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Abstract. Security and privacy concerns as well as legal considerations
force many companies to encrypt the sensitive data in databases. How-
ever, storing the data in an encrypted format entails non-negligible per-
formance penalties while processing queries. In this paper, we address
several design issues related to querying encrypted data in relational
databases. Based on our experiments, we propose new and efficient tech-
niques to reduce the cost of cryptographic operations while processing
different types of queries. Our techniques enable us not only to overlap
the cryptographic operations with the IO latencies but also to reduce the
number of block cipher operations with the help of selective decryption
capabilities.

1 Introduction

Sensitive data ranging from medical records to credit card information are in-
creasingly being stored in databases and data warehouses. At the same time,
there are increasing concerns related to security and the privacy of such stored
data. For example, according to a recent New York Times article [1], records
belonging to more than hundred million individuals have been leaked from
databases in the last couple of years. Although currently criminals have not
taken advantage of such disclosures effectively, there is an obvious need for bet-
ter protection techniques for sensitive data in databases. Common techniques
such as access controls or fire-walls do not provide enough security against hack-
ers that use zero-day exploits or protection from insider attacks. Once a hacker
gets an administrator access to a server that stores the critical data, he/she can
easily bypass the database access control system and reach the entire database
files. Although it brings some extra cost, encrypting the sensitive data is con-
sidered as an effective last line of defense, to counter against such attacks [2].
Also recently, legal considerations [3] and new legislations such as California’s
Database Security Breach Notification Act [4] require companies to encrypt sen-
sitive data. To assist its customers with legislation compliance hurdles, Microsoft
recently developed a new SQL server that comes with built in encryption support
[5]. IBM also offers a similar functionality in its DB2 server, in which data is en-
crypted (and decrypted) using a row-level function [6]. Clearly, if the encryption



keys are not compromised, a hacker (or a malicious employee) that controls the
system will not be able to read all the sensitive data stored on the hard disk.

Cryptographic operations, required to store sensitive data securely, entail
significant amount of cumbersome arithmetic calculations. Coupled with bad
design choices, expensive cryptographic operations needed for querying and pro-
cessing encrypted data could decrease the system performance dramatically. On
the other hand, good design choices may drastically affect the overall perfor-
mance. With this in mind, in this paper, we discuss some of the design issues to
encrypt and query the sensitive data that resides in database disks.

To reduce the performance loss that arises from using cryptographic tech-
niques, we analyzed different block cipher modes of operations and compared
their performances under various disk access patterns to see which modes are
suitable for databases and allow us to parallelize the IO latencies with the cryp-
tographic operations. Based on our experiments and analyses, we suggest using
an efficient and provably secure encryption mode of operation that also en-
ables selective decryption of large data blocks. We also propose a new approach
for storing and processing encrypted data and we show that by using suitable
encryption mode, the additional time needed for processing different types of
queries can be significantly reduced. Before describing our approach, we briefly
discuss the threat model assumed in this paper.

1.1 Threat Model

In this paper, we assume a threat model similar to the one considered in [7], where
the database server is trusted and only the disk is vulnerable to compromise.

We consider an adversary that can only see the files stored at the disk but
not the access patterns. In this case, we just need to satisfy the security under
chosen plain text attacks. In other words, we guarantee that (assuming used
blockcipher (e.g. AES) is secure) by looking at the contents of the disk, any
polynomial-time adversary will have negligible probability of learning anything
about the sensitive data.

Specifically, we assume that (See Figure 1):

– The storage system used by the database system is vulnerable to compromise.
Only the files stored in the storage system are accessible to the attacker.

– Query Engine and Authentication Server is trusted. We assume that queries
are executed on a trusted query engine.

– All the privacy-sensitive data will be stored encrypted. From the previous
work related to inference controls, we know that probability distribution in-
formation may create unintended inference channels. Since we do not know
such inference channels in advance, we want our solution not to create any in-
ference problem. Therefore, in addition to sensitive data, all the information
that can reveal sensitive data (e.g. log files) will be stored encrypted.
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Fig. 1. Information flow and trust model for querying the encrypted data

1.2 Related Work

In [8], Bayer and Metzger explored the idea of using block ciphers and stream
ciphers for encrypting B+ trees and random access files. They suggest generating
different keys for each page based on the page id to break potential correlation
attacks (pages encrypted with the same key and the same data will have the
same cipher text). The disadvantage of this approach is, changing keys for each
page imposes big key initialization costs. Hardjono and Seberry [9] suggested
special combinatoric structures to disguise keys in B+ trees. Unfortunately, their
combinatoric approach has not received the level of scrutiny required to achieve
trust (as have others such as AES).

Querying encrypted data where even the database server is not trusted was
first suggested in [10]. Hacigumus et al. [10] suggested partitioning the client’s
attribute domains into a set of intervals. The correspondence between intervals
and the original values kept at the client site and encrypted tables with inter-
val information are stored in the database. Efficient query of the data is made
possible by mapping original range and equality query values to corresponding
interval values. In subsequent work, Hore et al. [11] analyzed how to create the
optimum intervals for minimum privacy loss and maximum efficiency. In [12],
the potential attacks for interval based approaches were explored and models
were developed to analyze the trade off between the efficiency and the disclosure
risk. This line of work is different from our current problem because we assume
that the database server is trusted and only the disk is untrusted.

In [7], Agrawal et al. suggested a method for order preserving encryption
(OPES) for efficient range query processing on encrypted data. Unfortunately,
OPES only works for numeric data and is not trivial to extend to discrete data.

In [13], Iyer et al. suggested data structures to store and process sensitive and
non-sensitive data efficiently. The basic idea was to group encrypted attributes



on one mini-page (or one part of the tuple) so that all encrypted attributes of
a given table can be decrypted together. In [14], Elovici et al. also suggested a
different way for tuple level encryption.

Our consideration is different from the ones in [13, 14] in many aspects. Unlike
the previous work, we provide:

– Complete analysis of block cipher modes suitable for databases,
– Analysis of the experiments about overlapping the IO latencies with the

cryptographic operations by using multi-threading,
– A new approach for storing encrypted data in database pages by utilizing

selective decryption property of CTR mode.

1.3 Organization of the Paper

In Section 2, we analyze the performance of different encryption modes under
different granularity and disk access patterns. In Section 3, we discuss tuple
level, page level, and mini page level encryption approaches and introduce a new
approach for keeping records encrypted. Finally, we conclude the paper with the
discussion of other related issues in querying encrypted data.

2 Block Cipher Modes Suitable for Databases

To store privacy-sensitive data securely, we need to use encryption methods
secure against chosen plaintext attacks. Also we need general solutions that could
support all kinds of data that needs to be encrypted. For example, the Order
Preserving Encryption (OPES) idea suggested in [7] works for only numeric data.

Securely encrypting any kind of data is well studied in the cryptography
domain. Any kind of long data is encrypted using operation modes based on
secure block ciphers (e.g, AES[15]). All of these encryption modes process the
long data by dividing into fixed size blocks(e.g 16 bytes in AES[15]) that can be
processed by the block cipher. The obvious question is which block cipher mode
is preferable for encrypting sensitive data in databases. To choose the best mode
possible, we need to analyze the effect of these modes under specific database
operation conditions. Specifically we look at:

– Performance of Encryption Modes under Different Granularity:
We need to encrypt and decrypt the data at different granularity. If we are
encrypting at the tuple level, we may need to decrypt small blocks at a time,
if we use page level encryption, we need to decrypt potentially a page long
encrypted data. Ideally, we should have a mode where different granularity
has little effect on the total performance.

– Performance of Encryption Modes under Different Disk Access
Patterns: We need to have an encryption method that enables efficient
decryption under different disk access patterns.



First, in section 2.1, we give an overview of the block cipher modes that
are suggested by the National Institute of Standards and Technology (NIST).
Later on, in section 2.2 and 2.3, we analyze the performance of different block
cipher modes under different encryption granularity and disk access patterns.
Finally, we conclude this section with the discussion of which block cipher mode
to choose for database encryption.

2.1 Overview of Block Cipher Modes

Before we briefly give an overview of different block cipher modes, we discuss the
notations we use through out the paper. Let EK() be the encryption operation
with the key K and DK() be the decryption operation with the key K. Let Pi

be the ith plain text block, Ci be the ith ciphertext block, IV be the initial
random vector and b be the block cipher input size (e.g 128 bits for AES[15]).
Let LSBs(x) be the s least significant bits of x and similarly let MSBs(x) be
the s most significant bits of x. Also below, S[i..j] denotes the ith through jth

bit of string S , || denotes the string concatenation, and ⊕ denotes the bitwise
xor operation. Table 1 summarizes the notations used for describing block cipher
modes.

Table 1. Notations used for describing block cipher modes

EK() Block cipher encryption with the key K
DK() Block cipher decryption with the key K
b Block cipher block length in bits

Ci ith ciphertext block

Pi ith plain text block
LSBs(x) s least significant bits of x
MSBs(x) s most significant bits of x

S[i..j] ith through jth bit of string S
|| String concatenation
⊕ binary xor operation

Also, for the sake of simplicity, we assume that the plaintext P is n blocks
long (i.e. n·b bit long plaintext). Under these assumption, the block cipher modes
of operations suggested by NIST can be summarized as follows:(The details can
be found in FIPS-SP 800-38A [16])

– Electronic Code Book(ECB): In ECB mode, each block of the plaintext
is encrypted independently. Similarly each block of the ciphertext decrypted
independently. Unfortunately, this mode is not secure since it reveals distri-
bution information. (Note that if Pi = Pj then Ci = Cj)

ECB Encryption: ECB Decryption:
Ci = EK(Pi), i = 1..n Pi = DK(Ci), i = 1..n



– Cipher Block Chaining(CBC): Each block of the ciphertext is created
by encrypting the result of the previous ciphertext block xored with the cur-
rent plaintext block.

CBC Encryption: CBC Decryption
C1 = EK(P1 ⊕ IV ) P1 = DK(C1)⊕ IV
Ci = EK(Pi ⊕ Ci−1), i = 2..n Pi = DK(Ci)⊕ Ci−1, i = 2..n

– The Cipher Feedback Mode:(CFB) In this mode, successive segments
(let s be the size of these segments where 1 ≤ s ≤ b and Cs

i , P s
i denote the

s-bit sized segments of ciphertext and plaintext respectively.) of ciphertext
are concatenated to create an input for forward cipher to create blocks that
are xored with plaintext segments.

CFB Encryption: CFB Decryption:
I1 = IV I1 = IV
Ii = LSBb−s(Ii−1)|Cs

i−1, i = 2..n Ii = LSBb−s(Ii−1)|Cs
i−1, i = 2..n

Oi = EK(Ii), i = 1..n Oi = EK(Ii), i = 1..n
Cs

i = P s
i ⊕MSBs(Oi), i = 1..n P s

i = Cs
i ⊕MSBs(Oi), i = 1..n

– Output Feedback Mode(OFB): This mode is very similar to CFB with s
taken as b. In this simplified description of OFB, we assume that ciphertext
is n ∗ b bits long.

OFB Encryption: OFB Decryption:
I1 = IV I1 = IV
Ii = Oi−1, i = 2..n Ii = Oi−1, i = 2..n
Oi = EK(Ii), i = 1..n Oi = EK(Ii), i = 1..n
Ci = Pi ⊕Oi, i = 1..n Pi = Ci ⊕Oi, i = 1..n

– Counter Mode(CTR): In this mode a counter(ctr) is incremented and the
encrypted counter value is xored with plaintext block to get the ciphertext
block.
CTR Encryption: CTR Decryption:
Ci = Pi ⊕ EK(ctr + i), i = 0..n− 1 Pi = Ci ⊕ EK(ctr + i), i = 0..n− 1

2.2 Evaluating the Performance of Encryption Modes under
Different Encryption Granularity

In [13], Iyer et al. states that encrypting the same amount of data using few
encryption operations with large data blocks is more efficient than many oper-
ations with small data blocks. In order to support this claim, they conduct an
experiment using three ciphers: AES[15], DES[17] and Blowfish[18] under differ-
ent data blocks: 100 bytes, 120 bytes, 16 KBytes. Based on the results of this
experiment, they conclude that encrypting data few small units at a time takes
longer than encrypting the same amount of data using larger data blocks.

As they stated in their paper [13], the key initialization costs constitute the
most important cause of the high amount of time spent in encrypting small blocks



of data. We expect to observe less time difference when the data is encrypted
under different granularity if we can use one key per database table. Using one
key per database table is feasible for many practical applications, because we
can encrypt 2128 bits of data securely [19] using CTR mode of encryption with
a given key. To test this view, we conducted some experiments to investigate
the effect of key initialization. These experiments are performed under different
encryption modes to see which mode is more appropriate to use under different
encryption granularity.

In our experiments we used the OpenSSL [20] crypto library’s CBC, CTR,
OFB and CFB implementation of AES[15]. We chose AES because it is the
current standard and supported by various companies. ECB is not used since it
is not regarded as a secure mode of operation. We also implemented a slightly
modified version of CTR (referred as CTR4). Modified CTR implementation
encrypts all the counter values first (i.e. calculates all the EK(ctr + i) first) and
then xors it with the plain text data. Algorithms 1 and 2 describe the details
of the modified CTR implementation. In Algorithm 1, we first create a string
S using the encrypted counter values and then xor the first l bit of S with
plaintext message P to get the ciphertext C. Since encrypted counter values are
xored with the plaintext, we do not need to do any padding if the size of the
plaintext is not the multiple of the block-cipher length b.

Algorithm 1 Modified CTR Encryption (CTR4)
Require: Plain text P with length l, initial counter value ctr, and block-cipher length

b.
Set S = EK(ctr + 0)||EK(ctr + 1)|| . . . ||EK(ctr + d l

b
e − 1)

Set C = P ⊕ S[0..l − 1]
return (ctr, C)

Similarly, in Algorithm 2, we first create a string S using the encrypted
counter values and then xor the first l bit of S with ciphertext C to get the
plaintext P

Algorithm 2 Modified CTR Decryption (CTR4)
Require: Ciphertext C with length l, initial counter value ctr, and block-cipher length

b.
Set S = EK(ctr + 0)||EK(ctr + 1)|| . . . ||EK(ctr + d l

b
e − 1)

Return P where P = C ⊕ S[0..l − 1]

Since all of the block cipher operations are done independent of ciphertext
data, CTR4 decryption can be executed in a multi-threaded fashion. One thread
could be used for creating the encrypted counters (i.e., for computing S in Al-
gorithm 2), and other thread could be used to read the encrypted data from



the disk (i.e. reading C from the disk in Algorithm 2). The original implementa-
tion of CTR mode in OpenSSL crypto library calculates Ci−1 before calculating
EK(ctr + i). Thus it is not suitable for multi-threading.

Experiments: All of our experiments are conducted on a 2.79 GHz Intel Pen-
tium D machine with 2 GB memory on Windows XP platform. We ran each
experiment five times and reported the average results.

In the first experiment, we encrypted a total of one GB data which is cached
in memory 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, and 8192 bytes at a time. In
this experiment, the same key is used for encrypting the entire one GB data, and
the key initialization is done only once. In other words, AES set encrypt key()
function is called once. 1 In Table 2, we report the results of experiment 1 in
seconds.

Table 2. Encryption of 1 GB data under different block sizes

Experiment 1 Experiment 2
(With key initialization) (Without key initialization)

Block size CBC CTR OFB CFB CTR4 CBC CTR OFB CFB CTR4
(Byte)

16 24.98 26.19 27.09 25.64 23.02 49.27 50.77 50.50 50.84 47.91
64 24.31 25.75 26.52 25.03 22.81 30.44 32.13 31.41 31.53 29.16
128 23.78 25.56 26.27 25.20 22.31 26.92 28.83 28.27 28.58 25.44
256 23.56 25.50 26.39 25.44 22.11 25.17 27.42 26.61 27.09 23.95
512 23.42 25.50 26.48 25.41 22.17 24.34 26.52 25.89 26.22 23.23
1024 23.38 25.52 26.47 25.39 22.03 24.00 26.23 25.45 25.75 22.78
2048 23.33 25.48 26.55 25.42 22.05 23.78 25.98 25.23 25.66 22.63
4096 23.36 25.53 26.34 25.38 22.28 23.72 25.84 25.25 25.34 22.78
8192 23.25 25.56 26.39 25.41 22.30 23.53 25.84 25.14 25.42 22.75

In the second experiment, we again encrypted one GB of data similar to
experiment 1 but in this experiment, key initialization is done at the beginning
of each data block. Average results of experiment 2 are shown in Table 2 in
seconds.

Experiment 1 indicates that CTR4 mode is the fastest, if the key initialization
done just once at the beginning of the encryption process. Also, if we compare
the results of experiment with or without key initialization for CTR4 (shown in
figure 2), we can observe that encrypting larger blocks requires less amount of
time if the key initialization is performed every time before encrypting each data
block. However, the time required to encrypt the data does not depend on block
size if key initialization is done just once. In other words, if the blocks used are not
too small (i.e. larger or equal to 64 bytes) and one key is used per database table,

1 Initialization means generating substitution tables based on the secret key and this
can be a costly operation as reported in [13].



the encryption block size does not effect the total decryption times. Actually, it
is easy to see this fact from the API of modern crypto packages like the OpenSSL
Library. For example in OpenSSL, to start encrypting with a key (similar for
decryption), the key initialization function (AES set encrypt key()) should be
called first. After the initialization is done, encryption function can be called on
various size blocks.

At the same time, experiment 1 indicates that encrypting small blocks (i.e.
less than 64 bytes) at a time could be a problem. Fortunately, clever usage of
CTR4 mode can solve the small block size problem. (This is not possible with
other modes) Since each block is encrypted independently, we can combine blocks
from different tuples (i.e., combine 4 blocks from 4 different tuples to create a
64 byte block) and decrypt/encrypt them together.

Fig. 2. Effect of key initialization under different granularity

2.3 Performance of Encryption Modes under Different Disk Access
Patterns

In this part we conducted four experiments to evaluate the performance of en-
cryption modes under random and sequential disk access patterns. In each ex-
periment, data is accessed 4 KB page at a time, since it is the default page size
in many DBMSs such as IBM DB2 [21]. We describe those four experiments
below.

– Experiment 3:
In the first part, one GB of encrypted file cached in memory is read sequen-
tially and decrypted using different encryption modes. In the second part,
the same experiment is repeated with the same file which is accessed from
disk (i.e. file is not cached in memory). The results of the experiment are
shown in Table 3.
The results show that whether the data resides in memory or not, does not
affect the time for reading and decrypting data sequentially. This implies
that during the decryption of the current page disk controller can prefetch
the next page.



Table 3. Results of experiment 3 (reading and decrypting 1 GB file sequentially)

Crypto Mode: CBC CTR OFB CFB CTR4

from memory 29.02 31.17 30.92 30.89 27.89
from disk 28.91 31.94 30.5 31.05 27.31

– Experiment 4:
In the first part, 512 MB of the 1 GB encrypted file is accessed randomly
4K page at a time from memory and decrypted using different encryption
modes. In the second part, the same experiment is repeated with the same
file which is accessed from the disk. The results of the experiment are shown
in Table 4

Table 4. Results of experiment 4 (reading one GB file randomly and decrypting 512
MB)

Crypto Mode: CBC CTR OFB CFB CTR4

from memory 15.7 16.73 16.38 16.52 15.03
from disk 262.63 262 271.94 266.3 267.64

The results of the experiment 4 indicate that random access to the pages
causes significant delays if the data is not cached in the memory.

– Experiment 5:
Multi-threaded version of CTR4 2 is used to decrypt the 512 MB randomly
accessed data, which took 257.3 seconds in the average. This experiment is
not performed with the other modes since they do not allow multi threading
during decryption.
If the result of experiment 5 is compared with experiment 4, we can see that
multi threaded version of CTR4 reduces the decryption cost significantly,
by overlapping the IO operations with decryption operations. In experiment
4, decrypting 512 MB of 1 GB file randomly takes 266.1 seconds in the
average. However, performing the same experiment takes 257.3 seconds in
this experiment. Therefore, multi threaded version of CTR4 runs almost 9
seconds faster than other modes of operations in the average.
In order to support this claim, we have calculated the time to decrypt 512 MB
allocated memory space sequentially with CTR4, which took 11.2 seconds
to perform. This result indicates that 9 seconds of running experiment 5 is
overlapped with IO operations.
This implies that using hardware accelerators, most of the time required
for cryptographic operations can be overlapped with the random access IO
operations.

2 i.e One thread reads the data, other thread encrypts the counter values. When both
threads are done, their results are xored to get the plain text.



– Experiment 6:
Multi-threaded CTR4 is used to decrypt the 1 GB file sequentially. The
average of the results indicates that it takes 28.05 seconds to decrypt the
file sequentially. When compared with the results of experiment 3, it can be
concluded that the time to read and decrypt one GB file sequentially is not
significantly reduced by using the multi threaded version of CTR.

The above results imply that the cost of the cryptographic operations can be
overlapped with the cost of the IO operations using fast hardware based multi-
threaded implementation of CTR mode, which could improve the performance
especially in storage area networks where disk access latency could be higher.

2.4 Which Mode?

We would like to have a block cipher mode that is suitable for efficient pro-
cessing of encrypted data in databases. Due to reasons stated below, CTR mode
emerges as the best choice among classic and proven to be secure block cipher
modes for efficiently querying encrypted data. The properties of CTR mode that
is useful for database encryption can be given as follows:

– Efficient Implementation: In all of our experiments, modified version of
CTR (CTR4) was the fastest. Since the encryption of each block is indepen-
dent, modern processor architecture’s properties such as aggressive pipelin-
ing, multiple cores, and large number of registers can be utilized for even
more efficient implementation [22]. For example, in [22], optimized version
of CTR mode is four times faster than the optimized version of CBC mode.
Also CTR mode is suitable for parallel processing.

– Selective Decryption CTR mode could be used to decrypt arbitrary parts
of the plaintext. For example, for each tuple encrypted using CTR mode,
during the selection operation, we may just decrypt the selection field first
and decrypt the rest if the selection criteria is satisfied. To see why we can de-
crypt the arbitrary substring of a given ciphertext, consider the algorithm 3.
In algorithm 3, first the counter values that are used to encrypt the P [u..v]
are calculated. Later on, using the counter values bu

b c and dv
b e, encrypted

counter values are created. Finally, the appropriate segment of the encrypted
counter values are xored with the required part of the ciphertext (i.e. C[u..v])
to compute P [u..v].
Other block cipher modes such as CBC, CFB, OFB defined for AES[15]
in the FIPS-SP 800-38A[16] standard do not allow for selective decryption
because the encryption of a block depends on the encryption of the previous
block. This implies that we cannot selectively decrypt the required part of the
data. ECB and CTR modes of operation encrypt each block independently.
Unfortunately, ECB mode reveals the underlying distribution of the data.
Therefore, it does not provide the desired level of security.

– Preprocessing In CTR mode, most costly part of the encryption and de-
cryption (evaluating EK(ctr+i)) can be done without seeing the data. Actu-
ally, we used this property in Experiment 5 and showed that this can reduce



the encryption cost significantly. This is not possible for all the modes except
OFB mode but OFB mode does not allow selective decryption.

Algorithm 3 Decryption of arbitrary substring of ciphertext in CTR mode
Require: Ciphertext C with length l, initial counter value ctr, block-cipher length b,

decryption start index u and decryption end index v
Set S = EK(ctr + bu

b
c)|| . . . ||EK(ctr + d v

b
e − 1)

return P [u..v] = C[u..v]⊕ S[(u− bu
b
c · b)..(v − bu

b
c · b)]

3 A New Approach for Storing Encrypted Data in
Database Pages

Granularity of encryption is another important design issue that needs to be con-
sidered for efficient storage of encrypted data. The overall database performance
can potentially be affected by small changes in the design choices regarding the
way of keeping the records in the pages. Tuple level and page level encryption
are the most well known options for this purpose. Alternatively, we can use the
mini-page approach suggested in [13].

In tuple level encryption, each tuple is encrypted or decrypted separately. If
the database needs to retrieve some of the tuples, there is no need to decrypt all
of the tuples in the table.

Page level encryption will correspond to a mechanism where a particular
page is completely decrypted when buffer pool needs to access the page from the
disk. After some modifications, the page is encrypted again and written to disk.

Mini page level for database encryption was first suggested for encrypted data
in [13] based on the work of Ailamaki et.al [23]. In this technique, when a tuple
is inserted into a page, its attributes are partitioned and stored in corresponding
mini pages on the same page.

Deciding to use one of these approaches depends on two factors:

– the cost of the required block cipher operations under different types of
queries

– the amount of modification required to implement these approaches in con-
ventional databases

The mini page level encryption, as discussed in [13], is designed in such a
way that the sensitive attributes of the records are encrypted with AES [15] in
CBC mode and inserted at the beginning of the page. When a page is read from
disk, just the first part of the page is decrypted. Since all the sensitive attributes
of the records are located at the beginning of the page, the decryption process
continues until all sensitive attributes are decrypted.



Although this idea is a neat solution for encrypting sensitive data, there are
two issues that are not addressed. The first issue is that it does not allow selective
decryption since the encryption mode is selected as CBC mode. When a projec-
tion query needs to get specific attributes among the sensitive attributes, all of
the encrypted attributes should be decrypted. This cost will linearly increase if
the length of the sensitive attributes increases proportionally to the total length
of the records.

Secondly, the mini page level encryption requires significant amount of mod-
ification in the page structure of conventional databases. This is because, the
attributes of the records are kept in two different parts of the page rather than
in a consecutive order.

In the page level encryption, the whole of the page is encrypted before writing
into disk and decrypted before loading into buffer pool. If all the data needs
to be kept secret, this level of encryption is appropriate. In addition to that,
implementing such an approach requires less modification in the page structure of
existing databases. However, this is not preferable since it unnecessarily encrypts
nonsensitive data along with sensitive data.

Because of the problems discussed above, we propose a new encryption
method which we refer to as page level CTR. This method basically utilizes
the selective decryption property of CTR4 and combines the useful aspects of
page level and tuple level encryption methods. Unlike the mini page approach,
sensitive and nonsensitive attributes of the records are kept consecutively. The
decryption is performed for each sensitive attribute of the records separately af-
ter a page is read from the disk. Therefore, it resembles to tuple level approach.

In our encryption method, we propose using CTR4 for cryptographic op-
erations. So we need to somehow store the counter values in the page. Since
each counter value requires a 16-byte of location, keeping one counter value for
each record will entail a nonnegligible storage cost. Fortunately, we can use one
counter value per page instead of one record. With respect to storage of counter
values, our page level CTR approach is similar to page level encryption. Also
we modified and optimized the increment function of CTR mode to increment
counter values as much as needed at a time, instead of just one by one.

The page structure of the proposed method is illustrated in figure 3 with an
example, where we assume that a projection query requires to read the encrypted
attributes of two consecutive records. The start index of the attribute of record
1 is α1 = 220 bytes and of record 2 is α2 = 430 bytes, with respect to the
beginning of the page. Before starting the decryption, the counter value of the
page is read from the beginning of the page. Then this value is incremented by
δ1 where δ1 = bα1

β c = b 220
16 c = 13 with the optimized increment function of page

level CTR approach ( β = 16 since the AES block size is 16 bytes). After finding
the necessary counter value, the CTR4 is used to decrypt the sensitive attribute
of record 1. Then, the same operation is repeated for record 2. After reading
the counter value from the beginning of the page, it is incremented by δ2 where
δ2 = bα2

β c = b 430
16 c = 26. Using this value, the sensitive attribute of record 2 is

decrypted with CTR4.



Here, we illustrated decrypting the sensitive attributes of two records in a
page. However, this operation will be repeated for all records in every page, if
there is a projection query that needs to read all of the records in a table.

Fig. 3. Illustration of Page Level CTR approach

In the next section, the performance of mini page and page level CTR meth-
ods are compared based on our experiment results. In these experiments, we
observed that selective decryption aspect of page level CTR causes significant
performance gain under different query types.

3.1 Experiments and Analyses

In order to compare the performance of Mini page and Page level CTR methods,
we conducted some experiments. The first experiment is implemented to analyze
the performance when all incoming queries to database are projection queries.
The second experiment differs from experiment 1 since the queries are selection
queries.

In both of these experiments it is assumed that the tuple lengths are 500
bytes and 70% of the tuples (350 byte/record) are encrypted. In each run, a 512
MB file is read sequentially from the disk and processed. In each read operation,
4 KB data is read from the disk since it is the default page size in many DBMSs.

The mini page method is implemented as it is discussed in the previous
section. When a page is read from the disk, only the first part of the page is
decrypted. Since all the sensitive attributes of the records are located at the be-
ginning of the page, the decryption process continues until all sensitive attributes
are decrypted.

On the other hand, page level CTR method is implemented by consecutively
locating each record, which has sensitive and nonsensitive attributes. As it is
discussed before, when a particular sensitive attribute of a record needs to be
read, the counter value of that page is incremented as much as needed. Then
CTR4 is used to decrypt the required sensitive attribute.

Projection Experiments: To observe the selective decryption property of
page level CTR encryption method, we wanted to analyze the performance of



projection queries in this experiment. As it is shown in figure 4, in the page level
CTR method, the time required to decrypt the encrypted projection attribute
is proportional to the length of the attribute. However, it is independent in the
mini page level since this method decrypts all sensitive attributes to read the
projection attributes of tuples. In contrast, page level CTR, decrypts as much
data as needed to be decrypted. Therefore, both of the techniques require almost
the same amount of time when the projection attribute is the only sensitive
attribute in the record.

As a result of this experiment, we observed that, compared to mini page
level encryption, page level CTR has a significant impact on reducing the cost
of projection queries.

Selection Experiments: In projection experiments of page level CTR we were
decrypting a certain amount of data for each record. However, in this experiment,
in addition to selection attribute, we may need to decrypt the rest of the other
sensitive attributes if the selection criterion is satisfied during query processing.
This can be illustrated via an example, in which we have a table T with attributes
A1, A2, and A3, where A1 and A2 are encrypted but A3 is not. In order to process
a query such as ”SELECT * FROM T WHERE A1 = X”, the attribute A1 of
each tuple should be decrypted. If the result of the condition A1 = X is true,
not only A1 but also A2 should be decrypted. So, the performance of page level
CTR depends on the selection condition of each tuples. Because of this reason,
we repeated the experiments for different probability values of selecting a tuple.

The results of the experiments are shown in Figure 5, 6, and 7 where the
probability of selecting a tuple is 30%, 60% and 100% respectively.

Fig. 4. Experiment results for projection
queries

Fig. 5. Experiment results for selection
queries

An important point to note is that the time required to decrypt tuples in-
creases gradually when the probability of selecting tuples increases. When the
probability is 100%, the cost of decrypting tuples becomes independent of the
byte length of selection attribute. In addition, the cost of decrypting tuples in



Fig. 6. Experiment results for selection
queries

Fig. 7. Experiment results for selection
queries

page level CTR is slightly more than the cost associated with the mini page as
it is seen in Figure 7. The main reason for this is the overhead of extra index
calculations in page level CTR approach.

In the selection experiment, we observed that selective decryption feature of
page level CTR causes significant performance gain if the selection probability
is low.

4 Discussion

We now discuss other encrypted data related issues in database management
systems.

– Key Management: Using careful implementation of CTR mode, we can
encrypt up to 2128 bits of data with a single key. Therefore, for most cases,
we only need one encryption key per table. These encryption keys must be
either stored in tamper-proof hardware or encrypted with a master key. If
the master key option is chosen, during the system start, this master key
can be loaded by the database administrator. If we do not want to trust the
DB administrator with the master key, we can use classic threshold schemes
to store the master key. For example, using a (k, t) secret sharing scheme,
we can distribute this master key to t people and any k or more of them can
come together to construct the master key [24].
For security purposes, in the CTR mode, the same counter value should
not be used for encrypting two different blocks. A simple way to solve this
problem is to maintain a global counter value for each encryption key in use
and update the counter value after each incrementation.

– Insertion, Deletion, and Updates: As mentioned above, counter values
in CTR mode could not be used again. At the same time, we keep one
initial counter value per page and calculate the counter values needed for
selectively decrypting some attributes of the tuples using this initial counter
values. When we need to update a part of the page, we need to encrypt the
entire page with a different initial counter value.



– Transaction Management When there is an insert, delete, or update op-
eration, DBMS will write a log to the log file. Therefore, to protect the
sensitive data, we also need to encrypt the log file pages corresponding to
encrypted tables. Otherwise, sensitive data values could be extracted from
log files.

5 Conclusions

In this paper, we discussed the performance of different block cipher modes,
under different encryption granularity and disk access patterns. Based on our
experiments and analyses, we suggested a CTR based approach for encrypting
data in DBMSs. We showed its potential for processing encrypted data faster by
starting decryption process even before seeing the encrypted data. In addition
to that, we proposed a page level encryption method by utilizing the selective
decryption feature of CTR mode. Based on the results of our experiments, we
compared the performance of the encryption method that we propose with the
performances of other approaches and show its advantages under different query
types. As a future work, we plan to implement our proposed approach using
cryptographic accelerators in a distributed database environment.
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