
A Distributed Coalition Service Registry for Ad-hoc
Dynamic Coalitions: A Service-oriented Approach?

Ravi Mukkamala1, Vijayalakshmi Atluri2, Janice Warner2, and Ranjit Abbadasari1

1 Old Dominion University, Norfolk, VA 23528, USA,
mukka@cs.odu.edu,

2 Rutgers University, Newark NJ 07012, USA,
{atluri, janice}@cimic.rutgers.edu

Abstract. It is often necessary for organizations to come together in a coalition
to share services, without prior planning, to accomplish certain tasks. The dy-
namic coalition-based access control (DCBAC) model facilitates the formation
of dynamic coalitions through the use of a registry service, where available ser-
vices can be advertised by potential coalition members. The central component of
the DCBAC model is the distributed coalition service registry (DCSR). Depend-
ing upon the levels of service needed by the service providers and requesters,
DCSR provides different functionality. We define three levels of DCSR services:
(i) Registry Service (ii)Authenticator Service, and (iii) Query Service. For the last
service, DCSR answers a specific question directly by using the information re-
sources of service providers, when the requester has needed credentials. No direct
interactions are needed between the coalition members in this level of service. In
this paper, we describe our service-oriented approach to DCSR design and show
the flexibility that it offers. The design features are tested through a prototype
DCBAC system built using the .Net framework.

1 Introduction

It is often necessary for organizations to come together to share resources without prior
planning to accomplish a certain task. This is driven by a number of applications includ-
ing emergency and disaster management, peace keeping, humanitarian operations, or
simply virtual enterprises. Typically, resource sharing is done by establishing alliances
and collaborations, also known as coalitions. Secure sharing methods, typically used
in an intra-organizational setup, may incur significant administrative overhead since
they may require access identification for each user who requests resource access. Such
methods do not suit the needs of a dynamic coalition where entities may join or leave
the coalition in an ad-hoc manner or where they need to be formed without warning.
As an example, in a natural disaster scenario such as Hurricane Katrina in 2005, gov-
ernment agencies (e.g. FEMA, local police and fire departments), non-government or-
ganizations (e.g., Red Cross) and private organization (e.g., local hospitals, suppliers of
emergency provisions) needed to share information about victims, supplies and logis-
tics. While they may have had some on-going information sharing, increased resource
? The work of Atluri and Warner is supported in part by the National Science Foundation under

grant IIS-0306838.



sharing was needed to directly address the situation and they could have benefited from
an automated coalition establishment.

In an earlier work [11], we proposed a dynamic coalition-based access control
(DCBAC) model that enables coalitions to be formed dynamically. Its central compo-
nent is a coalition service registry (CSR) similar to the model adopted for web service
through which services are offered to potential collaborators. Such a model mitigates
the need to negotiate and establish collaboration policies among coalition entities. Any
entity can set its own sharing policies, describe the types of services that it is willing
to share, and specify the required organizational credentials needed to access these ser-
vices. Any coalition entity with rights to the CSR can search the CSR to find relevant
resources. Once found, a coalition entity can obtain a ticket to request the resource
from its owner by submitting its entity’s credentials and having them evaluated by the
CSR. In a later work [6], we extended the concept of a centralized registry to a dis-
tributed CSR (DCSR) in order to promote improved availability, higher concurrency,
better response times and enhanced flexibility. In a distributed DSCR architecture as
seen in Figure 1, several service registry agents cooperate to provide controlled access
to resources.

In this paper, we extend our previous work to suit situations where not all coalitions
need the same level of service. At one extreme, we may have a coalition of members
who simply want a service registry to provide registry service and nothing more (e.g.,
UDDI, DNS, LDAP, etc.). At the other extreme, we may have a coalition where mem-
bers need the service registry to provide credential checking or to even act as the entity
that retrieves and processes the information needed. We examine these two ends of the
spectrum as well as a level in between. Specifically, we consider the following three
service levels:

1. Information Resource Registry Service: Here, DCSR service is simply a registry
- a place for potential coalition members to locate resources that might be of use.
Members themselves perform all needed authorizations and interact directly with
one another.

2. Authenticator Service: Besides performing the registry service, DCSR also per-
forms organizational authentication for requesters. Thus, service providers will
only get requests from the types of organizations with which they are willing to
share their resources. Resource providers need only check individual credentials to
ensure that the individual making the request should have the right to access the
resource.

3. Query Service: Here, DCSR acts as a portal for all shared coalition services. The
coalition members trust the portal to check all credentials. The portal has access
to all information that the resource providers are willing to share and can combine
the information to provide the resource requester with more than simple access to
relevant resources.

These levels of service depend upon four characteristics of coalition membership: (i)
the level of trust amongst coalition members; (ii) the level of trust that the members have
towards DCSR; (iii) the level of processing and security capabilities of the coalition
members; and (iv) the level of desire for anonymity.



Service Level Level of Trust Level of Access Coalition Member
Control in DCSR Left to Members Anonymity

Registry Low High Low
Authenticator Service Med Med Low
Query Service High Low Med

Table 1. Summary of DSCR Service Characteristics

Functions provided by DCSR depend upon the level of service required by the coali-
tions. We group them into the following four categories: Authentication, Registration,
Querying, and Routing. For the first level of service, only registration functions are
needed to register organizations and the services they provide. For the second level of
service, both registration and authentication functions are needed to authenticate the or-
ganizational level credentials of service requesters on behalf of the resource providers.
For the third level of service, all four categories – registration, authentication, routing,
and querying – are needed.

Access control research in the area of dynamic coalitions is relatively new. Philips
et al. [9] described the dynamic coalition problem by providing several motivating sce-
narios in a defense and disaster recovery settings. They have developed a prototype that
controls access to APIs and software artifacts [8]. Cohen et al. [3] proposed a model
that captures the entities involved in coalition resource sharing and identifies the inter-
relationships among them. In [1, 5], the researchers addressed the issue of automating
the negotiation of policy between coalition members in a dynamic coalition. Finally,
in [12], Yu et al proposed automated mechanisms for trust building between entities
using digital credentials Our research complements these works by addressing the issue
of automatic translation of coalition level policies to the implementation level policies,
and vice versa. Our approach [11, 6] concentrated on enabling coalitions to be formed
dynamically through a coalition service registry. In this paper, we expand our ideas on
the functionality of the coalition service registry to meet the needs of various types of
coalitions and we provide our initial results in implementing these ideas.

This paper is organized as follows. In section 2, we describe the proposed service-
level architecture of DCSR. In section 3, we provide details of DCSR design. Section
4 describes the prototype implementation that serves as a proof-of-concept. Finally,
section 5 summarizes the contributions and describes future work.

2 DCSR: Functions and Services

Depending upon the service level, the DCSR provides a subset of the following func-
tions as shown in Table 2: Registration, Authentication, Authorization, Query Process-
ing, Request Routing.

The Registration function is used whenever a member intends to share its local
services with the coalition. The registration process is as follows.

1. The member (or service provider) sends a service registration request to DCSR. The
request consists of details such as API (methods), key terms, service policy (e.g.,



Coalition Service
Registry Agent

(CSRi)

Coalition Service
Registry Agent

(CSRk)

Coalition Service
Registry Agent

(CSRj)

Coalition Service
Registry Agent

(CSRl)

Network (e.g. Internet)

Coalition Entity
A

Coalition Entity
B

Fig. 1. Distributed Coalition-based Access Control: Architecture

Service Level Registration Authentication Authorization Query Request
Processing Routing

Registry X X
Authenticator X X X
Service
Query Service X X X X X

Table 2. Summary of DSCR Functions Used Per Service

WS-Policy), service location, etc. It is also possible to register a service proxy (e.g.,
Jini’s proxy service or stub [7]). The API describes the service being offered, the
inputs, and the outputs. The key terms are useful when a non-local user is searching
for a service (e.g., yellow pages). The service policy (e.g., WS-policy) describes
the service policy. This includes the credentials needed to execute the service, any
special security parameters such as encryption algorithms, authentication schemes,
etc. The location field indicates the web location where the service is available (e.g.,
URL address). In cases where a service proxy is registered, the proxy would be
downloaded by the non-local members to access the service. Once again, following
the philosophy of the naming services (e.g., DNS) and service providers such as
Jini, the service registration is only for a limited time (e.g., lease) after which the
service is either automatically revoked or renewed by the provider.

2. On receiving the service registration request, DCSR authenticates the service provider
organization. The authentication process may use any standard protocol such as the
ones using public key cryptography or secret key cryptography. In addition to au-
thentication, if other security methods such as encryption and digital signatures are
used, then DCSR validates the received request using appropriate methods.

3. DCSR checks the request for completeness and its compliance with the coalition
policies. For example, there may be a coalition policy in which only certain mem-



bers are allowed to register services or there may be restrictions on the type of
services they offer.

4. Optionally, DCSR could be provided with the ability to test the registered services.
While DCSR will not be able to check the correctness of the semantics, it may be
able to check some syntactic checks and the location information.

5. DCSR makes the service available to the coalition by publishing it in its service
directory. The associated service policy is stored in the policy database.

6. DCSR sends an acknowledgment to the service provider.
7. Optionally, it may inform (advertise) the new service to the coalition members.

The authentication function is needed for interaction between a coalition mem-
ber and the DCSR. The DCSR interacts with coalition members during initial joining
of the coalition, service registration, service access, etc. When a member first joins a
coalition, it establishes an authentication policy such as shared key for challenge, cre-
dentials, certificates, login/password, etc. This procedure may have been established
using an out-of-band channel. For example, the DCSR administrator could directly in-
teract with the new member’s administrator to establish the authentication procedure
and keys. Alternatively, they may use other in-band channels such as SSL to first estab-
lish a secure channel and then mutually agree on the authentication procedure an keys
to be used henceforth. To limit the damage in case of compromised nodes, the authen-
tication procedure may include limited time keys which need to be renewed or changed
prior to their lapse.

Once a member joins a coalition, DCSR authenticates it using the established pro-
cedure in all its interactions.

The authorization function decides what service are to be made available to which
users. Here, we use credential-based authorization where authorization policies are
specified in terms of policies at different levels: coalition-level, organization-level, and
service-level. The authorization function is initially enforced by the DCSR in showing
only permissible services to a specific user. Service-lvele enforcement is done by the
service provider.

The Query function identifies whether a resource request can be met by a registered
service. As stated above, this requires the resolution of policies at the coalition, mem-
ber, and service levels, and determining which services are to be made available to the
specified user (with given credentials).

The Routing function is responsible for routing member service requests to the
service provider and sending back the reply to the requester. As shown in Figure 2,
there are three options for DCSR in handling service requests. According to the option
specified, (or implemented), DCSR routes the requests and replies.

2.1 Registry Service

For the registry service (Figure 2a), the DCSR simply acts as a service directory re-
sponding with one of the following options from general to specific:(a) A list of services
offered (b) A list of services (API) as well as the associated WS-policies (c) WS-policy
only when the query is for a specific service. After responding, it has no role to play in



Figure 2a. Design where DCSR simply acts as a registry of services

Figure 2b. Design where DCSR authenticates requester organization
and generates a token (a la Kerberos )

Figure 2c. Design where DCSR acts as the only interface to the coalition members

DCSR

Coalition level
(Service

Requester Org.)

Coalition level
(Service

Provider Org.)
2

1

Registry lookup

DCSR

Coalition level
(Service

Requester Org.)

Coalition level
(Service

Provider Org.)

1
2

3

4

Registry lookup

DCSR

Coalition level
(Service

Requester Org.)

Coalition level
(Service

Provider Org.)

1
3

2

4 Registry
 lookup

Fig. 2. Three Modes of Operation of DCSR



terms of the service access request from a member. However, in the case where a mem-
ber registers a service proxy with the DCSR, it could send the proxy to the requester. A
member can send two types of queries to the DCSR.

2.2 Authenticator Service

Under the authenticator service (Figure 2b), the DCSR receives the service request and
generates a token to be submitted to the service provider. Under this option, the DCSR is
also acting as a trusted third party. This is similar to the role of Kerberos in establishing
a secure session between two untrusted parties. The steps under this role are as follows.

(i) Authenticate the requesting organization.
(ii) Extract the requester credentials from the request (e.g., decrypt the message, verify

the digital signature, etc.).
(iii) Check the coalition policy as well as WS-policy of the service being requested for

acceptance of the service request.
(iv) If all checks are successful, generate a token (similar to Kerberos tokens) with the

submitted credentials. In addition, as in Kerberos, it may generate a session key to
be shared between the requester and the provider and include it in the token. The
token itself is signed and encrypted. Features such as nonces and validity periods
may be included to limit the possible damage due to requester compromise and to
avoid replay attacks.

(v) The token is sent to the requester along with the generated shared key.

Once the requester receives the token, it can directly establish a connection with the
service provide and get services using the token.

2.3 Query service

For the query service (Figure 2c), DCSR does it all. In particular, it follows the follow-
ing steps.

(i) Authenticate the requesting organization.
(ii) Extract the requester credentials from the request (e.g., decrypt the message, verify

the digital signature, etc.).
(iii) Check the coalition policy as well as service policy of the service being requested

for acceptance of the service request.
(iv) Invoke the services at the service provider (using whatever agreed upon protocol),

submitting the requester credentials.
(v) Receive result/reply from the service provider.

(vi) Forward the result/reply to the requester.

In the above steps, we implicitly assume that the messages between the requester
and the DCSR as well as the ones between DCSR and service provider are signed and
encrypted. Under this option, first DCSR acts as a server to the requester. Next, it acts
as a client to the service provider.

In fact, under this role, DCSR’s functionality may be extended to that of a service
provider that provides new aggregation services that are themselves built using the ser-
vices registered by the members.



3 DCSR Design

In the above section, we have described the services offered by DCSR. We now look at a
way to design DCSR so as to achieve the service objectives set for DCSR. In particular,
we have the following goals for the DCSR design.

1. Customizability. It should be possible to customize the services offered by DCSR
for a specific coalition.

2. Extendibility. It should be possible to add new functionalities to DCSR within an
established DCSR in a coalition.

3. Scalability. It should be possible to use the same design framework for small,
medium, and large coalitions

4. Performance. It should offer good performance in terms of low overhead, expected
response time, and good throughput.

Keeping these goals in mind, we propose a service-oriented design (SOD) that offers
all functionality (internal and external) as a service [4]. The proposed design has seven
components. Following is a brief description of each of these components.

User interface is the primary gateway into DCSR. It receives all requests, makes the
necessary checks, and invokes other required services.

Security services is part of infrastructure services needed by all other components
and higher level services. It services include authentication, authorization (e.g., issue of
tokens), encryption and decryption, digital signatures and MAC, key management (e.g.,
key generation, key distribution, key storage), and certificate management (e.g., certifi-
cate validation, certificate storage, certificate generation). Almost all DCSR services
use these services.

Communication services is another infrastructure service and hence used by other
services. It offers both unicast (one-to-one communication) and multicast (one-to-many)
options. DCSR management is a key component that manages the set of agents that rep-
resent distributed DCSR as one logical unit. These services are primarily used by DCSR
agents, and not by the users. Agent registration management, agent monitoring, consis-
tency management, and load balancing (among agents) are part of this component.

Policy management component offers services that are used by other DCSR com-
ponents (e.g., member services, membership management, and DCSR management)
to register and retrieve policies. These policies may correspond to the services, to the
members, or to the DCSR agents themselves. It would also include coalition policies.
In fact, components such as security services may register its own policies for key man-
agement here.

Member management component provides several services for the coalition mem-
bers (i.e., organizations). Whenever a new members intends to join a coalition, it uses
the registration services. In addition to join operation, it also handles the leave opera-
tions. In case the join operation is only on a lease basis (as in Jini [7]), it also provides
means to renew the membership.

Member services registers services for sharing offered by the coalition members. A
member may register its services using the service registration function. As before, the
module also handles withdrawal of services as well as renewal of services when they are



made available only on a lease (e.g., Jini [7]). A member also registers a service policy
along with the registered service. When a member intends to search for a service, it uses
this service. The service returns a set of services that satisfy the query criteria.

3.1 SOD: An example

To illustrate how our design follows service-oriented approach (SOD), consider the
service registration function of the DCSR service architecture. Figure 3 illustrates how
this function is implemented by composing several DCSR services. Here are a few
instances of how it uses these services.

– Authenticate the coalition member who is requesting service registration using Au-
thentication service (of Security Services component).

– Decrypt the service request and parameters with Decryption service.
– Check request validity using Digital Signature service.
– Verify coalition’s policy of registration (e.g., which members are allowed to register

services) by means of Query Polices service (of Policy Management).
– Check if this is a duplicate request using Query Service Registry service (of Mem-

ber Services).
– Register the service policy (e.g., WS-policy) of the new service using Policy Reg-

istration (of Policy Management).
– Check the validity of the registered policy (with coalition policies as well as the

requesting member’s policies) using Policy Validation service (of Policy Manage-
ment).

– Propagate the service registration information to other DCSR agents using DCSR
Consistent management service (of DCSR Management).

– Send a reply to the requester using Unicast service and Secure Communication
service (of the Communication Services).

– Alternately, it could use the Multicast service, Secure Communication service, and
Reliable Communication service to reliably propagate the service registration in-
formation to other DCSR agents. Optionally, in a publish/subscribe paradigm, it
could send the same information to the subscriber coalition members.

3.2 Meeting the Design Goals

We will now briefly analyze as to how the proposed design satisfies its goals. Clearly, the
proposed DCSR design satisfies the customizability goal as it is modular in structure.
For example, if a coalition with minimal trust on DCSR intends to use DSCR only
as a registry, then the member services module can be simplified to offer only service
registration and query service functions. If there is a single DCSR agent, then much
of the communication services module can be simplified to offer only unicast services.
Similarly, the DCSR management services module can be eliminated. Policy validation
service of the Policy Management component can also be eliminated.

Similarly, suppose a coalition has initially settled with level 1 service (i.e., DCSR as
registry only). If it now decides to extend the functionality to level 2 service, then using



Services
Registration

Policy Registration

Policy Management

Query Policies

Policy Validation

Security Services

Authentication

Encryption/
Decryption

Digital Signatures/
MAC

Member Services

Query Services
Registry

DCSR Management

DCSR  Consistency
Management

Communication Services

Unicast

Multicast

Secure
Communication

Reliable
Communication

Member Services

Fig. 3. Service-oriented design: An example

our design one simply needs to add additional service blocks into DCSR components.
For example, if initially there was a single DCSR agent, and if it is to be extended to
have multiple agents, then one simply needs to add the DCSR Management component.
Thus, extendability goal is achieved.

The scalability goal is achieved through the ability to have multiple DCSR agents
and the ability to add/remove agents using DCSR Management services. Thus, as a
coalition grows or shrinks, the number of DCSR agents also can grow or shrink. The
load balancing service helps balance the load at an agent. The addition of new coalition
members is handled by the Membership Management.

The final goal of performability can only be verified through prototype building and
further analysis. So we can’t yet claim that this design goal is achieved.

4 DCSR Implementation

As a proof-of-concept, we have currently implemented a DCSR prototype using .Net
framework. The primary reason for the choice, in addition to its being a service-oriented
architecture, is the flexibility it offers in the creation and the use of services [10]. For
example, by declaring every service as a web service, it is very easy to create and
refer to these services in .Net. In fact, due to this flexibility, every service, whether
offered to coalition members by DCSR, or offered to processes within DCSR itself, is
implemented as a web service. We now describe the implementation.

The current prototype structure is shown in Figure 4. Here, we have implemented
the security layer as the bottom most layer. This layer handles both secure communica-
tion and authentication functions. Once a message (request/reply) has been validated,
it is forwarded to the service support layer. This has procedures that handle the incom-
ing requests from other DCSR agents and coalition members. These procedures make
use of the service registry, policy registry, and coalition manager. For example, when a
member registers a service, the request is handled by a registration procedure that calls



services of policy registry and service registry. Similarly, coalition member manage-
ment procedures use services of the policy registry and coalition registry. In the current
prototype, we assume a static set of DCSR agents and hence we have not implemented
the DCSR management component.

Service Registry
Maintains a list of services
registered  by coalition
members and by DCSR

Policy  Registry
Holds policies for the

registered services from
coalitions and DCSR
(including validation

policies)

Coalition Manager
Handles Coalition member:

1. Login
2. Registration
3. Renewal
4. Withdrawal

Service Support Layer
Holds procedures for handling service requests by coalition  members and DCSR  agents

DCSR Security Layer

Handles secure communication and authentication

Coalition members and other DCSR  agents

Fig. 4. DCSR: Prototype Implementation

Since we are using .Net framework, several of the services proposed in the DCSR
design are already available. For example, consider .Net cryptography module. It of-
fers a variety of hashing algorithms, symmetric and asymmetric encryption algorithms,
and digital signatures. The .Net cryptography service hierarchy is described under Sys-
tem.Security.Cryptography. The available asymmetric algorithms are DSA and RSA,
both available under System.Security.Cryptography.DSA and System.Security. Cryp-
tography.RSA. Similarly, under the hashing algorithms, .Net offers SHA1, SHA256,
SHA 384, SHA 512, DES, Triple DES, and RC2. The prototype makes extensive use of
these services.

While .Net does provide services for expressing policies, we feel that they are in-
adequate for DCSR needs. Accordingly, we built our own policy management services.
We express our policies in XML. This even makes communication with web services
natural and platform independent.

The DCSR member management is completely specific to our application domain
and hence is being implemented completely by us. Similarly, member management is
also being implemented by us with help from other .Net infrastructure services.

It is interesting to note that the implementation issues for DCSR are equally appli-
cable at the coalition member but at a smaller scale. For example, a coalition member
also offers services (for local and non-local users). It also needs to maintain policies and
let its own users register services, etc. While in the real world, each coalition member
may be implementing their system independently and probably using legacy systems,
the prototype design tries capture the similarity by having similar structures for DCSR
and coalition members.



We now describe the prototype through several interfaces made available to mem-
ber organizations and their users. First, as shown in Figure 5, Organization 1 registers
itself with DCSR. At this time, it creates a new username and a password for future au-
thentications (here, username and password alone are used for member authentication).
In addition, it also specifies its organizational policy. For simplicity, the organizational
policy simply describes the type of accesses it is prepared to offer for coalition users
with different credentials. In this prototype, a level number alone is considered as a
user credential. There is also an option for a coalition member to choose to override the
policy at the coalition level (not shown here). For example, the coalition may have a
policy that level 1 users have no access to any service. But a specific coalition member
may choose to override this policy by specifying a read access. The coalition policy is
stored in XML format at DCSR. The coalition policy is itself stored in an XML file at
DCSR.

 

Fig. 5. Registration of a Coalition Member

Second, a coalition member intending to share a service, registers the service with
DCSR. For example, in Figure 6, organization 2 registers a service, Dell Drivers, at
DCSR. As part of the registration, it also indicates its service policy. In this example,
it provides read access for level 1 users of the coalition and read/write access for both
level 2 and level 3 users. Once again, an XML file is created and stored at DCSR as
a service policy for each service. At the time of service registration, a member has the
choice of the service to be made accessed directly (using the URL of the service as in
Figure 2a) or indirectly via DCSR (Figure 2c). In the former case, at the time of service
request, DCSR authenticates the requesting member (via login name and password) and
generates a signed token. The token contains the coalition member credentials as well
as the requesting user’s credentials. For simplicity, we have used only the name of the
organization as the coalition member’s credential. Similarly, a level number is used as
a user’s credential. Accordingly, the signed token would also contain the level of the



service requester as indicated by its coalition layer. In the latter case, DCSR sends the
token directly to the service provider to get the reply. The reply is then displayed to the
user. In Figure 6, the latter choice of service via DCSR was made.

 

Fig. 6. Registration of a Service

Third, a user at a coalition member wants to access a service. After a successful local
login, a user is presented with links to both local services and global services (Figure 7).
What is presented to a user, on clicking each link, depends on the local user’s own level
(or credential). In fact the list is presented by DCSR only after it applies the coalition
policy, the service provider policy, and the service policy with the user’s level. In Figure
7, the logged in user (from Organization 2) is presented with two services: Dell drivers
at the global level (non-local services) and intel manuals locally. When a user clicks on
a specific service, that service is invoked. The actions that take place on an invocation
depend on the choice of the registered service.

Fourth, when a user clicks on a service link, the request (in the form of an XML)
is sent to the DCSR by the coalition layer. After DCSR performs the member authen-
tication and other authorization checks, depending on the choice made by the service
provider (i.e., direct or via DCSR) for this particular service, DCSR takes different ac-
tions. In the case of direct option, DCSR forwards an encrypted token to the coalition
layer of the user along with an URL for the service. The coalition layer uses the ser-
vice at that link and supplies the provided token. The service provider checks for the
validity of the token and performs its own authorization checks before making the ser-
vice available. In the case where the services are for read access of pdf files, the files
are sent to the member who in turn displays them to the user. In case, the option is
via DCSR, DCSR forwards the service request (in XML) along with user level to the
service provider. It provides the same service as above but sends it to DCSR who in
turn forwards it to the member. In Figure 7, the user has selected one of the drivers and



Fig. 7. Services offered to a User

clicked on it. He is now provided with the option of executing the file or saving the file
locally. These options depend on DCSR and the underlying policies..

 

Fig. 8. Invocation of a service

Due to limited space, we could not illustrate other features of our prototype such as
coalition member validation, local user validation, the token generation, etc.

5 Conclusion and Future Work

In this paper, we have presented a distributed service registry system that offers differ-
ent levels of services to its coalition members, based on the level of trust among the
members, level of desired anonymity by a member and the degree of the knowledge of



the services offered by the members. Specifically, at the other extreme, we may have
a coalition where members are generally strangers to each other and need the service
registry to provide credential checking or to even act as the entity that retrieves and pro-
cesses the information needed. We have implemented a prototype using .Net framework
to test the features of our proposed DCBAC system.

We have prototyped our DCSR design using .Net framework. Our next step is to
study the impact of different design choices on the performance of the overall DCSR
system and the services it offers to the coalition members. We also plan to measure
the cost (if any) due to the service-oriented approach. To achieve these objectives, we
plan to implement extend our current DCSR prototype with several different types of
options. In particular, we are interested in measuring the impact on performance (e.g.,
response time to user) due to the overhead imposed by the service-oriented architecture
and different CSR options.

References

1. V. Bharadwaj and J. Baras. A framework for automated negotiation of access control policies.
Proceedings of DISCEX III, 2003.

2. K. Birman. Reliable distributed systems. Springer, 2005.
3. E. Cohen, W. Winsborough, R. Thomas, and D. Shands. Models for coalition-based access

control (cbac). SACMAT, 2002.
4. T. Erl. Service-oriented Architecture. Prentice Hall, 2004.
5. H. Khurana, S. Gavrila, R. Bobba, R. Koleva, A. Sonalker, E. Dinu, V. Gligor, and J. Baras.

Integrated security services for dynamic coalitions. Proc. of the DISCEX III, 2003.
6. R. Mukkamala, V. Atluri, and J. Warner. A distributed service registry for resource sharing

among ad-hoc dynamic coalitions. In Lecture Notes in Computer Science. IFIP, December
2005.

7. S. Oaks and H. Wong. Jini in a Nutshell. O’Reilly, 2000.
8. C. Philips, E. Charles, T. Ting, and S. Demurjian. Towards information assurance in dynamic

coalitions. IEEE IAW, USMA, February 2002.
9. C. Philips, T.C. Ting, and S. Demurjian. Information sharing and security in dynamic coali-

tions. SACMAT, 2002.
10. D. Reilly. Designing Microsoft ASP.Net applications. Microsoft Press, 2002.
11. J. Warner, V. Atluri, and R. Mukkamala. A credential-based approach for facilitating auto-

matic resource sharing among ad-hoc dynamic coalitions. In IFIP, 2005. To be published -
August 2005.

12. T. Yu, M. Winslett, and K.E. Seamons. Supporting structured credentials and sensitive poli-
cies through interoperable strategies for automated trust negotiation. ACM Transactions on
Information and System Security, 6(1):1–42, February 2003.


