tree structure, information at the leaf nodes, information at the internal
nodes, etc.

To apply the maximum entropy theory to estimate P (X | Q), we need to
translate all the available knowledge into equations and inequalities using the
word of P (X | Q). The translation results become our constraints. With these
constraints, we can model our privacy quantification problem as the following:

Definition 1. (Maximum Entropy Modeling) Finding an assignment for P (X |
Q) for each combination of Q and X, such that the entropy H(X | Q) is max-
imized, while all the constraints k1, . . ., kn are satisfied, where constraint ki
is obtained via information that we have on decision tree mining process and
results.

Maximum entropy modeling problem is a special case of the NLP problem.
There are sophisticated tools that can be used to solve NLP problems, such as
KNITRO [24].
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4 Deriving Constraints from Decision Tree Classifiers

To apply the Maximum Entropy theory to estimate the information disclosure,
we need to understand where we can derive constraints; namely, we need to
understand what adversaries know. They obviously know the published decision
tree; it is quite likely that they also know the underlying algorithm used to build
the decision tree, in particular, the attribute selection measure (e.g. Information
Gain or Gini Index). Moreover, we assume that adversaries know the QI part of
the training dataset. Therefore, the source of the constraints can be categorized
into the following: the leaf nodes of the decision tree, the internal nodes which
encode the attribute selection measure, and the QI part of the dataset.

In the following subsections, we describe how to derive constraints from
these three sources. We use the example depicted in Figure 1(a) and 1(b) to
help us explain our ideas in this section. We frequently use the following two
terminologies in our explanation. An attribute prefix of a node V in a deci-
sion tree is a conjunction of attribute assignments that represents the path
from the root to V . We use Λ to denote attribute prefix. A conjunction ex-
pression is said to be a full conjunction expression if it contains all the QI at-
tributes of the dataset. Without causing any confusion, we simply call it full
expression. For example, the attribute prefix of the node L1 in Figure 1(b) is
Λ = (Education = Masters) ∧ (Country = USA). Λ is not a full expression
because it does not contain all the QI attributes.

It should be noted that in our maximum entropy model, we need the entire
QI attributes in our constraints, not a subset of it, i.e., each Q in our variable
P (X | Q) must be a full expression. We show how to represent P (X | Λ) (where
Λ is not a full expression) using P (X | Q), where Q’s are full expressions. Let Λ
represent an attribute prefix of a node V. Let q1, . . ., qn be all the full-expression
QIs that satisfy Λ, i.e., they share the same attribute prefix values. For example,
if Λ = (Education = Masters) ∧ (Country = USA), q1 and q2 in Figure 1(a)
satisfy Λ because their Education and Country attributes satisfy Λ. Based on
the conditional probability definition, we have the following:

P (X | Λ) =
∑n

i=1 P (X | qi)P (qi)

P (Λ)
. (1)

P (Λ) and P (qi) are constants that are known to the adversaries 1. Armed
with Equation (1), we will not pay attention to whether Λ is a full expression or
not in the rest of this paper.

4.1 Leaf Nodes

The most obvious source of privacy disclosure in a published decision tree is
the leaf nodes, because leaf nodes contain a lot of information, including class
labels and sometimes error rates (the error rate indicates the percentage of the
misclassified tuples for each leaf node). We show how to derive constraints with
or without error rates.

1 We assume that adversaries know the QI part of the training dataset.
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When error rates are published in a decision tree, the percentage of the
correctly classified tuples becomes known. Let e represent the error rate of a leaf
node whose attribute prefix is Λ, and let C be the class label of this leaf node.
We can derive the following constraint (we call it rate-constraint):

P (C | Λ) = (1− e).

Furthermore, the fact that C is selected as the class label indicates that C
is the most frequent class among all the classes. Therefore, we can infer that
within any leaf node, the percentage of tuples with class label C is larger than
those with other class labels. Namely, we have the following constraint (called
label-constraint):

P (C | Λ) ≥ P (W | Λ), for ∀ W ̸= C.

For example, according to the leaf node L4 in Figure 1(b), the attribute prefix
Λ is {Education = Doctorate and Gender = Female}, and two q5 tuples and one
q7 tuple in Figure 1(a) are included in L4. Because the number of mis-classified
tuples in L4 is 0, the error rate e of L4 is 0. Since the class label is “> 50K”, we
can derive the following rate-constraint:

P (> 50K | Λ) = 1, or P (≤ 50K | Λ) = 0,
and the following label-constraint:

P ( > 50K | Λ) ≥ P (≤ 50K | Λ).
Note that in the above example, the label-constraint is redundant. Actually,

when there are only two class values, the rate-constraint always implies the label-
constraint, because if C is the selected class label for a leaf node, we know P (C |
Λ) is always ≥ 0.5, larger than the other class value that is not selected. However,
when there are more than two class values, the error rate might be larger than
P (C | Λ). Therefore, the rate-constraint alone does not always capture the fact
that P (C | Λ) is the largest among all the class values; the label-constraint
captures that.

In practice, data publishers might not publish the error rates, i.e., each leaf
node is only assigned a class label without a corresponding error rate. In this
case, adversaries can only infer the label-constraint, not the rate-constraint.

4.2 Internal Nodes

In a decision tree, the internal nodes do not seem to contain much information
that can lead to privacy disclosure, but actually, they do: the fact that a specific
attribute is used as the partition attribute can tell us some information about
the training dataset. To use this fact in our maximum entropy model, we need
to derive constraints from these internal nodes.

In a decision tree, each internal node represents a subset of tuples that share
the same values for certain attributes; these attributes and their values are en-
coded by the path from the root to this internal node. We use the attribute prefix
Λ to represent these attributes and their values (not including the node that is to
be splitted). Generally speaking, in decision-tree induction algorithms, at each
internal node, an attribute needs to be selected to further partition the records
contained in the internal node. The goal of the selection measure is to find the
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best way to split the tuples such that the expected impurity score of the par-
tition is minimized. The following notations are commonly used in decision-tree
algorithms.

– I(Λ): Impurity score of the node that corresponds to Λ.

– I(Λ,A = Ai): impurity score of the node that corresponds to Λ and A = Ai.
Without causing confusions, we shorten I(Λ,A = Ai) as I(Λ,Ai).

– E(Λ,A): Expected impurity score of using attribute A to partition the node
that corresponds to Λ. E(Λ,A) is computed using the following formula:

E(Λ,A) =

|A|∑
i=1

I(Λ,Ai). (2)

According to the attribute selection method in the decision tree induction
algorithm, the attribute having the best impurity score will be selected as the
splitting attribute for the node. Therefore, by seeing that T is the selected at-
tribute at an internal node (say N), we know that the expected impurity score
achieved by using T to partition node N is less than that using any other candi-
date attribute. Let Λ be the attribute prefix of the node N , and let Ψ represent
the candidate attributes at node N . We have the following constraint, called
internal-constraint:

E(Λ, T ) ≤ E(Λ,W ), for ∀ W ∈ Ψ − {T}. (3)

The actual computation of expected impurity depends on how impurity is
measured. Several methods have been used to measure impurity, including en-
tropy [3,25] and Gini impurity [26]. In the following, we instantiate Inequality (3)
for both entropy-based and Gini impurity measures. At the end, we will get a
set of constraints that will be integrated into our Maximum Entropy model.

(1) Gini Impurity Measure. Gini impurity depends on squared probabilities
of membership for each target category in the node, which is used by the CART
algorithm [26]. Its minimum, zero, is reached when all cases of a node fall into the
same category, i.e., the purest case. Gini impurity for a branch that corresponds
to Λ and A = Ai is computed in the following formula:

I(Λ,Ai) =
|DΛ,Ai |
|DΛ|

(1−
|C|∑
j=1

P (Cj | Λ,Ai)
2), (4)

where the term |DΛ,Ai |/|DΛ| is the weight of the i-th partition.

In our maximum entropy modeling, P (Cj | Λ,Ai) in the above equation is
unknown to adversaries because it is a combination of several variables that are
what adversaries want to estimate. Although adversaries cannot estimate these
values directly, they can use the information from internal nodes to capture the
relationship among these variables. The relationship is captured in Inequality (3)
after we combine Equations (4) and (2) together.

We use an example to illustrate the constraints derived from internal nodes.
Assume that Gini Index measure is used to generate the tree depicted in Fig-
ure 1(b). For the internal node N2 in Figure 1(b), Country and Gender are the
candidate attributes because Education has been used in N1. Since Country is
the selected attribute, the Gini Index impurity deduction of Country is larger
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than that of Gender. That is, the expected impurity score of Country is less
than that of Gender.

Let Λ be Education = Masters; C1 be Country = USA; C2 be Country =
Canada; G1 be Gender = Female; G2 be Gender = Male; Let variable pi0
represent P (≤ 50K | qi), and let variable pi1 represent P (> 50K | qi), where i
ranges from 1 to 4 in our example because q1, q2, q3, and q4 satisfy Λ. For the
Country attribute, we have the following:

I(Λ,C1) =
1

3

[
1− (p10 + p20)

2

22
− (p11 + p21)

2

22

]
,

I(Λ,C2) =
2

3

[
1− (p30 + p40)

2

22
− (p31 + p41)

2

22

]
.

For the Gender attribute, similarly, we can get I(Λ,G1) and I(Λ,G2).

Using Inequality (3), we have the following internal-constraint:
I(Λ,C1) + I(Λ,C2) ≤ I(Λ,G1) + I(Λ,G2).

(2) Entropy-based Impurity Measure. Entropy is used to measure the impu-
rity of a node in some decision tree mining algorithms, such as ID3 and C4.5 [25].
Information gain is based on the concept of entropy used in the information the-
ory. The entropy of the i-th branch of a partition using attribute A can be
calculated as the following:

I(Λ,Ai) =
|DΛ,Ai |
|DΛ|

|C|∑
j=1

−P (Cj | Λ,Ai) logP (Cj | Λ,Ai).

Similar to the Gini Index measure, we combine the above equation with
Equation (2) for each candidate attribute, and then we apply the results to
Inequality (3), which captures the relationships among several variables corre-
sponding the the internal node.

4.3 Deriving Constraints from Quasi-Identifiers

In our maximum entropy modeling, each variable P (X | Q) is a conditional
probability, so they must satisfy all the constraints imposed on probabilities.
For example, the sum of all conditional probabilities given a specific qi should
be 1. We need to explicitly provide these constraints, so the solutions of our
maximum entropy modeling will be meaningful with regard to probabilities.

Similar to [22], we have the following QI-constraints:
m∑
i=1

P (X = xi | Q = q) = 1. (5)

If the distribution of SA values are also published along with the decision tree,
adversaries will know P (X = x), so we will have the following SA-constraints:

n∑
i=1

P (qi | X = x) =
n∑

i=1

P (X = x | qi)P (qi)

P (X = x)
= 1,

where P (X = x) is the probability of x in the training data set.
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5 Experiments

To demonstrate how much sensitive information is disclosed by decision tree
classifiers, we evaluate our proposed method using the Adults dataset from the
UC Irvine Machine Learning Repository 2. We use the same setting described
in [22]. However, we choose the “Education” attribute as the class attribute.
As a result, we have a dataset D, which has 30162 records, with 4480 distinct
QI values and 16 distinct SA values. Therefore, we have 4480 QI-constraints.
We use Gini Index and Information Gain measures to build two decision trees.
The number of rate-constraints, label-constraints, and internal-constraints are
518, 7770, 1097, for Gini Index; and 2983, 44745, 3307, for Information Gain,
respectively. Our ME method is implemented using C++ and Oracle 9i. All
experiments are run on an Intel(R) Pentium(R)-D machine with 3.00 GHz CPU
and 4GB physical memory. We use the KNITRO software package [24] to solve
our Maximum Entropy Estimation problem.

The output of the program is the estimate of P (SA | QI) for all combina-
tions of SA and QI values, based on the information provided by the published
decision tree. The closer our estimate is to the original distribution, the more
private information is disclosed via the published decision tree. We measure such
closeness at two different levels: individual level and overall level, as is described
in [22]. They are

Dindividual =
∑
x∈SA

P (x|q) log P (x|q)
P ∗(x|q)

,

Doverall =
∑
q∈QI

[P (q) ·
∑
x∈SA

P (x|q) log P (x|q)
P ∗(x|q)

],

respectively, where P ∗(X | Q = q) is the estimated individual distribution, and
P (X | Q = q) is the original distribution.

The above two divergence values allow us to understand information disclo-
sure at two different levels. With Dindividual, we can conduct privacy studies for
the worst-case scenario, because it allows us to see the result at the individual
level; with Doverall, we can conduct privacy studies for the average-case scenario.
As we will show in our experiments, they can tell different things.

The Effect of the Error Rate. Some decision tree mining tools provide ac-
curate error rates and some do not. From the privacy perspective, decision trees
with error rates definitely reveal more private information. The overall diver-
gences with and without error rates are plotted in Figure 3. The overall diver-
gence without error rate is much larger than that with error rate; this is true
for both Gini Index and Information Gain. However, the impact on information-
gain-based decision trees is much more severe than that on gini-index-based
decision trees. Generally speaking, with error rate, more private information is
disclosed. The reason is that the solution space with error rates is the subset of
that of without error rate. More specific information can help the NLP solver to

2 http://archive.ics.uci.edu/ml/
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find solutions that are closer to the original distribution. Therefore, the overall
divergence is smaller.

The Effect of Attribute Selection Measure. In Section 4.2, we learn that
constraints derived from different attribute selection measures are different ac-
cording to the attribute selection measures. We would like to see whether there is
any difference on privacy disclosure between these attribute selection measures.
In particular, we would like to study the difference between the Gini Index mea-
sure and the Information Gain measure. We assume that error rates are provided.
The results are plotted in Figure 4.
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Fig. 3. The effect of error rate
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Fig. 4. The effect of selection measure
Case x10 x11 x20 x21 x30 x31 x40 x41 Do D

q2
i D

q3
i

SO 1 0 1 0 0 1 0 1 N/A N/A N/A
SA 1 0 0.5 0.5 0.5 0.5 0 1 0.231 0.693 0.693
SB 1 0 0.815 0.185 0.815 0.185 0 1 0.068 0.205 0.205

Fig. 5. Impact of the internal nodes for Example 1
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Fig. 6. Effect of implicit information

Top-K Difference of KL1 KL2

KL1 and KL2

1 1.492 0.971 2.463

2 1.371 1.156 2.527

3 1.305 0.942 2.247

4 1.304 0.399 1.703

5 1.262 1.170 2.432

6 1.247 1.187 2.435

7 1.197 1.419 2.616

8 1.195 1.253 2.448

9 1.191 1.441 2.632

10 1.144 1.744 2.888

Fig. 7. Top-10 difference of KL-
divergence(KL1:with Implicit)
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Fig. 8. impact of individual divergence
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Fig. 9. Running time

From the results, we do see that the overall divergence using gini index is
larger from that using information gain. However, there are many factors that
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cause such a difference, including height of the decision trees, utility of the trees,
etc. A comprehensive comparisons of the privacy disclosure between these two
measures is beyond the scope of this paper. The goal of this experiment is to show
that using our method, data publishers can measure the privacy consequence of
their to-be-published decision trees, regardless of what selection method is used.

The Effect of Implicit Information.We have conducted experiments to com-
pare the difference on privacy between with and without implicit information.
In the “with” case, we include the internal-constraints while in the “without”
case, we exclude the internal-constraints.

First of all, we apply our ME method on Example 1 to illustrate the im-
portance of the implicit information in the decision tree classifier. We have 8
combinations of P (SA | QI) since we have 4 distinct QIs and 2 distinct SAs.
SA, SB are the solutions without and with implicit information, respectively. The
original distribution is denoted as SO. SA, SB , and SO are all listed in Figure 5,
where xi0 and xi1 are the conditional probabilities for qi whose SA is “≤ 50K”
and “> 50K”, respectively. We also list the overall divergence in the Do column.
From the results, we can see that SB–the results using implicit information–has
a smaller overall divergence, and is thus a more accurate estimate.

We also conduct our experiments using the Adult dataset D; we use both
the Gini Index measure and the Information Gain measure. In each experiment,
we get two estimates, one of which is with the implicit information, the other
of which is without the implicit information. In Figure 6, we draw the overall
divergences for the two estimations with respect to the real distribution. There is
obvious difference for the Gini Index measure. Surprisingly, it shows that there is
no major difference for the overall divergences for the Information Gain measure.

To gain a better understanding, we proceed to analyze the individual diver-
gence of the result for Information Gain measure. We measure the individual
divergence between the real distribution and the estimated distribution for each
individual QI value. We list the 10 most significant individual divergences in Fig-
ure 7, where KL1 is the individual divergence between the original probabilities
and the estimated probabilities when implicit information at internal nodes is
used; KL2 is the corresponding individual divergence when implicit information
is not used. From Figure 7, we can clearly tell that KL1 is significantly smaller
than KL2. For example, in the fourth row in Figure 7, the individual divergence
for this QI with the implicit information is 0.399 while that for without the im-
plicit information is 1.703, about 77 percent lower. To fully understand how the
implicit information affects the privacy at individual level, we average the top K
largest difference between the individual divergences obtained with and without
the internal-constraints. The results are plotted in Figure 8; they show that the
average impact of the internal-constraint decreases. That is why we do not see
much difference if we only measure overall divergence.

Performance. To understand the performance of our proposed method, we
conduct two sets of experiments to learn the running time and the memory usage
of our ME method. One is for the Gini Index measure while the other is for the
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Information Gain measure. In each set, “All Included” means all the constraints
are included, with the error rate and the implicit information; “NoImplicit”
means no implicit information is included; “NoErrorRate” means no error rate
is published. The running time is shown in Figure 9. We find that it is more time-
consuming for the Information Gain measure to get the solution than for the Gini
Index measure. Intuitively, in Information Gain measure, we need to perform
the logarithm computation while in Gini Index, multiplication is performed.
Logarithm computation is much more costly. Moreover, we also find that the
memory usage of the Information Gain measure (2.5G) is much larger than
that of the Gini Index measure (1.2G). This difference is caused by logarithm
computation and the different number of constraints. We have observed that the
total running time for “All Included” is far less than that of “NoErrorRate”.
This is because the search space for “All Included” is much smaller than that
of “NoErrorRate” due to the fact that the former search space is a subset of
the latter. On the other hand, we find out that the total running time for “All
Included” is more than that of “NoImplicit”. Without the internal-constraints,
our solver only has linear constraints to evaluate. Solvers usually run much
slower if there are non-linear constraints, such as those derived from implicit
information.

6 Conclusion and Future Work

We propose a systematic method to quantitatively measure the private infor-
mation disclosed by decision tree classifiers. Our method is based on a well-
established principle, the Maximum Entropy Principle. We model both leaf nodes
and internal nodes as constraints. We then feed these constraints to a Non-Linear
Programming software to find the maximum entropy estimate. Our experiments
have shown that the proposed method is quite effective.

We also realize that in building decision trees, the training dataset is only
a subset (e.g. two third) of the original dataset; as long as we do not publish
the information about this subset, adversaries do not know which tuples from
the dataset are selected as training data. Although adversaries can still use
Maximum Entropy to conduct estimate, the accuracy of the estimate will be
affected. We plan to study how the training data selection process affect the
privacy of decision trees.

Several other directions can also be followed in our future work. One direc-
tion is to extend this method to deal with other data mining results. Another
interesting direction is to develop methods to disguise the decision tree mining
results, such that the privacy requirements are satisfied, while at the same time,
the utility of the published results is not sacrificed too much.
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