
Architecturing Conflict Handling
of Pervasive Computing Resources

Henner Jakob1, Charles Consel1, and Nicolas Loriant2

1 INRIA Sud-Ouest, Bordeaux, France,
{henner.jakob,charles.consel}@inria.fr

2 Imperial College, London, UK,
nloriant@doc.ic.ac.uk

Abstract. Pervasive computing environments are created to support human ac-
tivities in different domains (e.g., home automation and healthcare). To do so,
applications orchestrate deployed services and devices. In a realistic setting, ap-
plications are bound to conflict in their usage of shared resources, e.g., controlling
doors for security and fire evacuation purposes. These conflicts can have critical
effects on the physical world, putting people and assets at risk.
This paper presents a domain-specific approach to architecturing conflict han-
dling of pervasive computing resources. This approach covers the software devel-
opment lifecycle and consists of enriching the description of a pervasive comput-
ing system with declarations for resource handling. These declarations are used to
automate conflict detection, manage the states of a pervasive computing system,
and orchestrate resource accesses accordingly at runtime. In effect, our approach
separates the application logic from resource conflict handling. Our approach has
been implemented and validated on various building automation applications.

1 Introduction

The advances in telecommunication technologies and the proliferation of embedded
networked devices are allowing the seamless integration of computing systems in our
everyday lives. Nowadays, pervasive computing systems, as envisioned by Weiser [16],
are being deployed in an increasing number of areas, including building automation and
assisted living.

Typically, a pervasive computing environment consists of multiple applications that
gather data from sensing devices, compute decisions from sensed data, and carry out
these decisions by orchestrating actuating devices. For example, in building automation,
motion and temperature sensors are used to automate lighting and regulate heating.

The rapid development of new devices (i.e., resources), and development tools
opened to third-parties, have paved the way to an increasing number of applications be-
ing deployed in pervasive computing environments. These applications access resources
without any coordination between them because a pervasive computing platform needs
to evolve as requirements change. In this situation, it is very common for a resource to
be accessed by multiple applications, potentially leading to conflicts. For example, in a
building management system, a security application that grants access inside the build-
ing can conflict with another application dealing with emergency situations like fires,



2 Henner Jakob, Charles Consel, and Nicolas Loriant

preventing the building to be evacuated. In fact, conflicts do not only occur across appli-
cations but also within an application. For example, different modules of an application
may be developed independently of each other, creating a risk that conflicting orders
to be issued to devices. Detecting, resolving and preventing intra- and inter-application
conflicts is critical to make a pervasive computing system reliable. To do so, a system-
atic and rigorous approach to handling conflicts throughout the development lifecycle
is required.

Detecting conflicts is a daunting task. Pervasive computing systems are complex and
involve numerous applications that may conflict on one or multiple resources. Scaling
up conflict handling for real-size pervasive computing systems requires to distinguish
potential conflicts from safe resource sharing. This may depend on the type of a re-
source, for example, a conflict may occur on a resource providing mutually exclusive
operations (e.g., locking and unlocking a door). This may also depend on the applica-
tions being deployed in a pervasive computing environment (e.g., two applications may
access a device inconsistently), precluding application developers from anticipating po-
tential conflicts. Without any support, detecting potential conflicts requires to examine
the code of all the applications to identify each resource usage, and determine whether
it may conflict.

After potential conflicts are pinpointed, it is necessary to resolve each of them. It
requires intimate knowledge about the code of the corresponding applications to resolve
the conflicts by making code changes. Because of the lack of high-level programming
support, writing system-wide conflict-handling strategies is often overlooked. This sit-
uation results in polluting the logic of applications with ad hoc code, compromising the
system maintainability.

The situation is exacerbated by the fact that pervasive computing environments are
prone to changes: applications as well as resources emerge, evolve, and may disappear
over time. These changes directly impact conflict management. This problem is well
known in the telecommunications domain where it was observed that the number of
potential conflicts grows exponentially as new applications are added to an existing
system [10]. Manually handling conflict thus becomes impractical.

Our approach

Managing conflicts is often decomposed into three stages: detection, resolution and pre-
vention [10]. In practice, these stages crosscut the development lifecycle of applications
and pervasive computing systems.

We introduce an approach to conflict management that covers the lifecycle of a per-
vasive computing system. It consists of a design method for applications, supported
by declarations and tools, separating conflict management tasks. This approach facil-
itates the work of architects, developers and administrators: requirements for conflict
management are propagated throughout the development stages.

We propose to declare a pervasive computing system and its applications using a
domain-specific architecture description language (ADL), named DiaSpec [5], devel-
oped in our research group. This ADL serves two purposes: (1) it allows domain ex-
perts to describe the available resources in the pervasive computing environment, and
(2) it is used by software architects to design applications with respect to the declared



Architecturing Conflict Handling of Pervasive Computing Resources 3

resources. We extended DiaSpec with conflict-handling declarations that allow domain
experts to characterize resources from a conflict-management viewpoint. This informa-
tion, in combination with the architecture descriptions, allows to automatically pinpoint
places where conflicts can occur.

To resolve the detected conflicts, we propose to raise the level of abstraction be-
yond the code level, by providing declarative support for conflict resolution. Within an
application, the developer uses declarations to specify states for a pervasive computing
system and order them with respect to their critical nature (e.g., fire is more critical than
intrusion). These states are enabled and disabled depending on runtime conditions over
the pervasive computing system (e.g., fire detection). State changes are used to update
access rights to conflict-sensitive resources (e.g., in case of fire, the fire module takes
precedence over the intrusion module). Our approach is incremental in that states and
priorities can be added as a pervasive computing system is enriched with new applica-
tions. Its declarative nature allows to prevent conflict-handling logic from polluting the
application logic.

Conflict-extended architecture descriptions are used to generate customized pro-
gramming frameworks. These frameworks guide and support the implementation of the
conflict-handling logic. Generating the underlying framework from the architecture de-
scription guarantees that the architecture implementation can only access the required
resources. Additionally, runtime support ensures that access to resources are granted in
conformance with conflict-handling declarations.

Our contributions can be summarized as follows.

– Extended development cycle – We have identified the requirements at different de-
velopment stages to detect, resolve, and prevent conflicts. We have seamlessly in-
tegrated conflict-management activities into a software development lifecycle.

– Conflict-handling declarations – We have extended a domain-specific ADL to de-
clare conflict resolution at an architectural level. A declarative approach is intro-
duced to define the states of a pervasive computing system and their critical nature.
Such declarations form the basis to define the conflict-handling logic of a pervasive
computing system.

– Programming support – Conflict-handling declarations are used to augment the
generated programming framework with code dedicate to conflict handling. This
code (1) guides the implementation of the conflict handling logic within and across
applications, and (2) generates code that manages resource accesses to prevent run-
time conflicts.

The rest of this paper is organized as follows. Section 2 identifies the key require-
ments to manage resource conflicts. Section 3 presents how to integrate conflict man-
agement into the development cycle. Section 4 outlines our implementation. Section 5
evaluates our approach. Related works are discussed in Section 6, and concluding re-
marks are given in Section 7.

2 Background and requirements

In this section, we first present a domain-specific architecture description language,
named DiaSpec [5]. The underlying development process is illustrated with a working



4 Henner Jakob, Charles Consel, and Nicolas Loriant

example of building management. Second, we examine the requirements for managing
resource conflicts when developing pervasive computing applications.

2.1 Background

The DiaSpec language enforces an architectural pattern, named sense-compute-control,
commonly used in the pervasive computing domain [6]. This pattern distinguishes three
types of components, as depicted in Figure 1: (1) resources, which provide sensing and
actuating capabilities on a pervasive computing environment3, (2) contexts, which ag-
gregate and process sensed data, and (3) controllers, which receive information from
contexts and invoke actuators. This architectural pattern goes beyond the pervasive
computing domain and enables high-level programming support and a range of veri-
fications [3, 4, 7].

orders

Contexts

data
context

Controllers

Resources

raw
data

sensed by

act on
Actions

Sources

Applications Resources

Computing
Pervasive

Environment

Fig. 1. DiaSpec architectural pattern










 



































Fig. 2. DiaSpec development cycle

Figure 2 shows how a DiaSpec description drives a five-stage development pro-
cess. (1) A domain expert declares a taxonomy of resources that can be found in the
pervasive computing environment. (2) An architect describes the interactions between
resources, contexts and controllers. Given a taxonomy and an architecture description,
a compiler, named DiaGen, generates a customized programming framework in Java.
(3) The generated framework is used by the developer to implement the application.
(4) The application code can be tested as is, prior to deployment, using a simulator for a
pervasive computing environment, named DiaSim [1]. (5) A system administrator can
deploy the application in a real pervasive computing environment. The suite of tools
supporting our development process is called DiaSuite4.

We now focus on the first three steps of our development process with an application
that treats different types of emergencies in a building.

3 Resources are devices (e.g., a motion detector) or software components (e.g., an address book).
4 DiaSuite is freely available http://diasuite.inria.fr and open source.



Architecturing Conflict Handling of Pervasive Computing Resources 5

1 device LocDevice {
2 attribute location as Location;
3 }
4 device SmokeSensor extends LocDevice {
5 source smoke as Float;
6 }
7 device TempSensor extends LocDevice {
8 source temperature as Float;
9 }

10 device Door extends LocDevice {
11 source status as LockedStatus;
12 action LockUnlock;
13 }
14 device Alarm extends LocDevice {
15 action OnOff;
16 }
17 device Sprinkler extends LocDevice {
18 action OnOff;
19 }
20 device Logger { action Log; }
21
22 action LockUnlock {
23 lock();
24 unlock();
25 }
26 action Log {
27 logEvent(event as String);
28 }
29 action OnOff { on(); off(); }

Fig. 3. Extract of the emergency manage-
ment taxonomy

1 context AvgTemp as Float
2 indexed by location as Location {
3 source temperature from TempSensor;
4 }
5
6 context SmokeDetected as Boolean
7 indexed by location as Location {
8 source smoke from SmokeSensor;
9 }

10
11 context Fire as Boolean
12 indexed by location as Location {
13 context AvgTemp;
14 context SmokeDetected;
15 }
16
17 context DoorStatus as Boolean
18 indexed by location as Location {
19 source status from Door;
20 }
21
22 controller FireCtrl {
23 context Fire;
24 context DoorStatus;
25 action LockUnlock on Door;
26 action OnOff on Alarm, Sprinkler;
27 action Log on Logger;
28 }

Fig. 4. Extract of the architectural descrip-
tion of the fire module

Describing the environment First, the domain expert declares the available resources
of a pervasive computing environment, as is done using an interface description lan-
guage (e.g., WSDL) to declare external resources. In DiaSpec, this process is supported
by a language layer dedicated to describing classes of entities that are relevant to a
given application area. An entity declaration models sensing capabilities that produce
data, and actuating capabilities that provide actions. Specifically, a declaration includes
a data source for each one of its sensing capabilities. An actuating capability corre-
sponds to a set of method declarations. Additionally, attributes are included in an entity
declaration to characterize properties about instances (e.g., their location). Entity decla-
rations are organized hierarchically, allowing entity classes to inherit attributes, sources,
and actions.

Figure 3 shows an excerpt of the taxonomy for the emergency application. Specif-
ically, to detect a fire, the application uses temperature and smoke sensors deployed in
the building. Upon fire detection, the doors are unlocked to ensure the safe evacuation
of all the building occupants. Additionally the alarms of the building are turned on, as
well as the sprinklers nearby the fire. All actions are logged for later analyses.

The domain expert introduces the resource classes with the device keyword. In Fig-
ure 3, a root device with a location attribute is declared (see lines 1 to 3). Attributes
mainly serve as filters for resource discovery in the pervasive computing environment.
The source and action keywords define the capabilities of a resource. For example,
line 5 declares that the smoke sensor produces a float value, indicating the current
smoke intensity. The Door device provides the LockUnlock action (line 12), which
is further detailed in lines 22 to 25.



6 Henner Jakob, Charles Consel, and Nicolas Loriant

Event

Calendar

Boolean

SmokeSensor

DoorSprinkler Alarm Logger

Log

E
m
e
r
g
e
n
c
y
 
A
p
p
l
i
c
a
t
i
o
n

Float

AvgTemp
Smoke

Detected
DoorStatus Occupancy

Boolean

Motion
Sensor

Boolean

Break
Detector

Intrusion

TempSensor

FireCtrl Intrusion
Ctrl

LockUnlock

LockedSatus

Door

OnOffOnOff

Fire

Fig. 5. Architecture of the emergency application

Describing the architecture To support application design, the DiaSpec language of-
fers an ADL layer, based on the architectural pattern depicted in Figure 1, and comprises
resource, context and controller components.

To illustrate the ADL layer, let us examine the emergency application. Figure 4
presents an excerpt of the corresponding DiaSpec declarations, describing the fire mod-
ule. Figure 5 shows a graphical view of the emergency application, including the intru-
sion module. The arrows indicate the flow of information. The resources at the bottom
of the diagram provide information to context components; the resources at the top
provide the controller components with actions on the environment.

The temperature sensors of a room send their values to the AvgTemp component.
Figure 4, lines 1 through 4, introduces this component using the context keyword. It
includes a source declaration, defining the input of this component. The as keyword,
line 1, is followed by the type of the output value (Float). The value is indexed by a
location: the room where the average temperature is measured. Another context compo-
nent, SmokeDetected, gathers information from smoke detectors. Both contexts, the
average temperature and the smoke information, are used by the Fire component to
determine whether there is a fire in the building and its location. Eventually, if there
is fire, the FireCtrl component is invoked. It is declared by the controller keyword
(line 22). This component declares two input sources using the context keyword and
referring to Fire and DoorStatus (lines 23 to 24). The action keyword defines the
actuator operations that can be invoked by a controller component. In our example, the
FireCtrl component can lock/unlock doors, turn on/off alarms and sprinklers, and log
events (lines 25 to 27).

Implementing an application The customized programming framework produced by
DiaGen consists of an abstract class for each DiaSpec component (resource, context,
and controller). The abstract class includes methods that implement the programming



Architecturing Conflict Handling of Pervasive Computing Resources 7

support (e.g., resource discovery and component communication mechanisms). The ap-
plication logic to be provided by the developer is declared as abstract methods. Imple-
menting the application logic is done by subclassing a generated abstract class.

2.2 Requirements
Let us now define our notion of resource conflict and examine the issues to be resolved
within the DiaSpec development approach.

Intra-application resource conflicts Sensors and actuators need to be distinguished
when it comes to resource conflicts. Indeed, sensors can sustain many consumers, re-
questing values either directly (e.g., remote procedure call) or via some runtime support
(e.g., notification server). The situation would be comparable for actuators, if only they
did not have side effects on the environment. This is illustrated in Figure 5, where the
FireCtrl and IntrusionCtrl controllers share resources. These controllers can, for
example, have conflicting effects on the door resource, depending on whether the cur-
rent state of the pervasive computing environment requires anti-intrusion or firefighting
measures.

What this example illustrates is that resolving resource conflicts relies on some no-
tion of state that determines which consumer should acquire the resource. A pervasive
computing environment can be in different states depending on a variety of conditions.
Expressing these conditions is a key to providing a practical approach to conflict reso-
lution. To separate this concern from the application logic, the approach should target
the architecture level. In the door example, we would need to introduce states, enabled
by conditions over relevant sensed data (e.g., smoke intensity, motion detection). Based
on the enabled states, the attempts of the controllers to acquire the doors would be
prioritized.

Note that some actuators can be insensitive to conflicts. An example is the log
action (lines 26 to 28): it can record data in any order, assuming each invocation has the
necessary contextual information (e.g., a time stamp).

Inter-application resource conflicts The emergency application is only a part of the
building management system. The system administrator also deploys a security appli-
cation to manage access in the building. Figure 6 shows a graphical representation of
two applications: emergency and security. Both applications operate the same type of
resources, in this case door and logger.

As can be noted, resource conflicts occur at different levels and require to be man-
aged globally. Even though, conflicting usage of resources can be resolved with respect
to a given state, there needs to be a global, system-wide approach to combining unitary
strategies in a transparent and predictable way.

3 Conflict management
This section presents our approach to conflict management. It addresses the require-
ments discussed previously, and illustrates the approach with the building management
system.



8 Henner Jakob, Charles Consel, and Nicolas Loriant

Log

Alarm Door Logger

Lookup
Access

Intrusion

Status
Door

CtrlFireCtrl

Fire

LockUnlock

AccessCtrl

S
e
c
u
r
i
t
y

E
m
e
r
g
e
n
c
y

OnOff

Intrusion

Sources

Fig. 6. Potential resource conflicts between multiple controller components

3.1 Detecting potential conflicts

Our approach to conflict management revolves around the DiaSpec description of an
application. Such a description exposes the interactions with actuators, allowing re-
source conflicts to be detected within an application, for the application developer, and
between applications, for the system administrator.

Let us examine how the intra-application conflicts between the fire and the intrusion
modules are solved (Figure 6). The process is the same for inter-application conflicts.

In DiaSpec, conflicts may occur when a resource is used by more than one controller
component. Information about the resource usage can be extracted from the DiaSpec
description of an application. This information needs to be refined to account for actions
that are insensitive to resource conflicts (e.g., the log action).

Categorizing actions in the taxonomy We extended the taxonomy language of Dia-
Spec with effect declarations for resource actions. An effect declaration applies to an
action (i.e., an interface and its associated operations), which is part of a device dec-
laration. In practice, we have identified three main effects that need to be expressed.
First, a device includes an action with operations that are mutually exclusive in their ef-
fects. For example, a door is either locked or unlocked. Such an action is declared with
the exclusive keyword. Second, a device combines operations that interfere with each
other. For example, a multimedia device could include two actions: an audio player and
a video player; if both players run simultaneously, they interfere with each other. The
list of interfering actions of a device is declared with the interfering keyword5. Lastly,
when an action is conflict insensitive, it is declared without effect keywords.

In our example, the domain expert has to enrich the declaration of the Door, Alarm
and Sprinkler devices with the exclusive keyword, as is shown in Figure 7. The Log
action is left unchanged because it is conflict insensitive.

5 Interfering actions do not occur in our building management example.



Architecturing Conflict Handling of Pervasive Computing Resources 9

1 device Door extends LocDevice {
2 source status as LockedStatus;
3 exclusive action LockUnlock;
4 }
5 device Alarm extends LocDevice {
6 exclusive action OnOff;
7 }
8 device Sprinkler extends LocDevice {
9 exclusive action OnOff;

10 }

Fig. 7. The taxonomy contains three devices with exclusive actions

Analyzing the architecture description Given the taxonomy declarations enriched
with conflict-handling information, the application developer and, later in the process
the system administrator, investigate potential resource conflicts. A resource usage raises
a potential conflict when two or more controllers may access it. These controllers may
be defined within an application or across applications. In our approach, potential re-
source conflicts are automatically detected from a DiaSpec description. Conflict reso-
lution is expressed with declarations, leaving the application logic unchanged.

3.2 Declaring conflict resolution

To resolve conflicts, we partition resource users with respect to a set of states in which a
pervasive computing environment can be. These states are totally ordered with respect
to their assigned priority level; they are associated with resource users (i.e., controller
components). For example, our building can be in either of the following states, listed
in order of increasing priority: normal, security, or emergency. In doing so, applications
and controllers, within an application, can be assigned different states, resolving their
access to conflicting resources.

To complete our approach, we need to enable and disable states depending on evolv-
ing conditions of the pervasive computing environment. This is done by introducing
state component, leveraging the DiaSpec notion of context component. Recall that such
a component receives information about the pervasive computing environment (e.g.,
smoke, fire, . . . ). A state component uses this information to determine whether the
conditions for a given state hold, producing a boolean value.

1 system state SecuritySt
2 priority 5 to Security {
3 source date from Calendar;
4 }
5 system state EmergencySt
6 priority 10 to Emergency {
7 application state FireASt;
8 application state IntrusionASt;
9 }

Fig. 8. System state-component declara-
tions (inter-application conflicts)

1 application state FireASt
2 priority 15 to FireCtrl {
3 source temperature from TempSensor;
4 source smoke from SmokeSensor;
5 }
6 application state IntrusionASt
7 priority 10 to IntrusionCtrl {
8 context Intrusion;
9 }

Fig. 9. Application state-component decla-
rations (intra-application conflicts)



10 Henner Jakob, Charles Consel, and Nicolas Loriant

Let us illustrate our approach with inter- and intra-application conflict resolution.
Consider Figure 8 where two state components are defined (lines 1 to 9): SecuritySt
and EmergencySt. These components are declared with the system keyword to indi-
cate that they apply system-wide, allowing the system administrator to resolve inter-
application conflicts. With the priority keyword, they are assigned priority values of
5 and 10, respectively, indicating that SecuritySt is less critical than EmergencySt.
Following the to keyword is the applications to which the declared state applies. The
conditions under which a state holds are parameterized by information sources, as is de-
clared for the SecuritySt state with the Calendar source. As well, the conditions may
be parameterized by other states, as is defined by the EmergencySt state with FireASt
and IntrusionASt. In fact, these two states are used to resolve intra-application con-
flicts, promoting state-component reuse – the states are defined in Figure 9 (lines 1
to 9).

Application state components are declared with the application keyword by the
application developer and apply to controller components declared within an applica-
tion. For example, the FireASt state applies to the FireCtrl and IntrusionASt to
IntrusionCtrl. Both controllers, and associated states, are local to the Emergency
application. This local nature also applies to the priority defined by application states.
That is, these priorities resolve conflicts within an application. In our example, these
declarations prioritize FireCtrl over IntrusionCtrl. In doing so, intra-application
conflicts for resources, such as doors, can get resolved.

3.3 Implementing conflict resolution

Declarations of conflict handling are enforced by additional code produced by DiaGen,
shielding the application developer and system administrator from low-level implemen-
tation details.

Let us illustrate the implementation of the conflict-handling logic by considering
the declaration of the FireASt state in Figure 9. This state component relies on two
information sources, temperature and smoke, to determine whether the building is on
fire.

Figure 10 shows an implementation of this state component. In lines 7 and 8, the
component subscribes to all the required sensors. To keep track of the building situation,
the component stores temperature and smoke values from all the locations within the
building. Specifically, the component implementation updates the value (temperature or
smoke) for each location (lines 12 to 21). After refreshing the value, it checks whether
the condition for a fire holds by calling the checkFire method (line 17). This method
determines whether or not a fire is occurring by publishing a boolean value (line 35),
which in turn will enable or disable the corresponding state of the pervasive computing
system (i.e., FireASt).

4 Implementation

To achieve our conflict management approach, we have extended DiaSpec, DiaGen,
and the DiaSpec runtime. The extended DiaSpec runtime is illustrated by our building



Architecturing Conflict Handling of Pervasive Computing Resources 11

1 public class FireASt extends AbstractFireASt {
2
3 private Map<Location , Map<String, Value>> status;
4
5 public void initialize() {
6 status = new HashMap<Location, Map<String, Value >>();
7 allTempSensors().subscribeTemperature();
8 allSmokeDetectors().subscribeSmoke();
9 }

10
11 @Override
12 public void onNewTemperature
13 (Location loc, Temperature temperature) {
14 Map<String, Value> values = getValues(loc);
15 values.put("temperature", temperature.value());
16 status.put(loc, values);
17 checkFire();
18 }
19
20 @Override
21 public void onNewSmoke(Location loc, Smoke smoke) {...}
22
23 private Map<String, Value> getValues(Location loc) {...}
24
25 private void checkFire(){
26 boolean fireDetected = false;
27 for(Location loc : status.keySet()){
28 Map<String, Value> values = status.get(loc);
29 if(values.get("temperature").equals(Temperature.HIGH)
30 && values.get("smoke").equals(Smoke.HIGH)){
31 fireDetected = true;
32 break;
33 }
34 }
35 setFireASt(fireDetected);
36 }
37 }

Fig. 10. An implementation of the FireASt state component

example in Figure 11. We introduce a ConflictCtrl component that subscribes to
state components to gather information about states that get enabled/disabled at run-
time. It combines this information with state priorities to compute access rights, and
update the enforcer components, associated with each resource class (e.g., Door).
The enforcer components intercept resource accesses and decide whether or not to
grant them. Specifically, an enforcer component intercepts a method call and creates
a request of the form (controller, action, resource). Such a request is matched
against an access control list (ACL) attached to each resource class; this ACL comprises
rules of the following form.
(controller , action, resource, [true|false])

When the request matches an ACL entry, the access to the resource is granted de-
pending on the boolean value of the corresponding rule.

Globally, the conflict management process is performed in two stages. Statically,
potential conflicts are detected based on the taxonomy and architecture declarations.
For each detected conflict on a resource, the DiaSpec description is searched to identify
state components dedicated to resolving it. This information is used to parameterize
the ConflictCtrl component. Dynamically, this component will update the ACL of
the enforcer component of all the resources impacted by a state change. The updated
ACL is calculated based on the enabled/disabled states and their priorities.



12 Henner Jakob, Charles Consel, and Nicolas Loriant

Logic must be
implemented

Completely
generated

updateACL

Contexts
Sources

Door
LockUnlock

FireCtrl
Intrusion

Ctrl

Conflict
Ctrl

FireAStIntrusionAst

Enforcer

Fig. 11. Extended DiaSpec runtime system

5 Evaluation

To assess the usability of our approach, we applied it to the building management
system. This case study was particularly interesting because it had been specified in
DiaSpec and implemented, prior to the development of our approach. As a result, it
could serve as a reference implementation, and a basis to be extended with our conflict-
handling approach. We focus on the comprehensibility and reusability of conflict man-
aging code, and the ability to detect conflicts. To test the correct behaviour of both
implementations, original and extended, we used our pervasive computing simulator,
DiaSim [1].

The original building management system was developed by members of our group
who have expert knowledge in DiaSpec. They acted as architect, developer, adminis-
trator, and used their expertise to solve the foreseeable conflicts. The lack of proper
support made them resort to ad hoc strategies to resolve resource conflicts. For ex-
ample, to prevent three different controllers to conflict in accessing doors, they had to
introduce a dedicated action to the door resource for each kind of controller in the tax-
onomy. This action would essentially mimic our conflict resolution strategy, taking a
state as a parameter and determining whether to grant access to the door. In contrast
to our approach, this ad hoc technique requires to structure the taxonomy with respect
to conflict handling concerns and to pollute the application code with conflict handling
logic.

With our approach, adding a new application to an existing system requires to de-
clare and implement an additional system state component, if a new state is needed.
In this case, the new system state component is independent from other components,
besides the new priority level to be introduced.

6 Related Work

Conflicts are a major problem in a variety of domains. For example in telecommuni-
cations, Keck and Kühn show that feature interaction is an exponential problem that
appears when new services are added to an existing system [10]. This problem can be
directly mapped to pervasive computing, their services and features are our applications



Architecturing Conflict Handling of Pervasive Computing Resources 13

and their actions on resources. Calder and Miller [2] use the Spin model checker to ana-
lyze telecommunication systems. To do so, a system (services and features) is modeled
in Promela using temporal properties. Our approach circumvents the feature interaction
problem by relying on existing system specifications and conflict-handling declarations
provided by the domain expert and the application developer.

There exist different strategies to resolve conflicts in pervasive computing environ-
ments. The idea of proactively changing access control on resources is also used by
Gupta et al. [8]. They present a criticality-aware access control approach that is only
studied as a conceptual model. In contrast, we cover conflict management throughout
the development lifecycle: from design to programming, to runtime.

Haya et al. assign a priority to every operation [9]. The priority is calculated by a
central component using information about the current state, the caller and the type of
operation. In comparison, our approach incurs little overhead for resource invocations
because the enforcer component is coupled with the resource, preventing any central
component from becoming a bottleneck.

The work closest to ours is that of Retkowitz and Kulle [11]. They use the notion of
dependency management for handling resource conflicts. It is exemplified in the context
of smart homes where it allows fine-grained configuration of a conflict-aware middle-
ware. It is designed so a user can interact with the system and set priorities for different
applications. In comparison, our approach is not limited to the home automation domain
and addresses conflict handling throughout the development lifecycle.

Tuttlies et al. have a different approach to resolving conflicts. They propose to de-
scribe the side effects of an application on the physical environment [15]. Additionally,
each application states, what it considers a conflict. As a result, they can detect conflicts
between interfering applications. Devising and applying a suitable strategy is left to the
application developer. In contrast, we aim for a system-wide conflict management to
allow system-wide reasoning.

7 Conclusion

In this paper we have presented a domain-specific approach to architecturing conflict
handling of resources. This approach covers the development lifecycle of a pervasive
computing system. Our approach includes a detection of potential conflicts, their res-
olution, and their prevention at runtime. We extended an ADL to add information that
is required for these three stages of conflict management. This information is used to
generate code that guides and supports the implementation of conflict management.

We have introduced new tasks dedicated to conflict management in the develop-
ment process of a pervasive computing system. In the resulting process, application
and conflict handling code are cleanly separated. Furthermore, our approach to conflict
management is incremental and modular, preserving the independence between appli-
cations. This facilitates reuse of applications, and makes the conflict management easier
to understand and verify.

To prevent conflicts, our implementation enforces an ACL for each pervasive com-
puting resource. These ACLs are proactively updated based on the current system state.



14 Henner Jakob, Charles Consel, and Nicolas Loriant

Currently, our approach treats conflicts for classes of resources. This strategy ap-
plies to situations where applications act on all instances of a class (e.g., the emergency
application unlocks all doors). We plan to extend this approach by introducing a perime-
ter (e.g., a room, a floor) in the conflict management declaration of an application.

We also plan to expand our model to include the access rights for users. Access
control is a major problem in pervasive computing environments, since it must handle
physical and virtual objects at the same time [12, 14]. A related research direction is
to integrate user preferences into our model to resolve certain types of conflicts, as
proposed by Shin et al. [13].

References

1. J. Bruneau, W. Jouve, and C. Consel. DiaSim, a parameterized simulator for pervasive com-
puting applications. In International Conference on Mobile and Ubiquitous Systems, 2009.

2. M. Calder and A. Miller. Feature interaction detection by pairwise analysis of ltl properties
- a case study. Formal Methods in System Design, 28(3):213–261, 2006.

3. D. Cassou, E. Balland, C. Consel, and J. Lawall. Architecture-driven programming for
sense/compute/control applications. In International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity, 2010.

4. D. Cassou, E. Balland, C. Consel, and J. Lawall. Leveraging software architectures to guide
and verify the development of sense/compute/control applications. In International Confer-
ence on Software Engineering, 2011.

5. D. Cassou, B. Bertran, N. Loriant, and C. Consel. A generative programming approach
to developing pervasive computing systems. In International Conference on Generative
Programming and Component Engineering, 2009.

6. A. K. Dey, G. D. Abowd, and D. Salber. A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications. H.-C. I., 16(2):97–166, 2001.

7. S. Gatti, E. Balland, and C. Consel. A step-wise approach for integrating QoS throughout
software development. In European Conference on Fundamental Approaches to Software
Engineering, 2011.

8. S. K. S. Gupta, T. Mukherjee, and K. Venkatasubramanian. Criticality aware access control
model for pervasive applications. In International Conference on Pervasive Computing and
Communications, 2006.

9. P. A. Haya, G. Montoro, A. Esquivel, M. García-Herranz, and X. Alamán. A mechanism for
solving conflicts in ambient intelligent environments. J. UCS, 12(3):284–296, 2006.

10. D. O. Keck and P. J. Kuehn. The feature and service interaction problem in telecommunica-
tions systems: A survey. IEEE Transactions on Software Engineering, 24:779–796, 1998.

11. D. Retkowitz and S. Kulle. Dependency management in smart homes. In International
Conference on Distributed Applications and Interoperable Systems, 2009.

12. G. Sampemane. Access Control For Active Spaces. PhD thesis, University of Illinois, 2005.
13. C. Shin, A. K. Dey, and W. Woo. Mixed-initiative conflict resolution for context-aware

applications. In International Conference on Ubiquitous Computing, pages 262–271, 2008.
14. W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong. Access control in collaborative systems. ACM

Computing Surveys, 37:29–41, 2005.
15. V. Tuttlies, G. Schiele, and C. Becker. Comity - conflict avoidance in pervasive computing

environments. In International Workshop on Pervasive Systems, 2007.
16. M. Weiser. The computer for the twenty-first century. In Scientific American, volume 265,

pages 94–104, 1991.


