
Co-ordinated Utility-based Adaptation of Multiple
Applications on Resource-constrained Mobile Devices⋆

Ulrich Scholz and Stephan Mehlhase

European Media Laboratory GmbH
Schloß-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany

{Ulrich.Scholz,Stephan.Mehlhase}@eml-development.de

Abstract. Running several applications on a small, mobile device requires their
constant adjustment to changing environments, user preferences, and resources.
The decision upon this adjustment has to regard various factors of whichthe op-
timality of the result is only one: Further non-functional aspects including user
distraction and the smoothness of operation have to be taken into account, too.
This paper explains various events causing adaptation and details several non-
functional aspects to be considered. It then presents Serene Greedy, a pragmatic
approach for deciding upon adaptation and non-adaptation of simultaneously run-
ning applications in resource constrained, mobile settings. Finally, this paper dis-
cusses Serene Greedy by comparing it against other adaptation reasoning tech-
niques for performance and the mentioned non-functional properties.

1 Introduction

With the emergence of ubiquitous computing, common future scenarios will consist in
people moving around carrying general-purpose mobile devices, which they use exten-
sively to assist both leisure and business related tasks. Naturally, the users expect their
devices to run powerful applications as well as to run several of them simultaneously,
serving different purposes at the same time.

For developers of mobile applications this scenario is verychallenging. Users expect
applications on these devices to have capabilities close tothose of contemporary laptop
PCs. But on top of that, such applications have to cope with various additional restric-
tions, such as sudden context changes, scarce resources, and limited device capabilities.
Applications that meet these complex requirements have to provide the variability to ad-
just to the varying environment as well as a reasoning mechanism that selects the best
fitting variant for every specific situation. Implementing these capabilities in addition
to the application functionality is indeed a demanding task.

Developers can meet the challenges of a mobile setting by building on dedicated
middleware platforms that provide reasoning and variability modeling support [5,9].
For example, utility-based adaptation reasoning allows tofactor out the optimization
mechanism from the business logic: The developer provides afunction as measure for

⋆ This work was partly funded by the European Commission through the project MUSIC (EU
IST 035166) as well as by the Klaus Tschira foundation.

2 Ulrich Scholz and Stephan Mehlhase

the usefulness of a particular application variant in a given situation; a reasoning mecha-
nism then selects the optimal variant. While utility-based adaptation reasoning has been
demonstrated to work well for individual applications, handling multiple simultaneous
applications poses additional challenges that currently receive little attention.

The contributions of this paper are as follows: First, it describes issues arising when
handling multiple applications, in particular performance decrease through excessive
adaptations as well as non-functional problems such as stalling and user distraction
caused by low-yielding re-configurations. It then presentsSerene Greedy, a utility-based
adaptation reasoning technique suitable for co-ordinatedadaptation of multiple applica-
tions. Finally, it discusses the results of applying this technique in the context of the
MUSIC middleware [9].

The next section introduces terms and concepts related to utility-based adaptation of
multiple applications, while Sect. 3 describes non-functional aspects of adapting them.
Section 4 gives a detailed analysis of different adaptation reasons as well as their influ-
ence and importance for maintaining the optimal usefulness. Section 5 presents Serene
Greedy, a pragmatic approach to the adaptation of sets of simultaneously running appli-
cations. Section 6 demonstrates and discusses Serene Greedy. Section 7 reviews related
work and gives further directions. Section 8 concludes the paper.

2 Utility-based Adaptation of Multiple Applications

Non-functional adaptation of multiple applications posesvarious challenges for the ap-
plication developer. We describe these problems in the context of an execution environ-
ment for applications which facilitates adaptation to varying context [4]. We assume
such an environment to follow an externalized approach to the implementation of self-
adaptation where the adaptation logic is delegated to generic middleware working on
the basis of models of the software and its context represented at runtime. We also pre-
suppose the use of utilities as a means to specify the objectives that guide the adaptation
logic [7].

2.1 Components, Variants, Context, and Resources

Applications are assembled ofcomponents, i.e., pieces of code, and several different
collections of components, each called avariant, can realize the same application. At
runtime, the knowledge required for adaptation is represented byplans, where each plan
contains the code of a component and information how to assemble this component with
others. Plans can be installed and removed at runtime, even those used by a running
variant, so the set of available variants of an application can change dynamically.

Contextis a set of values that describes the world from the view of themiddleware
(but not properties of the middleware itself). Applications state which context they de-
pend on and the middleware provides the corresponding values on request. Context
values change in accordance with changes in the world and in principle such changes
are outside of the control of the middleware, the applications, and the user.

Resources, e.g., memory and CPU, are specific context values whose availability
determines whether a variant can be executed in a specific situation. Each variant an-
nounces a specific, fixed amount for each resource that it requires. Resources are being

Co-ordinated Adaptation of Multiple Applications on Mobile Devices 3

assigned to variants by the middleware and only the middleware can take them away.
Consequently, running variants can continue to run regardless of resource changes.

An application variant isvalid if it is given enough resources, i.e., if for each re-
source the required amount is smaller than what is available, and if it uses installed
plans only; otherwise, it isinvalid. In addition, a valid, running variant becomes invalid
if the user removes a plan that is used by that variant.

2.2 Utility and the Utility Function

Many variants provide the same function to the user (e.g., participation in a picture
sharing community), but often with different quality (e.g., with respect to reliability
and bandwidth). The degree to which a particular variant hasthe potential to satisfy the
user’s needs is called theutility of that variant, which is a real number between zero and
one (worst and best).

Each application variant has an associatedutility functionand the utility of a running
application at a specific time point is given by evaluating the current variant’s utility
function on the current context. Formally, the utility function is a mappingfu : V×C 7→
[0,1], whereV is the set of variants andC is the set of possible contexts. As shorthand,
we sayutility function of variant vto refer to the utility function where the variant is
held constant tov. Because the functionfu is arbitrary, the utility values of a variant
under two different contexts are unrelated in the general case; likewise,the utilities of
two different variants under the same context are unrelated.

When working with multiple applications, the user takes interest in them to varying
degree. To allow the user to indicate his preferences to the middleware, it is possible to
assign apriority to applications, which is a real number between zero and one (lowest
and highest). We call an unprioritized utility araw utility. Priorities enable the user to
weight the relevance of applications according to his/her real needs: Giving low priority
to an application with high utility indicates that this application does not help the user
much despite it provides optimal service on an absolute scale.

The product of priority and raw utility of an application is the application’sweighted
utility and the sum of the weighted utilities of all running applications, normalized by
the sum of their weights, is theoverall weighted utility uow = Σ

npiui/Σnpi , or simply
overall utility. Utility-based adaptation assumes thatuow equals user satisfaction and
has the aim to keep this number high at all times.

2.3 Application States and Adaptation

Depending on the interest of the user, an installed application can be in use or not.
Consequently, applications can be in two different states calledinstalledandrunning;
users canstart andstopthem. Figure 1 gives a state diagram of the possible transitions.

On starting an application, the middleware selects and configures its initial variant.
After an event that might render the current variant sub-optimal, the middleware has to
adapt, i.e., to re-consider all currently valid variants of all running applications together
with their priorities. If necessary, it then has to exchangethe current variant of some
applications with another variant. The first step in this process is calledadaptation rea-
soning, the secondre-configuration. The latter step handles state transfer transparently.

4 Ulrich Scholz and Stephan Mehlhase

running
stop

terminated

adaptstart

starting
aborted

installed

Fig. 1: State diagram of application states

Besides re-configuring a running application and letting ituntouched, adaptation
reasoning can also decide toterminatean application, i.e., to stop it without user request:
If your running applications consume all available resources then running another one
does not work. In the component based approach, terminationis always necessary if an
application does not have longer a valid variant as well as ifa set of applications does
not have a set of variants that is valid in combination (i.e.,all sets contain an invalid
variant). In the latter case, one or more applications of theset have to be terminated.
For the same reasons as with termination, adaptation reasoning canabort the start of an
application. The next section shows another possible reason for termination.

2.4 Indirect Dependencies between Applications

In this work, we consider the adaptation of multiple, independent applications running
on the same device. Although such applications do not functionally depend on each
other, there is anindirect dependencyamong them via their shared use of system re-
sources. In resource-constrained settings, giving more resources to one application re-
quires to take them away from another. Therefore, distributing the available resources
is part of finding a valid variant set. The same is true if the weighted utility of an appli-
cation changes. For this reason, finding the variant set withthe highest overall utility in
general requires considering all running applications.

Because of indirect dependencies, the maintenance of the optimal overall utility can
cause termination: Consider the case of two applications that can run simultaneously,
i.e., which have variants that are valid in combination. If avariant of one application
has a high weighted utility but uses so much resources that novariant of the second can
run then this variant alone might yield a higher overall utility than running any valid
pair of variants. In this case, the middleware might stop thesecond application.

3 Non-functional Aspects of Adaptation

The utility-based adaptation approach takes the overall weighted utility as sole measure
for the quality of its result. In other words, utility is thought to equal user satisfac-
tion. Ideally, the middleware constantly adapts the running applications such that their
current variants provide optimal overall utility at all times. Changes in the variant set
remain unnoticed by the user except for modifications in application functionality. The
user is expected to approve these user-perceivable changesbecause they are essential
for maintaining high utility, i.e., user satisfaction.

Obviously, this approach is based on strong assumptions: Itrequires the application
designer to encode the user’s perceived application quality into a real value between

Co-ordinated Adaptation of Multiple Applications on Mobile Devices 5

zero and one. But there are additional user-visible effects that influence user satisfac-
tion, especially when considering multiple applications.Even if each adaptation con-
stantly upholds an optimal utility, the side-effects of this mechanism are noticeable by
the user. In the following we discuss the side-effects performance decrease, stalling of
applications, fidgetiness, and application termination.

Performance decrease: Adaptation requires processing resources and if the rea-
soning runs on a machine that is shared with applications then these resources are not
available for the latter. Because in the worst case, finding an optimal set of variants is ex-
ponential in the number of variants, the user might experience a significant performance
decrease. For multiple applications this problem is particular prominent because it re-
sults in long search times even if each application has a moderate number of variants.

Application stalling : After the reasoning mechanism has decided upon the new
variants of applications, they are re-configured by the configuration middleware. This
process requires to suspend and to re-start applications, which the user experiences as
stalling. In general, we can assume that the middleware limits the negative effects of
re-configuration by detecting and discarding requests for unchanged applications.

Fidgetiness: User-visible changes, e.g., of the GUI and of application functionality,
have the potential of annoying the user. In case of explicit user actions (e.g., discon-
nection of a device and change of location), the user “understands” and endorses a
resulting adaptation. Drastic changes of unimportant applications that yield only slight
improvements are less accepted. Systems that exhibit such behavior are fidget.

Consider the case of an application with two, visually distinct variants. The utility
functions of all variants are almost the same, except for thedependency on a binary con-
text property: Each variant is slightly better than the other for one of the property values.
If the property quickly oscillates between these two values, the application changes ac-
cordingly, although the absolute utility improvement is negligible for each change. In
such cases, suppressing re-configurations for small improvements reduces the fidgeti-
ness of the system.

Application termination : The user can be displeased by applications that terminate
on their own, i.e., without explicit user request. The same alienation can occur if the user
starts an application the middleware decides it is better not to and aborts. As detailed
in Sect. 2.3, this drastic measure must be taken if an application cannot be started or
cannot continue to run and it might be the result of maintaining the optimal overall
utility.

4 Adaptation Events and Affected Applications

Mobile applications have to react to changes in their environment. If suchadaptation
eventscan affect the utility of the currently running applications then the middleware
may have to adapt. Adaptation events can occur at any time andin any number. An
application can be affected by one or more events or it can be unaffected. For each of the
various combinations, the consequences for the adaptationand the overall system differ.
In the following, we first examine the different events and then classify applications
according to the events they are affected by.

6 Ulrich Scholz and Stephan Mehlhase

4.1 Adaptation Events

For our notion of utility-based adaptation, we can distinguish five classes of events:
Changes in Application Status: A user request to start or to stop an application

results in an event of this kind.
Plan Changes: Plans can be installed and uninstalled by the user at any time.

Adding a plan can affect the utility of an application because it possibly allowsnew
variants that improve utility. Removing a used plan rendersthe using application in-
valid; removing an unused one has no effect.

Context Changes: If an application depends on a particular context element then
changes in that element can cause a change of the utilities ofall variants of that appli-
cation. Because the mapping from context to utility is arbitrary and cannot be foreseen,
finding the new best variant requires examining all variants. On the other hand, a run-
ning application can continue to run regardless of changes in context, although its utility
might no longer be optimal.

Priority Changes: The priority of an application scales the raw application utility.
Consequently, a change in priority does not affect the validity of a variant nor the or-
dering of the variant of an application regarding utility. Of course, changing application
priority can render the current variant set sub-optimal viaindirect dependencies.

Resource Changes: Variants of an application differ in their use of system resources.
Because of indirect dependencies between applications, the amount of available re-
sources determines the set of valid variants.

4.2 Classification of Applications Affected by Adaptation Events

An adaptation event can affect the running applications in different ways: For example,
if the user stops one application, the others can continue torun without change. On
the other hand, preserving the optimal utility requires to consider all applications in
combination: If one application adapts, the others have to adapt, too.

In the following we define four classes in which we group the running applications
in case of an adaptation event. To which class an applicationbelongs depends on the
kind of event and whether the application is directly affected or not. Loosely spoken, the
classes are ordered top-down according to the “seriousness” of not adapting their appli-
cations. The classes are mutually exclusive and if an application could belong to several
classes then it is included in the one mentioned first. For example, if an application is
affected by a change of context and of resources, it is in class “Utilities Changed”.

Adaptation Required: Contains applications that are started or stopped and that
use a removed plan. Applications in this class must be adapted by the middleware.

Applications not in this class do not require adaptation, i.e., all valid variants before
the event are valid afterwards, although they might yield a low utility. For these appli-
cations the middleware can decide to skip adaptation reasoning and re-configuration.

Utilities Changed: Contains applications affected by a context change. Because
the utilities of the affected variants change arbitrarily, it is unknown without adaptation
whether there is a better valid variant.

Utilities Similar : Contains applications with new plans and with a new priority.
Furthermore, it contains any application in case of a resource increase. The utility func-
tions previously valid variants of an application with new plans are unchanged while

Co-ordinated Adaptation of Multiple Applications on Mobile Devices 7

new variants might be available. The same is true for any application in case of a re-
source increase. If an application has a new priority, its variant set is unchanged but its
utility function is scaled by a constant factor.

Unaffected: Contains all applications not directly affected by any adaptation event.
Adapting an unaffected application is least likely to improve overall utility: Provided
it is given the same amount of resources then adaptation reasoning will decide for the
currently running variant again. Because of indirect dependencies between applications,
it might still be useful to adapt unaffected applications along with affected ones.

5 The Serene Greedy Adaptation Reasoning Technique

This section presents an adaptation reasoning technique designed for resource-con-
strained mobile devices that pragmatically balances optimality versus the non-functional
aspects of adaptation presented in Sect. 3. In principle, these aspects are relevant for
the adaptation of multiple applications in general. As different settings require differ-
ent adaptation mechanisms, we state several properties that we assume to be present
in resource-constrained platforms. We continue with detailing two adaptation mecha-
nisms that have been demonstrated applicable to solve the adaptation problem. Finally,
we present the Serene Greedy adaptation technique.

5.1 Adaptation in Resource-constrained, Mobile Settings

Adaptation in a mobile setting is assumed to be performed by asingle algorithm running
as part of the middleware; there are no resources to perform extensive negotiations and
to wait for external consultancy. The adaptation process isatomic from the viewpoint
of the applications and potentially affects all applications controlled by the middleware.

Application adaptation has two parts: Adaptation reasoning and re-configuration.
Changing a running variant as well as starting an application requires both steps. Adap-
tation reasoning is computationally expensive but does notstop applications that are
reasoned about. Re-configuration is cheaper than reasoningbut requires suspending
and re-starting a running application. Performing adaptation reasoning for an applica-
tion yields a list of all valid variants, sorted by utility. It always considers all variants of
an application, caching and pre-processing between different adaptations are not used.
Nevertheless, adaptation reasoning has to be performed at most once for an application
during one adaptation process.

In the following, we refer with “applications” to those onlythat can potentially run
after adaptation, i.e., to non-stopped running applications as well as started ones.

5.2 Brute Force and Greedy

The Brute Force adaptation technique [1] can serve as baseline for adaptation reason-
ing. It searches through all sets of variants of all applications. In particular, it always
performs adaptation reasoning for all applications and it does not distinguish between
adaptation events. Termination handling is taken into account by applying two opti-
mization criteria: The first prefers large valid variant sets, the second optimizes overall

8 Ulrich Scholz and Stephan Mehlhase

sereneGreedy

c_sig := 0.1 /* Double value in the range [0,1] */

A := set of all applications; sumP := 0

while(|A| > 0)

S := {t | a in A, t:=getSereneGuess(a, c_sig), t!=null}

if(S == {})

terminateOrAbortStarting(A)

return

else

(p_a, u_a, v_a) := tuple in S with highest p_a*u_a

A := A\{a}; sumP := sumP + p_a

if(p_a*u_a/sumP >= c_sig || cannotContinueToRun(a))

establishVariant(v_a)

else

continue(a)

Fig. 2: The Serene Greedy reasoning method

weighted utility. Therefore, Brute Force will prefer a large, low-yielding variant set over
a single variant with high utility. If all applications can run, i.e., in a resource-rich set-
ting, Brute Force will yield the optimal utility. On the downside, it is exponential in
the number of variants: If it is applied top applications withq variants each then it
considerspq variant sets.

The Greedy adaptation technique [1] performs adaptation reasoning on each appli-
cation individually. It then selects applications one by one, preferring those that provide
a valid variant yielding the highest weighted utility. If the resources are used up then it
stops the remaining applications or aborts their start. Usually, Greedy evaluates much
fewer variant combinations than Brute Force, i.e., only up to p × q. A drawback of
Greedy is that the selected application variants may quickly exhaust the available re-
sources. Thus often, the user will be able to run fewer applications than with an optimal
Brute Force approach.

5.3 Serene Greedy

The simplest way to prevent the non-functional downsides ofadaptation is to not adapt.
Reasoning techniques, such as Brute Force and Greedy, that always reason about all
applications and that re-configure indiscriminately are prone to waste resources, stall
applications, and annoy the user by being fidget. But obviously, not adapting – if possi-
ble at all – will likely result in a sub-optimal overall utility.

Serene Greedy tries to reach a pragmatic balance between optimality versus the non-
functional aspects of adaptation in two ways: (i) It uses a notion of significance, i.e., it
tries to make unforced change to the system only if the improvement is deemed to be
significant and (ii) it tries to guess whether an adaptation is significant or not, based on
the classification of applications affected by adaptation events (cf. Sect. 4.2).

Figures 2 to 4 present the Serene Greedy algorithm. Figure 2 shows the main loop,
which collects guesses of achievable weighted utility, chooses the application with the
best guess, and then either re-configures it or keeps it running unchanged. The latter op-
tion is taken if it is available and if a change would not yielda significant improvement.

Co-ordinated Adaptation of Multiple Applications on Mobile Devices 9

getSereneGuess(a, c_sig): (p, u, v)

if(adaptationRequired(a) || cannotContinueToRun(a))

return adaptationReasoning(a)

else

v_a := running variant of a

u_a := raw utility of v_a under the current context

p_a := current priority of a

if(!unaffected(a) && u_a<1-c_sig && p_a>=c_sig)

return adaptationReasoning(a)

else

return (p_a, u_a, v_a)

Fig. 3: Making serene guesses

cannotContinueToRun(a): Boolean

Yields true if either applicationa is currently not running or if there is no valid variant
of a that can run with the available resources; false otherwise.

adaptationReasoning(a): Tuple of priority, utility, and variant

Performs adaptation reasoning on applicationa. Returns the tuple(p_a, u_a, v_a),
wherev_a is a valid variant that provides the optimal raw utilityu_a andp_a is the
priority of a. It returnsnull if there is no valid variant. On the first call to this function,
all variants ofa are considered; subsequent calls simply return a cached result.

establishVariant(v_a) and continue(a)
After applying the first method,v_a is the running variant of applicationa: If v_a is
currently running then it remains untouched; otherwise, the method re-configures or
startsv_a. The second method keeps the running variant of applicationa unchanged.

adaptationRequired(a): Boolean and unaffected(a): Boolean
These functions yield true if applicationa is classified in the respective class according
to Sect. 4.2; false otherwise.

terminateOrAbortStarting(A)

All applications in setA are terminated if running; otherwise starting them is aborted.

Fig. 4: Additional functions and methods of Serene Greedy

Figure 3 supplies the serene guesses: If an adaptation is required, it reports the resulting
variant and its utility. For applications in class “Unaffected” it hands back the running
variant and its current utility. For applications in classes “Utilities Changed” and “Util-
ities Similar” adaptation reasoning is performed only if their current raw utility is less
than excellent (ua < 1− csig) and their priority allows for a significant weighted utility
(pa ≥ csig). Figure 4 describes the functions and methods used by the algorithm.

6 Discussion

In this section we demonstrate and discuss the Serene Greedyadaptation mechanism re-
garding the non-functional aspects detailed in Sect. 3. Thedemonstration uses artificial
applications that clearly exhibit the effects under discussion. Of course, an evaluation
with real applications and users would be preferable. But because the impact of, e.g.,
fidgetiness is subjective, such studies require large samples and are out of scope of this

10 Ulrich Scholz and Stephan Mehlhase

paper. The applied algorithms were implemented as part of the MUSIC framework [9],
which provides an externalized approach as it was describedin Sect. 2.1. The source
code of MUSIC and of the applications used in this section is available online.1

For pragmatic reasons, MUSIC does not consider resource changes as adaptation
causing event, i.e., it categorizes an application that is only affected by a resource
change as “Unaffected” and not as “Utilities Similar”. MUSIC currently disregards
these events because they happen frequently and considering them would result in con-
stant adaptation reasoning. Note however that the arguments given in Sects. 3 and 4
remain valid despite the change, Serene Greedy is demonstrated according to Sect. 5,
and resources are heeded during adaptation reasoning. Section 7 details an extension
that would allow taking advantage of resource changes.

Serene Greedy requires as input a value for significance. Thehigher this value, the
more applications remain unchanged during adaptation. Certainly, this value should
be chosen in accordance with the applications under consideration: Important changes
should yield a significant utility increase. For the following demonstration we have
decided for a significance value ofcsig = 0.1.

6.1 Performance

The performance of an adaptation mechanism strongly depends on the number of eval-
uated variants. A multi-application setting allows reducing this number in an easy way
by avoiding the adaptation of unaffected applications. We demonstrate this effect with
four applications in a resource-rich setting, where only two of them depend on a spe-
cific context element. Each of the applications has 10 different variants. After a context
change event, we measure the total number of evaluated variants and the total number
of applications that were subject to adaptation reasoning.We also measure the average
adaptation time on a normal PC. The results of this scenario are summarized in Table 1.

Table 1: Performance of different reasoning algorithms

Algorithm Avg. time (ms) # Variants # Apps reasoned about

Brute Force 117.72 10 000 4
Greedy 15.70 40 4
Serene Greedy 9.41 20 2

The numbers clearly show the performance differences of the three algorithms:
Brute Forces evaluates an exponential number of variants, which results in a large run
time. Furthermore, Brute Force and Greedy reason about all applications, while Serene
Greedy reasons only about two. Note that all three algorithms re-configure only the two
applications that are affected by the context change.

Although certainly synthetic, the given scenario is realistic. The number of applica-
tions is kept small, as on small devices most users do not use too many applications at
the same time. Also, applications usually differ in their context dependencies. Note that
using a resource-constrained setting, e.g., a small mobiledevice, would show an even
more significant performance gain of Serene Greedy over the other two.

1 http://developer.berlios.de/projects/ist-music

Co-ordinated Adaptation of Multiple Applications on Mobile Devices 11

Table 2: Priorities, utilities, and memory requirements ofapplicationsA andB

Variant Priority Utility (context “1”) Utility (context “2”) Memory requirement (kB)

A1 0.5 0.9 0.8 100
A2 0.8 0.7 40

B1 0.15 0.8 0.1 120
B2 0.3 0.4 70
B3 0.4 0.3 80

6.2 Fidgetiness and Stalling

Fidget applications waste resources for reasoning and often stall. The following exper-
iment shows how Serene Greedy improves on both effects while loosing only little in
utility. The set up consists of two applicationsA andB in a resource-constrained setting
that does not allow all variant combinations to be valid. Thetwo applications depend
on a context element that oscillates between the values “1” and “2”. Furthermore, ap-
plication A has a higher priority as applicationB. Table 2 gives the priorities of the
applications and the utility values of their variants, as well as their memory require-
ments. The available memory is 190 kB.

Scene 1 in Fig. 5 shows the initial situation of the experiment, using context value
“1”. The variant set with optimal overall utility

{

A1, B1
}

is not valid because of resource
constraints. Therefore, Brute Force selects the set

{

A2, B1
}

. Greedy and Serene Greedy
select bothA1 because it has the highest weighted utility. We also assume that they both
selectB3, so that they initially yield the same overall utility.

After changing the context to “2” (scene 2), all reasoners change to set
{

A1, B2
}

.
Brute Force adapts both applications, the others only one. On the following context
change back to “1” (scene 3), their behavior differs: Brute Force selects its initial variant
set, thus re-configuring both applications; Greedy re-configures applicationB; while
Serene Greedy does not re-configures at all. The additional change fromB2 to B3 yields
an increase of overall utility of about 0.04, which is insignificant. Regarding overall
utility, Brute Force always yields the best values: 0.8, 0.71, and 0.8, while the others are
sub-optimal under context “1”. After reaching context “1” the second time, Greedy is
slightly better than Serene Greedy, because the latter waives the re-configuration toB3.

The experiment shows that Serene Greedy re-configures, i.e., stalls less than the
other two while yielding sub-optimal but comparable utility compared to Greedy for
applications in classes other than Unaffected . The latter observation is supported by an
analysis of the maximal difference between the two reasoners in case of a sub-optimal
decision of Serene Greedy for a single applicationa after a sequence of identical ones.
This difference is at most the overall utility using the optimal variant minus the one
using the current, i.e.,umax

ow − ucur
ow =

pa×(umax
a −ucur

a)/(pa+psum), whereumax
a , ucur

a , andpsum

are the current maximal raw utility ofa, the current utility of the running variant ofa,
and the sum of priorities of all applications accepted priorto a, respectively. Because
of csig > pa andumax

a ≥ ucur
a ≥ 1 − csig (cf. Fig. 3), each individual decision of Serene

Greedy is at most bycsig/(1+c−1
sig×psum) ≤ csig below the optimum achievable in this situa-

tion. Multiple fidget applications are uncritical, too, because with an increasing number

12 Ulrich Scholz and Stephan Mehlhase

Brute Force
Greedy
Sophisticated
Greedy

1 2 3

0.75

utility

Numbers on the edges indicate
the number of re-configured

applications

0.7

0.8

2

0

1

scene

2

1

Fig. 5: Behavior of the different adaptation mechanisms

of running applications their individual contributions decrease. The error term reflects
this correlation by an increasing denominator.

As demonstrated, Serene Greedy can reduce the fidgetiness when adapting multi-
ple applications. Nevertheless, this problem cannot be solved by a reasoning technique
alone: A fidget system disturbs the user, but how much it does so is subjective and also
depends on the applications. For one user, a perceivable change can be important while
another does not care. Likewise, a slight improvement in utility can make the difference
for one user but not for another. In the end, overcoming fidgetiness will require co-
ordinating the applications as well as foresight by the developer and user involvement.

6.3 Application Termination

In a resource-scarce setting, the involuntary terminationof applications can be unavoid-
able. The same can result from maintaining the optimal utility. As such behavior will
likely annoy the user, it has to be minimized. Unfortunately, the problem of keeping
a maximal number of applications running is a variant of the Knapsack problem and
thusNP-complete [6]. Brute Force, which is optimal in this respect, evaluates an ex-
ponential number of variant combinations. Greedy and Serene Greedy perform better;
consequently they are sub-optimal regarding utility and stop more applications.

In general, the problem of termination becomes more prominent for systems which
run adaptation techniques that limit the search effort in favor of performance: They
might miss variant sets that keep applications running and therefore terminate more
applications than necessary. Thus, performance and susceptibility to termination have
to be considered in combination when choosing an adaptationalgorithm.

At least, an adaptation mechanism should keep important applications running, i.e.,
those with high weighted utility, and notify the user for those it decides to stop. Serene
Greedy adheres to the first requirement by preferring high yielding applications. Clearly,
the second one is a task for the middleware as a whole.

7 Related Work and Further Directions

According to the roadmap presented in [2], our work on non-functional effects addresses
challenges for the engineering of self-adaptive systems, among which are understand-
ing the various aspects of self-adaptation, such as user needs and system properties, as
well as classifying the modeling dimensions available. Serene Greedy falls in the cate-
gory of effects of adaptation: It prefers the optimality and operationally of applications

Co-ordinated Adaptation of Multiple Applications on Mobile Devices 13

with high utility over those with low. Its decisions are predictable because high value
applications are likely to continue in case some applications must be stopped, it reduces
overhead by not adapting low value applications, and it increases resilience because
remaining operational is preferred over an insignificant performance gain.

Systems that take into account non-functional aspects whenadapting usually aim at
more “high-level” aspects as the ones covered by this paper:Cheng et al. [3] present a
language to describe non-functional objectives and information about the system, which
allows an adaptation mechanism to take the described aspects into account. Aura [5]
aims at selecting optimal providers for resources and othercharacteristics (e.g., secu-
rity) to keep the user undistributed. Pladian et al. [8] try to improve user experience
by anticipating future resource needs of multiple running applicationsand takes into ac-
count the overhead of adapting. Serene Greedy tries to limitthis overhead by deciding
to not adapt and not re-configure.

While these methods address important non-functional aspects of adaptation, they
are nevertheless susceptible to the “low-level” ones related to the actual search (or non-
search) through the available set of variants. On small mobile devices – and for future
demanding applications – we still consider these search-related issues of high impor-
tance because the optimality of a decision can be easily outweighed by the effort re-
quired to search for it.

Sykes et al. [10] regard the frequency of adaptation and the related delay when
adapting single applications, thus improving on stalling and user distraction. Our ap-
proach considers the adaptation of multiple applications,thus taking into account the
fidgetiness caused by adapting unimportant applications.

The remainder of this section presents directions in which we plan to extend Serene
Greedy. As explained in Sect. 6, its implementation as presented in this paper does not
use resource change events, so it misses the chance to gain valuable increases in utility
on resource-constrained devices. We plan to remove this limitation as follows: Define
an adaptation delay and, for each resource, a significant amount. For each resource,
when reasoning about an application, record the need of the optimal variant. If more
than this amount is available then disregard changes. Otherwise, on significant changes,
adapt after the given delay. With this strategy, resource changes are taken into account
but the undesired non-functional effects are limited.

A way to limit stalling by re-configuration is to stop and re-start only those parts
of an application that differ between the variants; unaffected parts can continue to run.
Imagine an application with a GUI and a business component. If adaptation decides to
exchange the latter part but leaves the GUI unchanged then the user might not notice the
change. Realizing this technique transparently requires the application designer to pro-
vide information about which parts of an application can be adapted independently, new
reasoning techniques that penalize the perpetuation of components, and administration
code that buffers communication between re-configured and unchanged components.

As mentioned before, the utility function can be kept (in part) in memory, which
allows filtering variants beforehand and thus saves re-evaluating them again. Conse-
quently, the time to decide upon a good variant set can be reduced. On the down side,
the memory used for storing this information is not available to the applications such

14 Ulrich Scholz and Stephan Mehlhase

that this approach might yield sub-optimal utility. We planto explore the use of more
structured utility functions, where the same effect can be reached with less memory.

8 Conclusions

The operation of multiple adaptive applications on small, mobile devices requires han-
dling them in a co-ordinated way. Otherwise, non-functional effects of the adaptation
process can obstruct and annoy the user. This paper improvestowards this end in three
ways: (i) We discuss the problem of indirect dependencies between applications in
resource-constrained settings and identify resulting non-functional aspects of adapta-
tion, in particular the problem of application terminationand of fidgetiness, i.e., dis-
turbing adaptations of unimportant applications. (ii) We then analyze different events
that can cause the applications to adapt. This analysis allows to classify running appli-
cations according to the consequences to the system and to the utility of not adapting
them. Finally, (iii) we present Serene Greedy, an adaptation method based on the given
classification. We compare an implementation of this methodwith two other adaptation
techniques for the MUSIC middleware. The results show that Serene Greedy reduces
stalling and fidgetiness of adapting multiple applicationswhile providing improved per-
formance and a utility comparable to the Greedy reasoning technique.

References

1. Gunnar Brataas, Svein Hallsteinsen, Romain Rouvoy, and Frank Eliassen. Scalability of
decision models for dynamic product lines. InProceedings of the International Workshop
on Dynamic Software Product Line (DSPL 07), September 2007.

2. Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee et al.
Software engineering for self-adaptive systems: A research roadmap. InSoftware Engineer-
ing for Self-Adaptive Systems, LNCS 5525, pages 1–26. 2009.

3. Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Architecture-based self-adaptation
in the presence of multiple objectives. InICSE Workshop on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS), 2006.

4. Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil Lund, and Eli Gjør-
ven. Using architecture models for runtime adaptability.IEEE Software, 23(2):62–70, 2006.

5. Davic Garlan, Daniel P. Siewiorec, Asim Smailagic, and Peter Steenkiste. Project Aura:
Towards distraction-free pervasive computing.IEEE Pervasive Computing, 21(2), 2002.

6. Richard M. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher,
editors,Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

7. Jeffrey O. Kephart and Rajarshi Das. Achieving self-management via utilityfunctions.IEEE
Internet Computing, 11(1):40–48, 2007.

8. Vahe Pladian, David Garlan, Mary Shaw, M. Satyanarayanan, Bradley Schmerl, and Joao
Sousa. Leveraging resource prediction for anticipatory dynamic configuration. InSASO’07
Conference on Self-Adaptive and Self-Organizing Systems, 2007.

9. Romain Rouvoy, et al. MUSIC: Middleware support for self-adaptation in ubiquitous and
service-oriented environments. InSoftware Engineering for Self-Adaptive Systems, LNCS
5525, pages 164–182. 2009.

10. Daniel Sykes, William Heaven, JeffMagee, and Jeff Kramer. Exploiting non-functional pref-
erences in architectural adaptation for self-managed systems.ACM Symposium on Applied
Computing, Track on Dependable and Adaptive Distributed Systems, 2010.

