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Abstract. Access control mechanisms are used to control which princi-
pals (such as users or processes) have access to which resources based on
access control policies. To ensure the correctness of access control poli-
cies, policy authors conduct policy verification to check whether certain
properties are satisfied by a policy. However, these properties are often
not written in practice. To facilitate property verification, we present an
approach that automatically mines likely properties from a policy via the
technique of association rule mining. In our approach, mined likely prop-
erties may not be true for all the policy behaviors but are true for most
of the policy behaviors. The policy behaviors that do not satisfy likely
properties could be faulty. Therefore, our approach then conducts likely-
property verification to produce counterexamples, which are used to help
policy authors identify faulty rules in the policy. To show the effective-
ness of our approach, we conduct evaluation on four XACML policies.
Our evaluation results show that our approach achieves more than 30%
higher fault-detection capability than that of an existing approach. Our
approach includes additional techniques such as basic and prioritization
techniques that help reduce a significant percentage of counterexamples
for inspection compared to the existing approach.

1 Introduction

Access control mechanisms are used to control which principals (such as users
or processes) have access to which resources in a system. Database management
systems often adopt access control mechanisms to offer fine-grained access con-
trol to sensitive resources based on access control policies (in short as policies).
In such a situation, identifying discrepancies between polices and their intended
function is crucial because correct policy behaviors are based on the premise that
the policies are correctly specified. These discrepancies may result in unexpected
policy behaviors such as allowing malicious users to access sensitive resources.
To increase our confidence on the correctness of policy behaviors, policies must
undergo rigorous verification.



2 JeeHyun Hwang et al.

There are property verification tools [1, 2] available for policies specified in
specification languages such as XACML (eXtensible Access Control Markup Lan-
guage) [3] and Ponder [4]. Given a policy and its properties, property verification
is to verify whether the policy satisfies the properties. If a property is not sat-
isfied, a property verification tool produces counterexamples that violate prop-
erties. An example property for a policy in a grading system used by Fisher et
al. [1] is that a student cannot assign grades. Any violations (that allow a student
to assign grades) against the property expose faults in the policy. In addition,
the quality of the properties can be measured based on their fault-detection ca-
pability. Our previous work [5] showed that the confidence on policy correctness
based on property verification is dependent on the quality of the specified prop-
erties. In other words, policy authors require properties of high quality (which
have a high chance to detect faults in the policy) to increase the confidence on
policy correctness sufficiently.

While property verification is useful to detect faults, in practice, most policies
are not equipped with properties. In addition, manually writing properties is
not a trivial task for two reasons. First, the policy authors must have sufficient
domain knowledge of a given policy to identify properties for the policy. Second,
as the size of a policy increases and the structure of a policy becomes complex,
identifying properties is more challenging.

To address these issues, we present an approach that automatically mines
likely properties (from a policy) via association rule mining [6]. Association rule
mining is used to discover correlations among data in a large database. When
a policy includes many rules in a sophisticated structure, manually inspecting
each policy behavior for fault detection is not trivial and error-prone. In such a
situation, mined patterns of policy behaviors can be used to detect a fault in a
policy [7].

In the policy context, we apply association rule mining to mine patterns of
interest, called likely properties characterizing correlations of policy behaviors
with regards to attribute values. For example, in the policy for a grading sys-
tem, based on similar policy behaviors of a lecturer and a faculty member, our
approach mines a property: if a lecturer is permitted to conduct actions (e.g.,
assign/modify) on grades, a faculty member is likely to be permitted to conduct
the same actions on grades. We call these properties as likely properties because
our approach mines properties that may not be true for all the policy behaviors
but are true for most of the policy behaviors. In such a situation, likely properties
may lead to a small number of violations. As these violations are deviations from
the policy’s normal behavior, these violations are special cases for inspection to
determine whether these violations expose faults.

This paper makes the following three main contributions:

– We develop an approach that analyzes a policy under verification and mines
likely properties characterizing correlations of policy behaviors with regards
to attribute values.

– We verify a policy under verification with likely properties to check whether a
policy includes a fault. Our fault-detection approach includes two techniques:
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1 If role = Faculty
2 and resource = (ExternalGrade or InternalGrade)
3 and action = (View or Assign) then Permit
4 If role = TA
5 and resource = (InternalGrade)
6 and action = (Assign or Receive) then Permit // Faulty Line
7 If role = Student
8 and resource = (ExternalGrade)
9 and action = (Receive) then Permit

10 If role = Family
11 and resource = (ExternalGrade)
12 and action = (Receive) then Permit
13 If role = Lecturer
14 and resource = (ExternalGrade or InternalGrade))
15 and action = (Assign or View) then Permit
16 Deny

Fig. 1. An example policy including a fault (in Line 6); “Receive” (instead of “View”,
which is correct) is specified.

Assign View Receive

External
Grade

Faculty Permit Permit Deny
TA Deny Deny Deny
Student Deny Deny Permit
Family Deny Deny Permit
Lecturer Permit Permit Deny

Internal
Grade

Faculty Permit Permit Deny
TA Permit Deny Permit
Student Deny Deny Deny
Family Deny Deny Deny
Lecturer Permit Permit Deny

Fig. 2. Decision table for the policy in Figure 1 based on action relations.

the basic technique is to inspect counterexamples in no particular order, and
the prioritization technique is to inspect counterexamples by the order of
their fault-detection likelihood.

– We compare our approach with a previous related approach [8] in terms of
cost and effectiveness. Our approach achieves more than 30% higher fault-
detection capability than that of the previous related approach. Our ap-
proach such as the basic and prioritization techniques helps reduce a signifi-
cant percentage of counterexamples for inspection compared to the existing
approach.

The rest of the paper is organized as follows. Section 2 presents an illustra-
tive example. Section 3 presents definitions of our proposed likely properties.
Section 4 presents our fault-detection approach. Section 5 presents evaluation
of our approach. Sections 6 and 7 discuss related work and issues. Section 8
concludes the paper.
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Relation Frequency Confidence (%)
({Receive}, Permit) → ({View}, Deny) 3 100
({View}, Permit) → ({Assign}, Permit) 4 100
({View}, Permit) → ({Receive}, Deny) 4 100

Fig. 3. Implication relations R1 with 100% confidence.

Relation Frequency Confidence (%)
({Receive}, Permit) → ({Assign}, Deny) 2 66
({Assign}, Permit) → ({View}, Permit) 4 80
({Assign}, Permit) → ({Receive}, Deny) 4 80

Fig. 4. Implication relations R2 with at least 65% but less than 100% confidence.

Counterexamples Fault Detection
TA is Permitted to Assign InternalGrades
TA is Denied to View InternalGrades detected
TA is Permitted to Receive InternalGrades detected

Fig. 5. Counterexamples and their fault-detection capability.

2 Example

Figure 1 illustrates an example access control policy for a grading system in a
university as if-else statements in code. Lines 1-3 include rules that allow a faculty
member to assign or view ExternalGrade or InternalGrade. Lines 4-6 include
rules that allow a Teaching Assistant (TA) to assign or receive InternalGrade.
Lines 7-9 include rules that allow a student to receive ExternalGrade. Lines 10-
12 include rules that allow a family member to receive ExternalGrade. Lines
13-15 include rules that allow a lecturer to assign or view ExternalGrade or
InternalGrade. Line 16 is a tautology rule to deny requests that are not applicable
in the preceding rules.

Figure 1 is a faulty version of the policy used by Fisher et al. [1]. The faulty
version includes a fault at Line 6, where action attribute “Receive” is used in-
stead of “View”. Due to this fault, we observe two incorrect policy behaviors.
First, a TA is Denied to View InternalGrade while a correct behavior is that
a TA is Permitted to View InternalGrade. Second, a TA is Permitted to Re-
ceive InternalGrade while a correct behavior is that a TA is Denied to Receive
InternalGrade.

We observe that actions over different roles may have similar policy behav-
iors. Figure 1 is a Role-Based Access Control policy (RBAC) [9]. In RBAC
policies, one role’permissions may inherit another role’s permissions based on
role inheritance such as that a faculty member inherits all permissions of a TA
in a policy. In such a situation, one’s (e.g., a faculty member’s) permissions may
be dependent on another’s (e.g., TA’s) permissions. Based on this implication,
we discover correlation of subjects with regards to their corresponding decisions.
We can also discover correlation of actions with regards to their corresponding
decisions. For example, in Figure 1, regardless of any roles or resources, if one
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role (e.g., Faculty) is Permitted to Assign a resource (e.g., InternalGrade), the
role is likely to be Permitted to View the resource. In the paper, we denote such
a correlation as implication relation (based on action attributes). Formally, an
attribute item Item (v, dec) represents any request that includes v is evaluated
to dec. For example, Item ({Assign}, Permit) represents that any request that
includes an “Assign” action is evaluated to be Permitted. We represent the exam-
ple correlation as {Item (Assign, Permit)} ⇒ {Item (View, Permit)} described
in Section 3.

We next describe how to mine such implication relations. To mine implication
relations (based on action attributes), we describes all possible request-decision
pairs in a table in Figure 2. Each request requires three attribute values (such
as subject, resource, and action attributes). Columns 1 and 2 show all possible
combinations of resource and subject (role) attributes, respectively. Columns 3-5
describe the decisions (e.g., Permit or Deny) of a combination of a subject and
a resource (in Columns 1 and 2) associated with an action “Assign”, “View”, or
“Receive”, respectively. For example, in the second row, given a role (Faculty)
and a resource (ExternalGrade), the table describes decisions associated with
action attributes such as “Assign”, “View”, or “Receive”. Three requests, r1
(Faculty, Assign, ExternalGrade), r2 (Faculty, View, ExternalGrade), and r3
(Faculty, Receive, ExternalGrade) are evaluated to “Permit”, “Permit”, and
“Deny” (which are described in the second row), respectively.

Then, we feed these request-decision pairs into an association mining tool
to mine implication relations. We set the confidence threshold as 65%, which is
derived based on our preliminary experience. The confidence (described in Sec-
tion 4) reflects likelihood of an implication relation. Figures 3 and 4 show mined
implication relations R1 with 100%, and relations R2 with at least 65% but less
than 100% confidence. For example, in R1, the relation {Item (Receive, Permit)}
⇒ {Item (View, Deny)} in Figure 3 indicates that if a subject is Permitted to
Receive a resource r, the subject is Denied to View r with 100% confidence.
An example case is that if a Student is Permitted to Receive ExternalGrades,
then, a Student is Denied to View ExternalGrade (as described at fourth row
in Figure 2). Column “Frequency” denotes the number of occurrences of such
cases.

As implication relations in R2 cannot achieve 100% confidence, we find coun-
terexamples violating the implication relations. If a counterexample is evaluated
to be an unexpected decision, we say that the counterexample exposes a fault.
The relation {Item (Assign, Permit)} ⇒ {Item (Receive, Deny)} in Figure 4
indicates that if a subject is Permitted to Assign a resource r, the subject is
Denied to Receive r with 80% confidence. As this relation cannot achieve 100%
confidence, we can find a counterexample satisfying {Item (Assign, Permit)} ⇒
{¬ Item (Receive, Deny)}. A counterexample against the implication relation
is that a TA is Permitted to Receive InternalGrade (while the TA is Permitted
to Assign InternalGrade). Note that the correct policy behavior is that a TA is
Denied to Receive InternalGrade. Therefore, we inspect the counterexample and
determine that the counterexample exposes the fault in the example policy. Fig-
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ure 5 describes counterexamples, which do not satisfy the implication relations
in R2. In Figure 5, two counterexamples are determined to expose the fault.

3 Definitions

This section presents definitions for attribute item set and implication relations.
Let S, O, and A, respectively, denote the set of all the subjects (e.g., user’s role
or rank), resources (e.g., file) and actions (e.g., write or read) in an access control
system.

3.1 Attribute Item Set

An attribute item set is used to represent a policy behavior with regards to
a specific set of attribute values v (e.g., faculty and file) and a decision dec
(e.g., Permit). An attribute item Item (v, dec) represents that any request that
includes v is evaluated to dec. For example, Item ({Faculty}, Permit) represents
that any request that includes a faculty role is evaluated to be Permitted. Note
that v may include multiple attribute values.

3.2 Implication Relations

An implication relation {Item1 (v1, dec1)} ⇒ {Item2 (v2, dec2)} represents
that, if a request r1 including v1 and values V of other attributes is evaluated to
dec1, then a request r2 including v2 and the same values V of other attributes
is likely to be evaluated to dec2.

In this paper, we propose implication relations based on subjects, actions,
and subject-action relations, as presented next. Based on selection of attributes,
other types of relations can be mined from a policy. We discuss these other
implication relations in Section 7.

Implication relation of subject attribute item sets. We denote this
implication relation as {Item1 (s1, dec1)} ⇒ {Item2 (s2, dec2)} where s1 and
s2 are subjects (i.e., s1 ∈ S and s2 ∈ S). This implication relation indicates that
dec1 of a request including s1 and values V of other attributes implies dec2 of a
request including s2 and the same values V of other attributes. In a Role-Based
Access Control (RBAC) policy [9], one role’permissions may inherit another
role’s permissions according to role inheritance. In such a situation, one role’s
permissions may be associated with another role’s permissions. For example,
Faculty inherits permissions of TA in a grading policy. We represent this role
inheritance as {Item1 ({TA}, Permit)} ⇒ {Item2 ({Faculty}, Permit)}.

Implication relation of action attribute item sets. We denote this
implication relation as {Item1 (a1, dec1)} ⇒ {Item2 (a2, dec2)} where a1 and
a2 are actions (i.e., a1 ∈ A and a2 ∈ A). This implication relation indicates that
dec1of a request including a1 and values V of other attributes implies dec2 of
a request including a2 and the same values V of other attributes. For example,
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in a grading policy, if a user is Permitted to Assign grades, the user is likely to
be Permitted to View grades. In such a case, the “Assign” action is likely to be
correlated with “View”. We represent this case as {Item1 ({Assign}, Permit)}
⇒ {Item2 ({View}, Permit)}.

Implication relation of subject-action attribute item sets. We denote
this implication relation as {Item1 ({s1, a}, dec1)} ⇒ {Item2 ({s2, a}, dec2)}
where s1 and s2 are subjects, and a is an action (i.e., s1 ∈ S, s2 ∈ S, and a ∈ A).
This implication relation indicates that dec1 of a request including s1, a, and
values V of other attributes implies dec2 of a request including s2, a, and the
same values V of other attributes. For example, in a grading policy, if a TA is
Permitted to Assign grades, Faculty is likely to be Permitted to Assign grades.
We represent this role inheritance with specific action assign as {Item1 ({TA,
Assign}, Permit)} ⇒ {Item2 ({Faculty, Assign}, Permit)}. This implication
relation considers both subjects and actions together.

Based on the preceding definitions, we mine relations of various attribute
item sets. Each of implication relations focuses on mining relations of specific
attribute items.

4 Approach

This section presents our approach for detecting faults in a policy using our
likely-property verification techniques. Our approach includes three components:
relation-table generation, association rule mining, and likely-property verifica-
tion. The relation-table generation component takes a policy p as an input and
generates tables based on attribute items in the policy p. The association rule
mining component takes attribute items (from the table produced by the previ-
ous component) and mines our proposed implication relations r of attribute item
sets. The likely-property verification component takes p and r as inputs and ver-
ifies p against r. The component produces verification reports based on whether
the given likely properties p are satisfied; when a property is violated, counterex-
amples are generated accordingly. The policy authors inspect counterexamples
to determine whether they expose faults. To detect faults effectively, we propose
a prioritization technique to recommend the policy authors to inspect counterex-
amples by the order of their fault-detection likelihood.

4.1 Relation-Table Generation

Our approach first analyzes a policy p and generates a policy behavior report
charactering all possible request-response pairs in the policy p. Our approach
next analyzes the policy behavior report, and then generates relation tables
(including all request-response pairs) that can be used as input for an association
rule mining tool. For example, to mine implication relations of action attribute
items (as shown in Figure 2), we generate a relation table that organizes all
possible request-decision pairs. Based on this table, we generate our proposed
attribute item sets used to mine implication relations.



8 JeeHyun Hwang et al.

4.2 Implication Relations of Attribute Items

Given attribute items, we use association rule mining [6] to mine relations of
attribute items. We focus on mining implication relations, which are of the form
{Item (v1, dec1)} ⇒ {Item (v2, dec2)} described in Section 3. We use an as-
sociation rule mining tool, called Apriori [10], that takes attribute items in a
relation table as an input and generates implication relations of attribute item
sets.

In association rule mining, thresholds such as support and confidence are
used to constrain generating association relations. Let t denote the total num-
ber of transactions that corresponds to the number of rows in a relation ta-
ble. For example, Figure 2 includes 10 transactions. Let d denote the num-
ber of transactions including an attribute item X. The support supp(X) of X
is d

t . We measure confidence, which is likelihood of an implication relation:

confidence(X ⇒ Y ) = supp(X∪Y )
supp(X) . These implication relations are likely proper-

ties, which are true for most of the policy behaviors and may lead to a small
number of violations. Our rationale is that violations produced by likely-property
verification deviate from the policy’s normal behaviors and are special cases for
inspection to determine whether these violations expose faults.

As mined implication relations can be many, our approach filters out mined
implication relations with two mechanisms. First, we report only implication
relations with confidence values over a pre-defined confidence threshold. As a
confidence value measures likelihood of likely properties, likely properties with
high confidence values are true for most of the policy behaviors. We set a con-
fidence threshold based on our preliminary experience. Second, we report only
implication relations each of which has fewer than n counterexamples where n is
a pre-defined number. Consider a policy that is mostly correct and faults in the
policy are not many. If the number of counterexamples (produced by verifica-
tion of a likely property) is small, this property may deviate from normal policy
behaviors. Therefore, we constrain the number of counterexamples produced for
likely properties as less than n, i.e., mined likely properties with more than n
counterexamples are filtered out and not reported. Based on these filtering mech-
anisms, we can reduce a large number of implication relations and report only
reduced implication relations as likely properties.

4.3 Likely-Property Verification

Our approach next verifies the policy with the likely properties to check whether
the policy includes a fault. Our rationale is that, as likely properties are true for
most of the policy behaviors, counterexamples (which do not satisfy the likely
properties) deviate from the policy’s normal behaviors and are special cases for
inspection.

Basic and Prioritization Techniques. A basic technique is to inspect coun-
terexamples without any inspection order among the counterexamples. Since
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Algorithm 1: Counterexample classification

Input: c1, c2, · · · , cn where each ci is a counterexample, m, which is the largest
number of counterexamples generated for a likely properties.

Output: CSdu, CS1, · · · , CSm where each CSj is a set of counterexamples.

1 CSdu := ∅;CS1 := ∅; · · · ;CSm := ∅; for i := 1 to n do
2 if ci /∈ CSdu then
3 Flag := false ;
4 for j := 1 to m do
5 if ci ∈ CSj then
6 CSj = CSj − {ci} ;
7 CSdu = CSdu ∪ {ci} ;
8 Flag := true ;

9 if Flag = false then
10 Prop := the property for which counterexample ci is generated;
11 w := the number of counterexamples generated for Prop;
12 CSw = CSw ∪ {ci} ;

13 return CSdu, CS1, · · · , CSm;

the number of generated counterexamples can be large, manual inspection of
the counterexamples can be tedious. To address the preceding issue, we propose
a prioritization technique that classifies counterexamples into various counterex-
ample sets based on their fault-detection likelihood. The technique evaluates
counterexamples in each of the counterexample sets by the order of their fault-
detection likelihood until a fault is detected. The prioritization technique main-
tains the same level of fault-detection capability of the basic technique when the
policy contains a single fault.

We next describe how we classify counterexamples into counterexample sets
CSdu, CS1, ..., CSn, based on their fault-detection likelihood. First, we give
the highest priority to duplicate counterexamples, which are classified to CSdu.
Duplicate counterexamples produced from different likely properties can be more
suspicious to expose fault. Second, we investigate the number of counterexamples
produced by likely properties to set priorities among counterexamples. As a likely
property may lead to less number of counterexamples, the policy authors are
required to verify less number of counterexamples to ensure the correctness of
likely properties to be true for all policy behaviors. Given a property that has w
counterexamples, we classify these counterexamples to CSw (1≤ w ≤ m where
m is the largest number of counterexamples generated for a likely property).
The pseudocode of the classification algorithm is in Algorithm 1. The policy
authors first inspect counterexamples in CSdu. The policy authors then inspect
counterexamples in CSi by the order of CS1, ..., CSm (1≤ i ≤ m) until a fault
is detected.
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5 Evaluation

We next describe the evaluation results to show the effectiveness of our approach
with four real-world access control policies as subjects.

5.1 Research Questions and Metrics

In our evaluation, we try to address the following research questions:

– RQ1: How higher percentage of faults are detected by our approach compared
to an existing related approach [8]? This question helps to show that our
approach can perform better than the existing approach in terms of fault-
detection capability.

– RQ2: How lower percentage of distinct counterexamples are generated by
our approach compared to the existing approach [8]? This question helps to
show that our approach can perform better than the existing approach in
terms of cost (i.e., the number of distinct counterexamples for inspection)
for detecting faults.

– RQ3: For cases where a fault in a faulty policy is detected by our approach,
how high percentage of distinct counterexamples (for inspection) are reduced
by our prioritization technique (in terms of detecting the first-detected fault)
over our basic technique? This question helps to show that our prioritization
technique can perform better than the basic technique in terms of cost (i.e.,
the number of distinct counterexamples for inspection) for detecting the first
fault.

To measure fault-detection capability in our evaluation, we synthesize faulty
policies, f1, f2, ..., fn by seeding faults into a subject policy fo, with only one fault
in each faulty policy for ease of evaluation. Then, the chosen approach generates
counterexamples for each faulty policy to detect the seeded fault. Note that
we seed a single fault for fi. For n faulty policies, n faults exist. Let CP (fi) be
distinct counterexamples generated by the chosen approach for fi. Let Count(fi)
be the number of distinct counterexamples in CP (fi) for fi. Let DE(fi) be the
reduced number of distinct counterexamples by the prioritization technique to
detect the fault in fi for cases where the fault in fi is detected by our approach.

– Fault-detection ratio (FR). Let p be the number of faults detected by
counterexamples (generated by the chosen approach) for f1, f2, ..., fn. The
FR is p

n . The FR is measured to address RQ1.
– Counterexample count (CC). The counterexample count is the average

number of distinct counterexamples generated by the chosen approach for

each faulty policy. The counterexample count is
∑n

i=1 Count(fi)

n . Note that a
counterexample is synonymous to a request. The CC is measured to address
RQ2. The CC is used to define the CRB metric below.

– Counterexample-reduction ratio (CRB) for our approach over
the existing approach. Let CC1 and CC2 be counterexample counts
(CCs) by our approach and the existing approach, respectively. The CRB is
(CC2−CC1

CC2
). The CRB is measured to address RQ2.
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– Counterexample-reduction ratio (CRP) for the prioritization tech-
nique over the basic technique. Let f ′

1, f
′
2, ..., f

′
m be faulty policies that

are detected by our generated counterexamples. The CRB is a percentage
that measures the reduction ratio in terms of the number of the counterex-
amples for inspection to detect the first fault by the prioritization technique

over the basic technique. The CRP is (
∑m

i=1 Count(f ′
i)−

∑m
i=1 DE(f ′

i)∑m
i=1 Count(f ′

i)
). The CRP

is measured to address RQ3.

5.2 Evaluation Setup

We use fault types defined in a policy fault model [11] to automatically seed a
policy with faults for synthesizing faulty policies, with only one fault in each
faulty policy for ease of evaluation. We use four fault types: Change-Rule Effect
(CRE), Rule-Target True (RTT), Rule-Target False (RTF), and Removal Rule
(RMR). A CRE fault inverts a decision (e.g., change Permit to Deny) in a rule.
An RTT fault indicates changing a rule to be applicable for any request. An
RTF fault indicates changing a rule to be applicable for no request. An RMR
fault indicates that a rule is missing. We seed one fault to form each of faulty
policies, i.e., each synthesized faulty policy includes only a single fault.

For the inspection for our approach, we use a tool, called Margrave [1], that is
verification tool for XACML policies. Margrave also has a feature that statically
analyzes an XACML policy and produces all possible request-decision pairs in
a summarized format. Given a faulty policy, Margrave generates all possible
request-decision pairs to be used for generating relation tables. We next mine
implication relations from the relation tables using an association rule mining
tool [10]. Our approach filters out implication relations each of which produces
at most five counterexamples.

We compare the results of our approach with those of a previous related
approach [8]. Let a decision tree (DT ) denotes the related approach that uses a
decision tree to infer properties. Given request-decision pairs, DT learns policy
behaviors and generates request-classification rules. Therefore, incorrectly clas-
sified requests (i.e., counterexamples) deviate from normal policy behaviors, and
are required to be inspected. We specify a confidence threshold as 0.4% based on
our tuning of evaluation setup forDT to generate similar counterexamples as our
approach for the small sample of faulty policies used in the tuning of evaluation
setup. In our evaluation, inspection of counterexamples (to determine whether
the counterexamples expose faults) is automatically conducted by comparing the
two decisions evaluated by a faulty policy and its corresponding original policy
(that is assumed to be correct). However, in general, this inspection is often a
manual process conducted by the policy authors.

5.3 Evaluation Subjects

In our evaluation, we use four policies specified in XACML [3]. XACML is an
access control policy specification language. Figure 6 summarizes the characteris-
tics of each policy. Columns 1-5 show the evaluation subject name, the number of
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Fig. 6. Subjects used in our evaluationPolicy # Pol % FR # CC % FR # CC % CRB % FR # CC % CRB % CRPcode2D 12 66.6 4.0 83.3 1.1 72.5 83.3 1.1 72.5 27.3univ 27 0.0 26.0 51.8 7.1 72.7 51.8 7.1 72.7 46.5continue-a 33 21.2 85.4 66.6 39.8 53.4 66.6 39.8 53.4 44.5continue-b 38 15.8 81.1 47.3 39.5 51.3 47.3 39.5 51.3 31.4AVERAGE 27.5 25.9 49.1 62.3 21.9 55.5 62.3 21.9 55.5 38.5FR : fault-detection ratio CC : counterexample countCRB : counterexample reduction ratio for our approach over the existing approach [8]CRP : counterexample reduction ratio for the prioritization technique over the basic technique

DT Approach Basic Technique Prioritization Technique

Fig. 7. Fault-detection capability results of Change-Rule Effect (CRE) faulty policies
for each policy and each technique

rules, and distinct attribute values in the subject, resource, and action attributes
in the policy, respectively. A subject attribute corresponds a role attribute since
the policies are based on the Role-Based Access Control (RBAC) model [9]. We
denote the number of roles, actions, and resources as # roles, # actions, and
# resource, respectively. Policies such as continue-a include attributes to de-
scribe constraints (e.g., checking whether a role has conflicts with another role).
Our approach does not use these attributes for mining implication relations.
The largest policy consists of 306 rules. The codeD2 is a modified version of the
codeD4 by adding rules for a Lecturer role. For grading, a Lecturer role has the
same privileges as a Faculty role. Two of the policies, namely continue-a and
continue-b, are examples used by Fisler et al. [1] to specify access control poli-
cies for a conference review system. The univ policy is an RBAC policy used by
Stoller et al. [12]. As its original policy is not written in XACML, we specified
its policy behaviors in XACML.

5.4 Results

We conducted our evaluation on a laptop PC running Windows XP SP2 with
1G memory and dual 1.86GHz Intel Pentium processor. In our evaluation, for
a faulty policy, we also measure the total processing time of request-response-
pair generation, likely-property generation, counterexample generation, and au-
tomated inspection for correctness of given counterexamples. For each faulty

4 http://www.cs.brown.edu/research/plt/software/margrave/versions/01-01/

examples/college
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policy (with at most 306 rules), our results show that the total processing time
is less than 10 seconds.

We first show our detailed evaluation results for only Change-Rule-Effect
faulty policies due to space limit. We then show our summarized evaluation
results in Figure 8 for Rule-Target-True, Rule-Target-False, and Removal-Rule
faulty policies. Figure 7 summarizes the detailed results for Change-Rule-Effect
(CRE) faulty policies of each policy. Columns 1-2 show the evaluation subject
name and the number of CRE faulty policies. Columns 3-11 show fault-detection
ratio (denoted as “% FR”), counterexample count (denoted as “# CC”), CRB
(for only the basic and prioritization techniques), and CRP (for only the pri-
oritization technique) for each technique/approach, respectively. Let Basic and
Prioritization denote our basic and prioritization techniques, respectively.

Results to address RQ1. In Figure 7, we observe that DT , Basic and
Prioritization detect averagely 25.9%, 62.3%, and 62.3% (in Column “%
FR”) of CRE faulty policies, respectively. Our approach (including Basic and
Prioritization techniques) outperform DT in terms of fault-detection capabil-
ity. Our approach uses implication relations based on similar policy behaviors
of different attributes values (e.g., Faculty and Lecturer). Therefore, if a faulty
rule violates certain implication relations of attribute items, our techniques have
better fault-detection capability than that of DT . However, DT constructs clas-
sification rules based on the number of the same decisions without taking into
how different attribute values interact. Therefore, generated rules are rigid and
often may easily miss certain correct policy behaviors. For example, in Fig-
ure 1, most requests that include a Faculty are evaluated to be Permitted. DT
generates a classification rule that classifies requests including a Faculty to be
Permitted. The rule is rigid since the rule’s counterexamples reflects cases where
a Faculty is Denied to take certain actions (e.g., a Faculty is Denied to Receive
InternalGrades in Figure 1).

Results to address RQ2. Our goal is to detect a fault with as fewer counterex-
amples for inspection as possible. Intuitively, with more counterexamples to be
inspected, fault-detection capability is likely to be improved. Our results show
that our approach reduced the number of counterexamples by 55.5% (in Column
“% CRB”) over DT . As a result, we observe that our approach significantly re-
duced the number of counterexamples while our approach detected a higher
percentage of faults (addressed in RQ1). In addition, our approach requires a
small number of counterexamples for inspection compared with the number of
all possible counterexamples. Given Ns subject, Na action, and Nr resource val-
ues, the maximum number MAXc of possible counterexamples is Ns×Na×Nr.
For example, for the continue-b policy, MAXc is 5(Ns)× 5(Na)× 26(Nr) = 650
counterexamples. However, our approach generated only averagely 39.5 coun-
terexamples (in Column “# CC”) for inspection.

Results to address RQ3. Prioritization is a technique that enables to inspect
counterexamples by the order of their fault-detection likelihood while keeping the
same level of fault-detection capability of the Basic technique. Figure 7 shows
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Fig. 8. Fault-detection ratios of faulty policies for each policy, each fault type, and
each technique/approach

that Prioritization reduced averagely 38.5% of counterexamples (for inspection)
(in Column “% CRP”) over Basic.

Note that inspecting counterexamples could not always detect faults. The
continue-a policy consists of 298 rules and is complex enough to handle cor-
ner cases for granting correct decisions to different roles (e.g., an Administrator
and a Member for paper review). Consider that rel3 {Item ({Write}, Permit)}
⇒ {Item ({Read}, Permit)} represents an implication relation of “Write” and
“Read” attribute items. For the continue-a policy (without any seeded fault),
there exist 41 requests satisfying rel3. There are 3 requests (counterexamples)
violating rel3. One counterexample is that Members are Denied to read their
Password resources, while they are Permitted to write Password resources. Con-
sidering a Password resource as a critical resource and are Denied to be read, this
counterexample does not reveal a fault in the policy. In our evaluation, assuming
that an original policy is correct, such counterexamples could not detect faults.
However, we suspect that inspecting these special cases of policy behaviors would
still provide value in gaining high confidence on the policy correctness, reflected
by the preceding password example.

In addition, Figure 8 illustrates the average fault-detection ratios for each
policy, each other fault type, and each technique/approach. For other fault
types, our results show that Prioritization and Basic achieve the highest faulty-
detection capability.

6 Related Work

Prior work that is closest to ours is Bauer et al.’s approach [7]. They proposed an
approach to mine association rules, which are used to detect miscofiguration in a
policy. Our proposed approach is different from their approach in three aspects.
First, given subject, action, and resource attributes, our approach mines vari-
ous implication relations such as relations of subject, action, and subject-action
attribute item sets. In contrast, their mined implication relations are limited
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since their approach does not consider action attributes separately. Second, our
approach includes a technique to prioritize which counterexamples should be in-
spected first based on their fault-detection likelihood while their approach does
not include such a prioritization technique. Third, our approach exploits of char-
acteristics of RBAC policies to mine implication relations whereas their approach
uses historical access data to mine implication relations.

Our previous work [5] developed an approach for measuring the quality of pol-
icy properties in policy verification. Given user-specified properties, our previous
approach measures the quality of the properties based on fault-detection capabil-
ity. Our previous work [8] developed an approach to use machine learning algo-
rithms (e.g., a classification algorithm) to mine policy properties automatically.
Given request-decision pairs, this previous approach mines request-classification
rules that classify requests to certain decisions. The rules there are based on
a statistical policy-behavior model, which is statistically true. Therefore, faults
can be likely to be detected when the policy violates this model. While this
previous approach relies on classification rules, in this paper, we propose a new
approach to mine likely properties based on implication relations (via association
rule mining) and our evaluation shows that our new approach performs better
than this previous approach.

7 Discussion

Our approach could be practical and effective to detect real faults in policies.
Real faults may consist of one or several simple faults as described in our eval-
uation, and may cause a policy’s behaviors to deviate from the policy’s normal
behaviors. Detecting real faults often depend on detecting such simple faults,
which are shown to be effectively detected by our proposed approach. Our ap-
proach relies on attribute items (generated from a policy) for mining likely prop-
erties and thus could be applied to other types of access control policy beyond
XACML policies.

In this paper, we do not consider implication relations based on resource,
subject-resource, or action-resource attribute item sets. These implication re-
lations can be used to derive valuable information indicating how resource at-
tributes (with subject or action attributes) are correlated. Therefore, these re-
lations may be useful for a policy with resource hierarchy (e.g., classified, un-
classified, and shared resources) in a system. We plan to mine these implication
relations to empirically investigate their effectiveness in terms of fault-detection
capability.

8 Conclusions

We have developed an approach that analyzes a policy under verification and
mines likely properties based on implication relations of subject, action, and
subject-action attributes via association rule mining. Our approach also con-
ducts likely-property verification to produce counterexamples, which are used to
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help policy authors detect faults in a policy. We compared our two techniques
in our approach with a previous related approach [8] in terms of fault-detection
capabilities in four different XACML policies. Our results showed that our ap-
proach has more than 30% higher fault-detection capability than that of the
previous related approach, which mines properties based on a classification algo-
rithm. Our results showed that our basic and prioritization techniques reduce a
significant percentage of counterexamples for inspection compared to the related
technique. Moreover, the prioritization technique further reduced a number of
counterexamples (for inspection) to detect a first fault over the basic technique.
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