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Abstract. We demonstrate how access control models and policies can
be represented by using term rewriting systems, and how rewriting may
be used for evaluating access requests and for proving properties of an
access control policy. We focus on two kinds of access control models:
discretionary models, based on access control lists (ACLs), and role-
based access control (RBAC) models. For RBAC models, we show that
we can specify several variants, including models with role hierarchies,
and constraints and support for security administrator review querying.

1 Introduction

Access control has long been recognised as being of fundamental importance
in computer security. In early work on access control models, Lampson [27]
described the use of a matrix for describing the access privileges that users may
exercise on system resources. Variations of the access matrix, typically Access
Control Lists (ACLs), are still very much in use today (see, for example, [16]).
In recent years, Role-Based Access Control (RBAC) [32, 9] has emerged as the
principal form of access control model in theory and practice.

For all types of access control models, from the access matrix to RBAC, re-
searchers have recognised the importance of applying formal techniques to define
access control models, access policies and the operational methods used for ac-
cess request evaluation. Formal specification makes it possible to, for instance,
compare policies rigorously, to understand the consequences of modifying poli-
cies, and to prove properties of policies.

In this paper, we demonstrate how term rewriting [15, 24, 5] may be prof-
itably used in the formalisation of ACL and RBAC models and policies, and we
demonstrate the use of rewriting for access request evaluation with respect to
policies that are defined in terms of these models.

Term rewriting systems are usually defined by specifying a set of terms, and a
set of rewrite rules that are used to “reduce” terms. This simple idea is very pow-
erful: term rewriting techniques have been successfully applied to many domains
in the last 20 years. They have had deep influence in the development of com-
putational models, programming and specification languages, theorem provers
and proof assistants. More recently, rewriting techniques have been fruitfully ex-
ploited in the context of security protocols (see, for instance, [10]) and security
policies for controlling information leakage (see, for example, [17]).



Although rewriting is widely applicable, its application to problems in access
control has hitherto been quite restricted (albeit [26], which uses graph trans-
formations, is a notable exception). Instead, the emphasis in the literature, on
the formalisation of access control, has been on the use of logic languages for (i)
the specification of access control requirements [9, 22, 12], and (ii) sound, com-
plete and PTIME operational methods for evaluating access control requests
with respect to policy requirements (see, for example, [8]). Nevertheless, there
are several reasons to consider the use of term rewriting approaches for ACL
and RBAC model definition, policy specification and access request checking.
The expressivity of term rewriting is an important reason for applying rewrite
techniques to access control: in the past, rewriting systems have been used to
specify, in a uniform way, several computational paradigms, including functional,
logic, imperative and concurrent ones (see, for example, [4, 18, 21]); in this paper
we will show that rewriting can also be used to define ACL and RBAC policies
in a uniform and formal way. Another important reason to use rewrite-based
languages to specify access control policies is that we can then apply rewrit-
ing techniques, and use tools such as ELAN [13, 23], MAUDE [14] and CiME
(www.lri.fr), to study properties of the policies (for instance, to check confluence
and termination of the reduction relation induced by the rewrite rules), to test,
compare and experiment with evaluation strategies, to automate equational rea-
soning, and also for rapid prototyping of access policies. Rewriting systems can
provide a formal basis for the study of a broad range of security issues (e.g.,
authentication [1, 20] and intrusion detection [2]). In this paper we will use term
rewriting systems for the specification, implementation and validation of ACL
and RBAC policies that are used to protect resources in centralised computer
systems from pre-authenticated system users.

The rest of this paper is organised as follows. In Section 2, some preliminary
notions are briefly described. Discretionary access control models are studied
in Section 3, where we show how to specify ACLs as rewrite systems and how
properties of ACL policies may be proven. In Section 4, we describe a variety
of RBAC policies as rewrite systems, and we demonstrate how properties of
these policies may be proven. In Section 5, we discuss related work. Finally, in
Section 6, we draw conclusions and make suggestions for further work.

2 Preliminaries

We begin by describing the principal components of ACLs and RBAC. We then
describe some basic notions on term rewriting. We refer the reader to [16, 9, 5]
for additional information on ACLs, RBAC and term rewriting, respectively.

2.1 The Access Matrix and Access Control Lists

The language of the access matrix [27] includes a finite set U of users (e.g., human
users and software agents), a finite set O of objects (e.g., files and directories),
and a finite set A of access privileges (e.g., read, write and execute privileges).



The access matrix [27] itself includes a row for each subject, and a column
for each object in the system. Each cell of the matrix describes the set of access
privileges that a subject may exercise on an object. An access matrix is usually
implemented as an ACL, which records for each subject the privileges on objects
that are assigned to the subject. A reference monitor is used to evaluate requests
by subjects to exercise access privileges on an object. A user u ∈ U is authorised
to exercise an access privilege p ∈ P on an object o ∈ O if and only if the access
matrix/access control list includes an entry that specifies that u is assigned the
p privilege on o.

2.2 Role-based Access Control

In very simple terms, the fundamental idea of RBAC is that:

– a user u of a resource o may be assigned to a set of roles {r1, . . . , rn} (usually
as a consequence of the user performing a job function in an organisation
e.g., doctor, CEO, etc);

– access privileges on resources are also assigned to roles;
– a user u may exercise an access privilege p on a resource o if and only if u is

assigned to a role r to which the privilege p on o is also assigned.

It follows, from the discussion above, that RBAC models/policies are speci-
fied with respect to a domain of discourse that includes the sets U of users, O
of objects, and P of access privileges, together with a (finite) set R of roles.

The capability of assigning users to roles and permissions (i.e., access priv-
ilege assignments on objects) to roles are primitive requirements of all RBAC
models. The most basic category of RBAC model, flat RBAC [32] (or RBACF

for short), requires that these types of assignment are supported. The RBACH2A

model extends RBACF to include the notion of an RBAC role hierarchy (see
below) in addition to user-role and permission-role assignments. The RBACC3A

model extends RBACH2A by allowing constraints on policies to be represented,
and the RBACS4A model extends RBACC3A by allowing administrator queries
to be evaluated with respect to an RBAC policy specification. The flat RBAC,
RBACH2A, RBACC3A and RBACS4A models from [32] are referred to, respec-
tively, as RBACF , RBACP

H2A, RBACP
C3A and RBACP

S4A logic theories in the
formal representation of RBAC models in [9]. In the remainder of the paper,
we will refer to RBACF , RBACP

H2A, RBACP
C3A and RBACP

S4A theories rather
than models.

In the RBACP
H2A theory, the semantics of user-role assignment may be de-

fined in terms of a 2-place ura predicate (where ura is short for “user role
assignment”) and permission-role assignment can be defined in terms of a 3-
place predicate pra (where pra is short for “permission role assignment”). The
extensions of these predicates define role and permission assignments in a world
of interest.

Definition 1. Let Π be an RBACP
H2A theory. Then,



– Π |= ura(u, r) if and only if user u ∈ U is assigned to role r ∈ R;
– Π |= pra(a, o, r) if and only if the access privilege a ∈ A on object o ∈ O is

assigned to the role r ∈ R.

An RBACP
H2A role hierarchy is defined as a (partially) ordered (and finite)

set of roles. The ordering relation is a role seniority relation. In an RBACP
H2A

theory Π, a 2-place predicate senior to(ri, rj) is used to define the seniority
ordering between pairs of roles i.e., the role ri ∈ R is a more senior role (or
more powerful role) than role rj ∈ R. If ri is senior to rj then any user assigned
to the role ri has at least the permissions that users assigned to role rj have.
Role hierarchies are important for specifying implicitly the inheritance of access
privileges on resources.

The semantics of the senior to relation may be expressed, in terms of an
RBACP

H2A theory Π, thus:

– Π |= senior to(ri, rj) if and only if the role ri ∈ R is senior to the role
rj ∈ R in an RBACP

H2A role hierarchy.

The senior to relation may be defined as the reflexive-transitive closure of an
irreflexive-intransitive binary relation ds (where ds is short for “directly senior
to”). The semantics of ds may be expressed, in terms of an RBACP

H2A theory
Π, thus:

– Π |= ds(ri, rj) iff ri 6= rj , the role ri ∈ R is senior to the role rj ∈ R in
an RBACP

H2A role hierarchy defined in Π, and there is no role rk ∈ R such
that [ds(rk, rj) ∧ ds(ri, rk)] holds where rk 6= ri and rk 6= rj .

Remark 1. In RBAC, users activate and deactivate roles in the course of session
management. Session management is an implementation issue, the details of
which will be the subject of future work.

Example 1. Suppose that the users u1 and u2 are assigned to the roles r2 and
r1 respectively, and that write (w) permission on object o1 is assigned to r1 and
read (r) permission on o1 is assigned to r2. Moreover, suppose that r1 is directly
senior to r2 in an RBACP

H2A role hierarchy. Then, using the notation introduced
above, this RBACH2A policy is represented by the relations:

ura(u1, r2), ura(u2, r1), pra(w, o1, r1), pra(r, o1, r2), ds(r1, r2).

User-role and permission-role assignments are related via the notion of an
authorisation. An authorisation is a triple (u, a, o) that expresses that the user
u has the a access privilege on the object o. Given an RBACP

H2A theory Π, the
set of authorisations AUT H defined by Π may be expressed thus:

(u, a, o) ∈ AUT H ⇔ ∃r1, r2.ura(u, r1) ∧ senior to(r1, r2) ∧ pra(a, o, r2)

According to the definition of the set AUT H above, a user u may exercise
the a access privilege on object o if:



u is assigned to the role r1,1 r1 is senior to a role r2 in an RBACP
H2A

role hierarchy, and r2 has been assigned the a access privilege on o.

Example 2. By inspection of the user-role assignments, permission-role assign-
ments, and the role seniority relationships that are specified in Example 1, it
follows that the set of authorisations that are included in AUT H is:

{(u2, w, o1), (u2, r, o1), (u1, r, o1)}.

To extend RBACH2A theories to RBACC3A theories, separation of duties
constraints must be supported. The static separation of duties (ssd) constraint
is used to specify that a user cannot be assigned to a pair of mutually exclusive
roles [9]. The dynamic separation of duties (dsd) constraint is used to prevent a
user simultaneously activating a pair of roles that are specified as being dynam-
ically separated [9].

To extend RBACC3A programs to RBACS4A theories, permission-role review
must be possible in addition to user-role reviews, the latter being a requirement
of RBACF theories (see [32, 9]). That is, it must be possible for security admin-
istrators to pose queries on RBAC policy specifications to determine (i) the set
of roles a user is assigned to, and (ii) the permissions that are assigned to roles.

2.3 Term Rewriting

Term rewriting systems can be seen as programming or specification languages,
or as formulae manipulating systems that can be used in various applications
such as operational-semantics specification, program optimisation or automated
theorem proving. We recall briefly the definition of first-order terms and term
rewriting systems, and refer the reader to [5] for further details and examples.

A signature F is a finite set of function symbols together with their (fixed)
arity. X denotes a denumerable set of variables, and T (F ,X ) denotes the set of
terms built up from F and X .

Terms are identified with finite labeled trees, as usual. The symbol at the
root of t is denoted by root(t). Positions are strings of positive integers. The
subterm of t at position p is denoted by t|p and the result of replacing t|p with
u at position p in t is denoted by t[u]p.

V(t) denotes the set of variables occurring in t. A term is linear if variables
in V(t) occur at most once in t. A term is ground if V(t) = ∅. Substitutions are
written as in {x1 7→ t1, . . . , xn 7→ tn} where ti is assumed different from xi. We
use Greek letters for substitutions and postfix notation for their application.

Definition 2. Given a signature F , a term rewriting system on F is a set of
rewrite rules R = {li → ri}i∈I , where li, ri ∈ T (F ,X ), li 6∈ X , and V(ri) ⊆ V(li).
A term t rewrites to a term u at position p with the rule l → r and the substitution
σ, written t →l→r

p u, or simply t →R u, if t|p = lσ and u = t[rσ]p. Such a term
t is called reducible. Irreducible terms are said to be in normal form.
1 Here we assume that u is also active in r1 at the time of any access request.



We denote by →+
R (resp. →∗

R) the transitive (resp. transitive and reflexive)
closure of the rewrite relation →R. The subindex R will be omitted when it is
clear from the context.

Example 3. Consider a signature for lists of natural numbers, with function sym-
bols:

– Z (with arity 0) and S (with arity 1, denoting the successor function) to build
numbers;

– nil (with arity 0, to denote an empty list), cons (with arity 2, to construct
non-empty lists), and append(also with arity 2, to represent the operation
that concatenates two lists).

We can specify list concatenation with the following rewrite rules:

append(nil, x) → x
append(cons(y, x), z) → cons(y, append(x, z))

Then we have a reduction sequence:

append(cons(Z, nil), cons(S(Z), nil)) →∗ cons(Z, cons(S(Z), nil))

Let l → r and s → t be two rewrite rules (we assume that the variables of
s → t were renamed so that there is no common variable with l → r), p the
position of a non-variable subterm of s, and µ a most general unifier of s|p and
l. Then (tµ, sµ[rµ]p) is a critical pair formed from those rules. Note that s → t
may be a renamed version of l → r. In this case a superposition at the root
position is not considered a critical pair.

A term rewriting system R is:

– confluent if for all terms t, u, v: t →∗ u and t →∗ v implies u →∗ s and
v →∗ s, for some s;

– terminating (or strongly normalising) if all reduction sequences are finite;
– left-linear if all left-hand sides of rules in R are linear;
– non-overlapping if there are no critical pairs;
– orthogonal if it is left-linear and non-overlapping;
– non-duplicating if for all l → r ∈ R and x ∈ V(l), the number of occurrences

of x in r is less than or equal to the number of occurrences of x in l.

For example, the rewrite system in Example 3 is confluent, terminating, left-
linear and non-overlapping (therefore orthogonal), and non-duplicating.

A hierarchical union of rewrite systems consists of a set of rules defining
some basic functions (this is called the basis of the hierarchy) and a series of
enrichments. Each enrichment defines a new function or functions, using the
ones previously defined. Constructors may be shared between the basis and the
enrichments.

We recall a modularity result for termination of hierarchical unions from [19]
(Theorem 14), which will be useful later:

If in a hierarchical union the basis is non-duplicating and terminating, and
each enrichment satisfies a general scheme of recursion, where each recursive
call in the right-hand side of a rule uses subterms of the left-hand side, then the
hierarchical union is terminating.



3 Access Control Lists as a Rewrite System

In this section, we illustrate the use of rewriting systems to specify ACL policies
with an example. We do not claim that this is the only way to formalise an ACL
policy as a rewrite system. Instead, our goal is to give an executable2 specification
of an ACL policy, to show some basic properties, and to address, using rewriting
techniques, the problem of checking that the specification is consistent, correct,
and complete (that is, no access can be both granted and denied, no unauthorised
access is granted and no authorised access is denied).

3.1 Rewrite Rules

Consider a set of objects, and a set of user-identifiers: U = {u1, . . . , un}, such
that each user has a certain number of access privileges on those objects. For
simplicity, assume that user identifiers are natural numbers, and to make the
example more concrete, assume that the objects are files and the access privileges
are read (r), write (w) or execute (x). For simplicity, we will only consider one
file (the generalisation to many files is straightforward). The policy that we will
model specifies that a user with an even identifier has rw rights (i.e., can read
and write on the file), whereas users with odd numbers can only read, and users
whose identifier is a multiple of 4 can read, write and also execute the file.

Users will request access to the file by using the function access, which will
grant or deny the access depending on the user and the operation requested.
Requests will be expressed as access(u, req) where u is a user-identifier and req
is either r, w or x. The request will be evaluated using the rewrite system RACL

given below; the result will be either grant or deny.
In the rewrite rules below, we denote variables with capital letters (e.g., U is

a variable), and function symbols (including constants) with lower-case letters
(e.g. r, w, x are constants). We use rem(n, m) to compute the remainder of the
division of n by m.

access(U,R) → acl(rem(U, 2), R, U)

acl(1, r, U) → grant
acl(1, w, U) → deny
acl(1, x, U) → deny

acl(0, r, U) → grant
acl(0, w, U) → grant
acl(0, x, U) → f(rem(U, 4))

f(0) → grant
f(1) → deny
f(2) → deny
f(3) → deny

2 For instance, the language MAUDE [14] can be used to execute rewrite-based spec-
ifications



For example, with these rewrite rules a request from user 101 to write on the
file is denied, whereas a request from user 20 to execute it is granted, since:

access(101, w) →∗
RACL

deny.
access(20, x) →∗

RACL
grant.

RACL provides an executable specification of the policy (the rewrite rules are
both a specification and an implementation of the access control function).

3.2 Properties of the Policy

In order for an access policy to be “acceptable”, it is necessary that the policy
satisfies certain acceptability criteria. As an informal example, it may be neces-
sary to ensure that an access policy formulation does not specify that any user
is granted and denied the same access privilege on the same data item (i.e., that
the policy is consistent).

The following properties of RACL are easy to check, and will be used to prove
that the policy specified is consistent, correct, and complete.

Property 1. The rewrite system RACL is terminating and confluent.

Proof. Termination is trivially obtained, since RACL is a first-order system,
and there are no recursive or mutually recursive functions.
To prove confluence, first note that there are no critical pairs, therefore the
system is locally confluent. Termination and local confluence imply conflu-
ence, by Newman’s Lemma [30].

Corollary 1. Every term has a unique normal form in RACL.

As a consequence of the unicity of normal forms, our specification of the
access control policy is consistent.

Property 2 (Consistency). For any user u and request req, it is not possible to
derive both grant and deny for a request access(u, req).

We can give a characterisation of the normal forms:

Property 3. The normal form of a ground term of the form access(u, req) where
u is a number and req ∈ {r, w, x} is either grant or deny.

As a consequence, our specification of the access control policy is total, in the
sense that any valid request (i.e., a request from a valid user to perform a valid
operation on an existing object) produces a result (a denial or an acceptance).

Property 4 (Totality). Each access request access(u, req) from a valid user u to
perform a valid operation req is either denied or granted.

Correctness and Completeness are also easy to check:

Property 5 (Correctness and Completeness). For any user u and request req:



– access(u, req) →∗ grant if and only if u has the access privilege req on the
file.

– access(u, req) →∗ deny if and only if u does not have the access privilege req
on the file.

Proof. Since we have consistency and totality, it is sufficient to show:

access(u, req) →∗ grant if and only if u has the access privilege req.

This is shown by inspection of the rewrite rules.

4 RBAC Policy Specifications as Rewrite Systems

In this section, we specify RBAC policies in terms of a rewrite system that is
confluent and terminating. The normal forms of access requests are grant/deny
i.e., each access request is reducible to grant or deny but not both.

4.1 Rewrite Rules

As indicated in Section 2, RBAC policies are specified with respect to: a set U
of users, a set O of objects, a set A of access privileges, and a set R of roles.

We will use the function roles : U → List(R) to represent the assignment of
roles to users (note that a user may be assigned to several roles). Lists will be
built from constructors nil and cons (see Example 3), and we will write [e1, . . . , en]
as an abbreviation for the list constructed from the elements e1, . . . , en. It is
worth noting that a predicate ura, as discussed in Section 2, can also be specified
with rewrite rules, since predicates are boolean functions (in this case we could
define a function from pairs (u, r) ∈ (U ×R) to booleans True,False). However,
we prefer to model ura as a function from users to lists of roles because of the
additional advantages this provides. In particular, modelling ura as a function
makes it easy to obtain all of the roles that a specific user is assigned to. This is
an essential requirement of RBACF theories, which emphasise the importance
of performing administrative checks of user-role assignments from an RBAC
policy specification. The following rewrite rules specify a function roles, where
we assume U = {u1, . . . , un} and each rij ∈ R.

roles(u1) → [r11, . . . , r1i]
...

roles(un) → [rn1, . . . , rnk]

To represent the assignment of privileges to roles (called pra in Section 2), we
have again two design choices: we could use a boolean function (i.e., , a predicate)
with three arguments (role, access privilege, object) or we can use a function
priv from roles to lists of pairs (a, o) ∈ (A × O), priv : R → List(A × O).
The second approach has advantages from a security administrator’s point of
view, since a function priv, to compute the set of access privileges assigned to



a role, can be used to perform checks on the access policy specification (as
required for RBACP

S4A policies). We define priv by the following set of rules,
where ri, . . . , rn ∈ R, aij ∈ A, and oij ∈ O.

priv(r1) → [(a11, o11), . . . , (a1i, o1i)]
...

priv(rn) → [(an1, on1), . . . , (ank, onk)]

Example 4. The user-role and permission-role assignments described in Exam-
ple 1 may be expressed by the following rewrite rules:

roles(u1) → [r2]
roles(u2) → [r1]
priv(r1) → [(w, o1)]
priv(r2) → [(r, o1)]

Access requests from users can be evaluated by using a rewrite system to
grant or deny the request according to the user-role and permission-role assign-
ments that are included in an RBAC policy specification. For that, we may use
the following rules, where U,A, O, R,L are variables and the operators member
and ∪ are the standard membership test and union operators.

access(U,A, O) → check(member((A,O), privileges(roles(U))))
check(True) → grant
check(False) → deny

privileges(nil) → nil
privileges(cons(R,L)) → priv(R) ∪ privileges(L)

For example, with the assignment shown in Example 4, we have a reduction
sequence: access(u1, r, o1) →∗ grant.

In the discussion that follows, we will use RRBAC to refer to the rewrite
system that contains the set of rules that we have defined in this section.

4.2 Properties of the RBAC Policy

The following properties of RRBAC are easy to check and will be used to show
that the specification is consistent, correct and complete:

Property 6. The rewrite system RRBAC is terminating and confluent.

Proof. To prove termination, we use a modularity result for hierarchical
unions (see Section 2 and [19]). First, observe that the system RRBAC is
hierarchical: the rules defining roles, priv and check form the basis of the
hierarchy, they are trivially terminating since the right-hand sides of rules
are normal forms, and they are non-duplicating because the right-hand sides
contain no variables. The rules defining privileges are recursive, but the re-
cursive call is made on a subterm of the left-hand side argument. The rule



defining access is not recursive. Therefore, the rules defining privileges and
access satisfy the recursive scheme and the full system is terminating.
To prove confluence, first note that there are no critical pairs, therefore the
system is locally confluent. Termination and local confluence imply conflu-
ence, by Newman’s Lemma [30].

Corollary 2. Every term has a unique normal form in RRBAC .

As a consequence of the unicity of normal forms, our specification of the
RBAC policy RRBAC is consistent.

Property 7 (Consistency). For any u ∈ U , a ∈ A, o ∈ O: it is not possible to
derive, from RRBAC , both grant and deny for a request access(u, a, o).

We can give a characterisation of the normal forms:

Property 8. The normal form of a ground term of the form access(u, a, o) where
u ∈ U , a ∈ A and o ∈ O is either grant or deny.

As a consequence, our specification of the access control policy is total.

Property 9 (Totality). Each access request access(u, a, o) from a valid user u to
perform a valid action a on the object o is either granted or denied.

Correctness and Completeness are also easy to check:

Property 10 (Correctness and Completeness). For any u ∈ U , a ∈ A, o ∈ O:

– access(u, a, o) →∗ grant if and only if u has the access privilege a on o.
– access(u, a, o) →∗ deny if and only if u does not have the access privilege a

on o.

Proof. Since the specification is consistent and total, it is sufficient to show that
access(u, a, o) →∗ grant if and only if u is assigned the access privilege a on the
object o. By inspection of the rewrite rules:

access(u, a, o) → check(member(a, o), privileges(roles(u)))

Therefore, the result is grant if and only (a, o) ∈ privileges(roles(u)) if and only
if (a, o) ∈ priv(r) for some r ∈ roles(u).

It is important to note that the proofs above do not have to be generated by
a security administrator; rather, the proofs demonstrate that an RBAC policy
RRBAC satisfies the properties described above. A security administrator can
simply base an RBAC policy on the term rewrite system that we have defined
and can be sure that the properties of RRBAC hold.



4.3 RBAC with a Hierarchy of Roles: RBACP
H2A Policies

It is easy to accommodate a notion of seniority of roles where a role inherits, via a
role hierarchy, the privileges of its subordinate roles (as explained in Section 2).
For that, we just add rules of the form dsub(ri) → [r1, . . . , rj ] to specify a
function dsub : R→ List(R), where dsub(ri) = [r1, . . . , rj ] means that r1, . . . , rj

are direct subordinate roles of ri (hence ri is directly senior to r1 . . . rn). Then,
we redefine the privileges of a role as its privileges plus the privileges of its direct
subordinate roles. We use the functions dp to compute direct privileges (which
corresponds to the previously defined priv) and the function privileges defined
above:

priv(r) → dp(r) ∪ privileges(dsub(r))

Note that we do not need to change the definition of access (see Section 4.1) to
accommodate hierarchies of roles, and we do not need to impose conditions on
the form that a role hierarchy takes (apart from an acyclicity condition, which
is a natural requirement for RBAC role hierarchies).

There are obvious optimisations that could be made if the hierarchy contains
sharing (i.e., we should avoid computing twice the privileges of a role if it appears
as a subordinate role of several of a user’s roles). For instance, we may want to
compute first all the roles of a user, including subordinate ones, and then the
privileges of this set of roles. Efficiency considerations will be addressed in future
work.

4.4 RBAC with constraints and reviews

For RBAC policies beyond RBACP
H2A policies, separation of duties constraints

must be supported and it must be possible for security administrators to review
policy specifications (beyond simple user-role reviewing). We can implement sev-
eral administrative checks on an RBAC policy, again as rewrite rules.

Separation of Duties is the property that specifies that roles assigned to a user
cannot be mutually exclusive. To ensure that a specification of an RBAC policy
satisfies the separation of duties property, we will erase conflicting roles assigned
to a user (producing a list of roles without mutually exclusive pairs). This is
obtained by evaluation of clean(roles(u)) in a rewrite system containing the rules:

clean(nil) → nil
clean(cons(R,L)) → cons(R, clean(eraseclash(R,L)))
eraseclash(R, nil) → nil

eraseclash(R, cons(R′, L)) → cons(R′, eraseclash(R,L)) (R,R′ do not clash)
eraseclash(R, cons(R′, L)) → eraseclash(L) (R,R′ clash)

Reviews We can add to the specification RRBAC the rules given below. Then,
to check that every user has been assigned a role, an administrator could simply



evaluate the term RolesDefined?(u).

RolesDefined?(u) → review(roles(u))
review(nil) → “error: user without a role”

review(cons(r, lr)) → “OK”

5 Related Work

In terms of security applications, we note that the SPI-calculus [1] was developed
as an extension of the π-calculus for proving the correctness of authentication
protocols. In [3], the π-calculus is applied to reason about a number of basic ac-
cess control policies and access mechanisms. However, the work described in [3]
does not treat RBAC models and policies as rewrite systems. The work most
closely related to ours is Koch et al’s proposal [26]. In [26], RBAC is formalised
by using a graph-based approach, with graph transformation rules used for de-
scribing the effects of actions as they relate to RBAC notions. This formalisation
is used by Koch et al as a basis for proving properties of RBAC specifications,
based on the categorical semantics of the graph transformations. Our work ad-
dresses similar issues to Koch et al’s work but provides a different formulation
of RBAC policies, and focuses on operational aspects. We use rewrite rules both
as a specification and an implementation of an access control policy. To obtain
efficient evaluators for request evaluation, sharing of computations is an impor-
tant issue; for that, we note that graph-based rewriting may be used to devise
efficient evaluation strategies.

In recent years, researchers have developed some sophisticated access control
models in which access control requirements may be expressed by using rules
that are employed to reason about authorised forms of access (see, for example,
[22], [11], and [9]). In these approaches, the requirements that must be satis-
fied in order to access resources are specified by using rules expressed in (C)LP
languages and access request evaluation may be viewed as being performed by
rewriting, using, for example, SLG-resolution [33] or constraint solvers [28]. Our
term rewriting approach offers similar attractions to the (C)LP approaches. We
envisage term rewriting, or more generally, equational specifications, being used
as an alternative to (C)LP. Term rewriting offers an algebraic approach to speci-
fication, where functional definitions can be easily accommodated. In this paper
we have used first-order rewriting system; we could also consider a more re-
stricted framework, for instance, orthogonal rewrite systems (in which case the
confluence property is guaranteed). On the other hand, we could also consider
more general rewriting frameworks, such as higher-order rewriting systems [25,
29], to gain expressivity: we could then use higher-order functions in our policy
specifications.

6 Conclusions and Further Work

In this paper, we have described the representation of ACL policies and RBAC
policies as term rewrite systems. In particular, we have shown how different ac-



cess control models may be flexibly defined in a completely uniform way. We also
demonstrated how access requests may be evaluated with respect to an access
policy specification by term rewriting, and how (static) properties of policies
may be proven of ACL and RBAC policy specifications.

We have argued that term rewriting is particularly attractive in allowing
multiple access control models and policies to be defined in a uniform way. In
future work, we intend to consider the use of term rewriting for the specification
of access control models other than ACL and RBAC. In particular, we wish to
consider the specification of usage control models [31] as term rewrite systems,
and access control models that may be used in a distributed computing envi-
ronments. We also intend to apply our term rewriting approach to problems
relating to the administration of RBAC policies (e.g., issues of administrative
delegation), and to the specification of RBAC policies that allow conditional
user-role, permission-role and denial-role assignments to be specified (see, for
example, [6] and [9]). We also propose to investigate the use of policy material-
isation [22] and policy specialisation methods [8] for the optimisation of access
request evaluation with respect to the formulation of ACL and RBAC policies
as rewrite systems.
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