
WISeMid: Middleware for Integrating
Wireless Sensor Networks and the Internet

Jeisa P. O. Domingues, Antonio V. L. Damaso?, and Nelson S. Rosa

Universidade Federal de Pernambuco, Centro de Informática
Caixa Postal 7851 - 50740-540 - Recife - PE - Brazil

{jpo, avld, nsr}@cin.ufpe.br

Abstract. Wireless sensor networks (WSNs) have recently received grow-
ing attention as they have great potential for many distributed appli-
cations in different scenarios. Whatever the scenario, most WSNs are
actually connected to an external network, through which sensed infor-
mation are passed to the Internet and control messages can reach the
WSN. This paper presents WISeMid, a middleware that focuses on inte-
grating Internet and WSN at service level instead of integrating protocol
stacks and/or mapping logical addresses. WISeMid allows the integra-
tion of WSN and Internet services by providing transparency of access,
location and technology. To validate WISeMid, some results of a power
consumption evaluation of the middleware are presented.

Key words: Wireless Sensor Networks, Internet, Middleware, Integra-
tion, Service

1 Introduction

A Wireless sensor network (WSN) is composed by a large number of sensor nodes
which are deployed either inside a phenomenon or very close to it. Those nodes
sense a physical aspect (e.g., pressure or temperature), process the sensed data
and transmit them to a sink node, which can act as a gateway to other networks,
a connection to a powerful data processor or an access point for human interface.
Most WSNs are connected to an external network, through which their data can
reach the final user and control messages can reach the WSN [1].

WSNs have been receiving growing attention as sensor nodes are becoming
smaller, cheaper and intelligent, which enable the development of real and com-
plex applications in scenarios such as military target tracking and surveillance,
natural disaster relief, biomedical health monitoring, hazardous environment ex-
ploration and seismic sensing. As WSNs become more numerous and their data
more valuable, it becomes increasingly important to have common means to
share data over the Internet [2].

Since WSNs can be easily deployed to various environments to monitor target
objects and various conditions, and to collect information, they are considered

? Antonio V. L. Damaso is supported by CNPq/Brazil



2 J. Domingues, A. Damaso, and N. Rosa

one essential infrastructure for pervasive computing systems [3]. Also, the WSN
is one of the many networks that will compose the Ambient Networks [4]. For
all those reasons, integrating WSNs with the Internet has become increasingly
desirable and necessary.

A number of solutions have been proposed in recent years to provide the
integration of WSNs and the Internet. Most of them aim at integrating those
networks through mapping protocol stacks and logical address formats used in
both networks. Those solutions focus at accessing the network nodes through
their logical addresses, which raises several problems.

In this context, this paper proposes a solution that aims at integrating ap-
plications instead of networks (that is, protocols stack and/or logical address
formats mapping). The idea is to provide an infrastructure, namely WISeMid,
that allows integrating applications, which are considered services, in a trans-
parent way. In practice, a service that is offered by a sensor node in a WSN
or by a host in the Internet should be accessed in a uniform way irrespective
of the client or the service location. Hence, application developers only need to
know the service name to access its operations as WISeMid takes responsibility
for hiding the heterogeneity of all network low level mechanisms. In order to
validate our middleware, a power consumption evaluation is performed and the
presented results show that although the components added by WISeMid in-
frastructure increases the power consumption, the services and features it offers
save significant energy, which is a tradeoff worth making.

The remainder of this paper is organized as follows. The related works are
presented in Section 2. Section 3 introduces the WISeMid, describing its elements
and its implementation. Section 4 presents some WISeMid evaluation results
concerning power consumption. Finally, Section 5 discusses some conclusions
and presents some future work.

2 Related Work

Some approaches have been proposed to integrate WSNs and the Internet. The
simplest one is the gateway-based approach. It may use an application layer gate-
way, translating query messages from one side (typically Internet) into messages
that can be understood on the other side (usually WSN) [2] and/or mapping
addresses [5]; or a Delay Tolerant Networks (DTN) gateway, providing interop-
erability between and among WSNs, which are considered DTN networks [6].

Overlay-based approaches have been proposed, where some sensor nodes use
the TCP/IP protocols or some hosts use WSN protocols [7]. Also, mobile agents
have been used to dynamically access the WSN from the Internet [1].

Although directly employing the TCP/IP suite in the WSN would enable its
seamless integration with TCP/IP networks, this approach has several problems
[8]: the addressing and routing schemes of IP are host-centric, and does not
fit well with the sensor network paradigm, where the main interest is the data
generated by the sensors and the individual sensor is of minor importance; the
header overhead in TCP/IP is very large for small packets, and its size may



WISeMid: Middleware for Integrating WSN and the Internet 3

constitute nearly 90% of each packet when sending a few bytes of sensor data,
which is not acceptable as it wastes valuable energy in radio transmission; TCP
does not perform well over wireless links networks where packets frequently
are dropped because of bit-errors; and the end-to-end retransmissions used by
TCP consumes energy at every hop of the retransmission path. Also, sensor
nodes memory and computational resources are limited and not able to run a
full instance of the TCP/IP protocol stack. For that problem, some works have
proposed simplified versions of TCP/IP protocol stack: [9]-[10].

A reflective, service-oriented middleware for WSN is proposed in [11]. The
middleware acts as a broker between applications and the WSN, translating ap-
plication requirements into WSN configuration parameters. It monitors both net-
work and application execution states, performing a network adaptation when-
ever it is needed. For an external point of view, applications are service requestors
and sink nodes are service providers, releasing the descriptions of the WSN ser-
vices and offering access to these services. Although it has some similarities with
our proposal, it focuses on network adaptation capability. Besides, it assumes
the WSN is a service provider, but not a service consumer.

The implementation of tiny web services directly on sensor nodes is presented
in [12], including an XML parser, an HTTP server and a simplified TCP/IP
protocol stack. As the previous approach, it considers the sensor nodes are only
service providers (actually, web service providers), not consumers.

Unlike most of the mentioned works, this paper proposes a solution that fo-
cuses on integrating Internet and WSN at service level instead of integrating
protocol stacks and/or mapping logical addresses. Also, even though some pro-
posals are service-oriented, they only allow requesting services offered by the
WSN, as most integration approaches only focuses in accessing the sensor nodes
data from the Internet and not the other way around. Although this is the usual
situation, as sensors are typically measured data providers, there are some cases
where it is better for the sensor to request a service outside the WSN. That hap-
pens when the sensor has no enough resources to perform some computation, or
when it becomes more resource consuming to perform such task in the sensor
than sending a message to request it. For instance, there are some researches
that propose solutions of management applications that run outside the WSN.
In those approaches, a powerful computer that is connected to the sink node
runs the management application, which collects information from the sensor
nodes about their resources condition. Then it makes some computation and
sends back to the sensor nodes some configuration changes, like new routes that
spend less energy. One example of those solutions can be found in [13].

3 WISeMid

WISeMid (Wireless sensor network’s and Internet’s Services integration Middle-
ware) is a communication infrastructure that supports the integration of WSNs
and the Internet at service level (see Fig. 1). In this context, applications run-
ning in the Internet/WSN nodes may play the role of service providers or ser-



4 J. Domingues, A. Damaso, and N. Rosa

vice users. In practice, a service user must be able to communicate with a service
provider no matter whether they are running in the same network or not. Hence,
WISeMid should provide an infrastructure that allows integrating these services
in such a transparent manner that a service should be accessed in the same way
irrespective of it being provided by a WSN sensor node or by an Internet host.
Additionally, WISeMid should support application services developed in differ-
ent technologies, such as Web Service, Java RMI, EJB and JMS, although its
current implementation supports only WISeMid services.

Fig. 1. WISeMid logical view Fig. 2. WISeMid physical view

Figure 2 presents a physical view of how WISeMid spreads out through the
Internet and WSN. The WISeMid implementation for WSN and Internet is not
the same, as they have different requirements and components (that will be
explained in the following sections). The physical communication is performed
through an Internet host that is connected to the WSN sink node via a serial
port (USB). This host executes a special WISeMid service called SAGe, which
acts as a proxy between both networks (see Sect. 3.5).

3.1 Overview

In order to promote the networks integration at service level, our middleware
has to address some issues. WISeMid should deal with four different kinds of
heterogeneity, namely operating system, network, hardware and programming
language. WSN and Internet nodes have different hardware platforms (e.g., PC
and MICAz nodes) and network protocol stack (e.g., ZigBee and TCP/IP). In
addition, applications running in both networks are developed atop different
operating systems (e.g., Windows or Unix-based OS, and TinyOS) and using
distinct programming languages (e.g., Java and nesC).

The heterogeneity of programming language raises another issue: data type
mapping. For example, consider that a service user is written in nesC (it runs
in the WSN) and a service provider is written in Java (it runs in the Internet).
When the service user invokes an operation in the service provider, it is necessary
to translate nesC data types into Java ones in a transparent way to application
developers.



WISeMid: Middleware for Integrating WSN and the Internet 5

Along with handling the considered heterogeneities, it is also necessary to
define the basic abstraction adopted for building applications (e.g., objects, ser-
vices), the communicating entities (e.g., client/servers, peers), the way these
entities communicate (e.g., synchronously, asynchronously), and distributed ser-
vices provided by the middleware (e.g., naming service).

3.2 IDL

As service is the key concept in the proposed approach, an initial step consists of
defining how a service is described. For this particular purpose, we have defined
the WISeMid IDL (Interface Definition Language) that enables us to define
service interfaces in a uniform way, i.e., wherever the service runs (WSN or
Internet), its interface is described using the proposed IDL. The general structure
of an interface defined in WISeMid IDL is shown as follows:

1: module PACKAGE_NAME{
2: interface INTERFACE_NAME{
3: [OPER_TYPE] OUTCOME_TYPE OPER_NAME([TYPE ARG1,...]) [raises(EXCEPTION_NAME1,...)]
4: } }

The module (package) that contains the service should be initially speci-
fied (1). Then, the service interface includes its name (2) and provided opera-
tions (3). Each operation has a name, input/output typed parameters and may
raise exceptions. Additionally, an operation is by default a request-response op-
eration, but it may be defined as a one-way operation, which means that no
response is expected when the operation is invoked.

3.3 Requirements

Considering the issues introduced in Sect. 3.1, the following WISeMid’s require-
ments have been defined: (R01) service providers should register their services
in a Naming Service; (R02) service users should ask the Naming Service for the
service it wants to use; (R03) WISeMid should provide location transparency, so
the service users are not aware of the location of the service being used; (R04)
WISeMid should provide access transparency, i.e., service users access local and
remote services in a similar way; (R05) service data should have the same inter-
pretation whatever the programming languages used to implement the service
users and service providers; (R06) service providers/users communicate among
themselves using Request/Reply communication pattern; (R07) service commu-
nication is synchronous; and (R08) services should be stateless and untyped.

In addition to these requirements, which concern both networks, there are
some specific requirements regarding the limited resources of sensor nodes: (R09)
the messages transmitted to the WSN should be kept as short as possible (for
instance, if an argument type uses four bytes to represent a value but the ar-
gument value fits in one byte, and there is a compatible type that uses only
one byte to represent that value, our middleware should convert this argument
to the smaller type before sending it to a sensor node); and (R10) unnecessary



6 J. Domingues, A. Damaso, and N. Rosa

messages should not be forwarded to the WSN (for example, when an Internet
application requests a sensed data like temperature, whose variability consider-
ing second/minute time scale is not so significative, WISeMid may decide not
to forward this request to the WSN, returning to the application the last value
obtained from the WSN).

3.4 Architecture

The WISeMid architecture is depicted in Fig. 3 and consists of three layers:
Infrastructure, Distribution and Common Services.

Fig. 3. WISeMid Architecture

The Common Services layer includes services that are not particular to a spe-
cific application domain: Aggregation, which performs sensor data aggregation
and runs in the WSN; Grouping, which defines clusters inside the WSN; Nam-
ing, that stores information needed to access a service and runs in the Internet;
and SAGe, that is in charge of forwarding messages from/to WSN and runs in
the Internet. Additionally, SAGe also provides location transparency acting as
a service proxy between both networks and performs some tasks concerning the
aforementioned WSN specific requirements in order to avoid waste of sensors
restricted resources (see Sect. 3.5).

The Distribution layer includes the following elements: the Stub, which rep-
resents a local instance of the service within the client process and offers the
same interface as the remote service; the Requestor, which constructs a remote
invocation on the client side from parameters such as remote service location,
service name and arguments; the Skeleton, which dispatches remote invocations
to the remote service using the invocation information sent by the Requestor;
and the Marshaller, which serializes and deserializes the parameters passed be-
tween client and server using the WIOP Messages. WIOP is our middleware
interoperability protocol, which is described in the next section.

The Infrastructure layer consists of the Client Request Handler and the Server
Request Handler, which handle network communication using the communica-
tion facilities provided by the operating systems, e.g., sockets (Windows) and
GennericCom (TinyOS).



WISeMid: Middleware for Integrating WSN and the Internet 7

As sensor nodes have limited resources, some elements of the WISeMid ar-
chitecture are not present in the WSN: the Requestor is not implemented by the
WSN service users (its functions are deployed by the Stub), and WIOP messages
are treated as byte sequences, which means that the Marshaller is not necessary.

3.5 Implementation

The WISeMid implementation is divided into two parts, one for the WSN nodes,
developed in nesC, and another for Internet hosts, developed in Java. Implemen-
tation details of the main middleware elements are described as follows.

WIOP. The WISeMid Inter-ORB Protocol (WIOP) is a GIOP-based protocol
that defines the Request/Reply messages between clients and servers. A WIOP
message is divided into header and body. The WIOP message header is composed
by the following fields: endianness (e.g., big endian or little endian); msgType
(e.g., request or reply message); and msgSize, which stores the message size in
bytes. The WIOP message body may contain a Request or a Reply message.
These messages have also a header and a body.

The Request message header comprises the fields: requestId, which stores
the Request message ID; responseExpected, which signals whether the request
has a Reply message or not; serviceId, which is the ID of the requested service;
and operation, which represents the name of the operation being invoked. The
Request body consists of the number of arguments (numArgs) followed by a
sequence of type and value of each argument.

The Reply message header contains the fields: requestId, which stores the re-
lated Request message ID; replyStatus, which signals whether there was any ex-
ception while executing the request, and its possible values are NO EXCEPTION
(0), USER EXCEPTION (1), SYSTEM EXCEPTION (2) and LOCATION FOR-
WARD (3). The Reply body is composed by the result type and its value.

Although containing the same fields, the WIOP field sizes are smaller in
the version running in the WSN (called WIOPs) than in the Internet version of
WIOP (called WIOPi). In order to avoid energy waste during radio transmission,
WIOPs messages are kept as minimal as possible. Also, the way arguments are
stored in the Request body is different for the WSN version. In the WIOPi,
the arguments are stored one by one, being each argument composed by a type
and a value. For example, three arguments would be stored in the following
sequence: type1, value1, type2, value2, type3, value3. In the WIOPs, only the
first argument is individually stored (with its type and value in a row). From the
second argument on, the arguments are grouped into couples where the types
of both arguments come first followed by their respective values. That happens
because types are represented by integer numbers between 0 and 11 (e.g., the
float type is represented by the number 7), and therefore each type can be
stored in only 4 bits. Hence two types can be grouped into one byte, being
followed by their related argument values. In this case, three arguments would
be stored in the following sequence: type1, value1, type2, type3, value2, value3.



8 J. Domingues, A. Damaso, and N. Rosa

Besides saving energy by its reduced size, the sensor message format also
concerns about sensor limited processing as it is already deployed as a byte
array, avoiding the need of a Marshaller implementation.

The WISeMid Naming Service and Internet services use the Internet format,
while the sensor services use the WSN format. Only SAGe handles both formats.

Naming Service. The WISeMid Naming Service stores the references of ser-
vices executing in the Internet and WSN in such way that a service may only
be accessed/used after being registered in the Naming Service. The Naming’s
service interface includes five operations: Bind, to register a service by its name,
associating it with its reference; Lookup, to return the reference associated to a
service name; Rebind, to change the reference that is associated with a service
name; Unbind, to unregister a service name; and List, to list all registered ser-
vices. The service reference includes the service ID, endianness, the IP address
and the port number. In the case the service is running in the WSN (i.e., the
sensor node has not an IP address), the stored IP address is the SAGe address.

SAGe. As stated in Sect. 3.4, SAGe (Sensor Advanced Gateway) [14] is an
important element in WISeMid architecture. Running in the Internet host con-
nected to the WSN sink node via a serial port (see Fig. 2), SAGe’s main function
is to act as a service proxy between both networks by enabling the communica-
tion between services running on Internet hosts and WSN nodes in a transparent
way. Furthermore, SAGe also performs some tasks concerning the previously de-
fined WSN specific requirements (R09 and R10). This section describes how
SAGe provides the location transparency and implements those requirements.

a. Binding of a WSN service: Once a WSN service starts, it sends a mes-
sage invoking the Bind operation of the Naming Service. When SAGe receives
that message, it creates a ServiceReference to the WSN service including the
SAGe’s IP address and port, then sends a binding request to the Naming Service,
registering the WSN service as a SAGe service. It also keeps the created refer-
ence cached as a SageServiceReference, which assigns the ServiceReference
to the node ID of the sensor providing the service. In such manner, SAGe knows
which sensor node a Request message to a WSN service must be forwarded to.

b. Invocation of a WSN service: When SAGe receives a Request message
from the Internet invoking a WSN service, it converts the message to a WIOPs

Request and sends it to the WSN using the SageServiceReference that was
cached when the WSN service was bound. Once the Reply message from the
sensor service provider is received, SAGe converts it into a WIOPi Reply message
and forwards it to the Internet service user. If no SageServiceReference is
found, SAGe does not forward the request to the WSN. Instead, it sends a Reply
message reporting an error to the Internet host that requested the service.

c. Invocation of an Internet service: When a sensor node service user per-
forms a lookup for an Internet service, SAGe checks if this service is already
known, i.e., if its reference is cached. If the service is unknown, SAGe con-
verts and forwards the lookup request to the WISeMid Naming Service. When



WISeMid: Middleware for Integrating WSN and the Internet 9

it receives the WIOPi Reply, it stores the returned ServiceReference (as a
SageServiceReference) and sends the service ID to the sensor node service.
Using the received service ID, the WSN service invokes the Internet service op-
eration. When SAGe receives the sensor Request message, it uses the cached
ServiceReference to invoke the requested operation and, once the Reply mes-
sage arrives, SAGe converts and forwards it to the sensor node service user.

d. WSN requirements implementation: SAGe implements the WSN specific
requirements defined in Sect. 3.3. To meet requirement R09, SAGe performs
an additional step when converting an Internet Request message into a sensor
Request message. For each argument in the Request body, it tries to fit the
argument value in a smaller type (that is, a compatible type that uses less bytes).
For instance, if the argument is a long (an integer of 8 bytes) but its value is
‘525’, it can be stored into a short (an integer of 2 bytes). Thus SAGe converts
the argument from a long into a short and adds only 2 bytes to the WIOPs

instead of the original 8 bytes, avoiding the transmission of unnecessary 6 bytes.
The same step is performed for the result value of WIOPi Reply messages when
converting them into WIOPs Reply messages.

To deploy the other WSN specific requirement (R10), SAGe performs three
more procedures. The first one is not forwarding to WSN any Internet Request
which asks for a sensor service that has not been registered. It would be useless
and energy wasting since no sensor announced that service. The second proce-
dure occurs when a sensor requests an Internet service. It consists in not giving
up at the first unsuccessful attempt to connect to the Internet service provider.
Considering that it may be a sporadic problem, SAGe tries again to connect to
the server a configurable number of times before returning an error to the sensor
node. This measure aims to refrain the sensor from sending another Request in
case the answer is fundamental for its application. The last procedure consists in
avoiding sending equivalent Request messages (that is, messages asking for the
same service with the same parameters) during a short period of time. Assuming
that some sensed values do not change very quickly, sending the same Request
for the same service in a short time period will likely return the same value, re-
sulting in unnecessary processing and energy consumption. Hence, SAGe groups
equivalent Request messages and, for a configurable period of time, only one
Request is sent to the sensor service provider, and the received Reply message
is stored and forwarded as an answer to all the equivalent Request messages.
For the cases where the sensed value changes very often, this procedure may be
turned off by setting to null (i.e., 0 seconds) the Reply message storage timeout.

4 Evaluation

As energy is a critical resource in wireless sensor networks, this section presents
results about some experiments that analyze how WISeMid affects power con-
sumption in the sensor node. For all scenarios, we use two MICAz motes: one
connected to a MTS400 basic environment sensor board, running the applica-
tion that constitutes the scenario; and another connected to a MIB520 USB



10 J. Domingues, A. Damaso, and N. Rosa

programming board, working as a base station (BS), i.e., the sink node. The BS
is connected to an Internet host that runs the WISeMid SAGe service or TinyOS
SerialForwarder application, which acts as a proxy between the WSN and the
Internet. Also, two other services run on Internet hosts: the Naming service and
the service/application under evaluation.

In order to estimate the power consumption of the sensor node, an oscillo-
scope (Agilent DSO03202A) has been used. A PC is connected to the oscilloscope
that captures the code snippet execution start and end times by monitoring a
led of the sensor, which is turned on/off to signalize the execution start/end. The
PC runs a tool named AMALGHMA [15], which is responsible for calculating
the power consumption.

Five scenarios have been analyzed so far and they can be divided into two
groups: one that studies the impact of WISeMid infrastructure on the power
consumption of a WSN node, and one that evaluates the efficiency of some
WISeMid features specially designed for saving power. In order to make the
results more reliable, all values presented here are actually a mean value of 1000
executions of the code in study.

4.1 WISeMid infrastructure impact

These scenarios compare the power consumption of a service that uses the
WISeMid infrastructure to a similar application that uses only TinyOS. It is
worth noting that TinyOS does not have the notion of service, therefore an ap-
plication with similar functionality to the service actually runs on the TinyOS.

Fig. 4. Power consumption for
sending 30 packets - TinyOS
versus WISemid

Fig. 5. Power consumption for
receiving 30 packets - TinyOS
versus WISemid

The first scenario measures the power consumption of a service that sends
30 messages to the Internet with an interval of 100ms between them. The reason
for using 30 messages is to make the difference between the power consumption



WISeMid: Middleware for Integrating WSN and the Internet 11

for both cases more evident without being costly. Sending only one would re-
sult in an almost unnoticeable difference whereas more than thirty would make
the measurements slower and difficult to synchronize with the oscilloscope win-
dow. The interval of 100ms between consecutive messages is necessary to assure
the next message will only be sent after the previous one has been completely
transmitted. Smaller values have been tried but messages were still being lost.

When using the WISeMid infrastructure, a one-way WIOP message is cre-
ated and sent through the WISeMid components. When the TinyOS is used, a
message is normally created (i.e., by defining a struct). Both messages contain
only one byte that carries the maximum value: 127 (11111111). Also, while the
WISeMid service uses SAGe, the TinyOS application uses the SerialForwarder.
Figure 4 shows the results of this scenario. Using the WISeMid spent 1.5% more
energy than using only TinyOS. It was already expected that WISeMid was more
power demanding as it adds more layers (components) to the sensor node. How-
ever, it was a small increase rate, which is acceptable considering the benefits it
brings.

In the second scenario, the power consumption of a service that receives 30
messages from the Internet is calculated. The interval between each message
is 100ms. Similarly to the previous scenario, WIOP messages are used to the
WISeMid service whereas typical messages are handled by the TinyOS applica-
tion, both carrying a byte with the value 127. The results for this scenario are
presented in Fig. 5. As expected, the WISeMid service consumed more power
than the TinyOS application (6.15%). Similarly to the previous experiment, the
benefits of adopting WISeMid has a small cost in terms of power consumption.

The last scenario of this group gathers the two previous scenarios and adds
the message processing and temperature reading, which are the necessary steps
to answer a requisition to a Temperature service provided by the sensor node.
This service implements the TEMP interface and thus provides the getTemp()
operation, which returns the sensed temperature in Celsius degrees. The service
interface is described in WISeMid IDL as shown:

1: module example{
2: interface TEMP{
3: long getTemp(); } }

This interface definition was compiled by the developed WISeMid IDL com-
piler, namely ProxiesGen, to generate the temperature service’s stub (Java) and
skeleton (nesC). The Java stub is used by the Internet application to access the
service, whilst the nesC skeleton enables the access to the temperature service
on the server side.

Note that in this case the service user is located in the Internet and the service
provider is in the WSN node, but they do not know where each other is located.
That happens due to the location transparency provided by the WISeMid In-
frastructure (meeting requirement R03). In the equivalent code that uses only
TinyOS, the Internet application must know the SerialForwarder IP address and
port number and handle all network communications using, for instance, socket
connections. The service abstraction provided by WISeMid explains the power



12 J. Domingues, A. Damaso, and N. Rosa

Fig. 6. Power consumption for requesting a sensor service 30 times - TinyOS versus
WISemid

consumption increase of 16.11% comparing to the TinyOS application version,
as presented in Fig. 6. Although it is not a negligible increase, the facilities of-
fered by the WISeMid service abstraction as well as the energy saving brought
by some WISeMid services compensates that, as the next results show.

4.2 WISeMid services

This section presents the results of scenarios that analyze the power that some
WISeMid services save.

The first scenario studies the energy saving offered by the Aggregation service
provided by the WISeMid. For that purpose, a sensor service sends 30 WIOP
messages in a row, with an interval of 100ms between the messages. When the
Aggregation service is used, instead of 30 messages, the sensor node only sends
one message carrying the mean value of the 30 messages. As Fig. 8 shows, the
Aggregation service saves 11.18% of energy.

In the last scenario, a feature offered by SAGe as implementation of the WSN
specific requirement R10 is evaluated. When this feature is on, SAGe stores ev-
ery Reply message for a given period of time and forwards it to all equivalent
Request messages that arrive during this period, avoiding to send Requests that
will return the same result (see Sect. 3.5). To evaluate that, an Internet service
user requests the Temperature service 50 consecutive times. We have increased
the number of requisitions from 30 to 50 in order to make the difference between
the power consumption for both cases more noticeable. As the initial experiments
considered an interval of 100ms between consecutive requisitions, the Reply mes-
sage storage timeout was set to 300ms to allow sending three requisitions during
this time and check if SAGe would “block” two of them. After confirming that,
we kept the timeout value, but decided to make this scenario more realistic by
using random intervals between consecutive requisitions. Thus those intervals
are now randomly generated following a Uniform distribution with parameters
10 and 280, which allows the reception of 1 to 30 requisitions during the 300ms a



WISeMid: Middleware for Integrating WSN and the Internet 13

Fig. 7. Energy saving by using
the SAGe’s Reply Storage feature

Fig. 8. Energy saving by using
the WISeMid’s Aggregation service

Reply message is stored, depending on the generated values. In order to compare
the power consumption with this feature “on” and “off”, the same seed was used
for both cases. Figure 7 shows that this SAGe feature saves 25.14% of energy as
it avoids sending unnecessary requests to the WSN.

The results presented in this section show that on one hand WISeMid infras-
tructure increases power consumption with its additional components for sensor
code, but on the other hand the services and features it offers save significant
energy, which is a tradeoff worth making.

5 Conclusion and Future Work

In this paper, we presented the WISeMid middleware as an approach to address
the WSN and Internet integration issue. The proposed approach concentrates
on solving this problem by integrating services instead of layers. WISeMid pro-
vides an infrastructure that allows integrating WSN and Internet services with
transparency of access, location and technology. Hence, a service that is offered
by a sensor node in a WSN or by a host in the Internet can be accessed in the
same way irrespective of the client or the service localization.

To validate WISeMid, a power consumption evaluation was presented, show-
ing that although the components added by WISeMid infrastructure increases
the power consumption, the services and features it offers save significant energy,
which is a tradeoff worth making.

In terms of future work, other power consumption evaluation are now being
conducted. Also, we are improving the proposed middleware by including typed
services, allowing a client to ask for a service by only specifying its type, and
a life cycle manager for the remote services, which will enable stateful services.
Some features will also be added to SAGe, such as turning it into a distributed
service, to refrain it from becoming a bottleneck in large-scale WSN, and de-
ploying conversion between WIOP and others interoperability protocols (e.g.,



14 J. Domingues, A. Damaso, and N. Rosa

IIOP, JRMP), to enable WISeMid to support application services developed in
different technologies, like Web Service, Java RMI, EJB and JMS.

References

1. Bai, J., Zang, C., Wang, T., Yu, H.: A Mobile Agents-Based Real-time Mechanism
for Wireless Sensor Network Access on the Internet. In: 2006 IEEE International
Conference on Information Acquisition, pp. 311–315 (2006)

2. Reddy, S., Chen, G., Fulkerson, B., Kim, S.-J., Park, U., Yau, N., Cho, J., Hansen,
M., Heidemann, J.: Sensor-Internet Share and Search: Enabling Collaboration of
Citizen Scientists. In: Workshop for Data Sharing and Interoperability (IPSN 07),
pp. 11–16. (2007)

3. Zheng, Y., Cao, J., Chan, A.T.S., Chan, K.C.C.: Sensors and Wireless Sensor Net-
works for Pervasive Computing Applications, Subsequences. J. Ubiquitous Comput-
ing and Intelligence 1 (1), 17–34 (2007)

4. Niebert, N., Prehofer, C., Hancock, R., Norp, T., Nielsen, J.: Ambient Networks -
A New Concept for Mobile Networking. Technical report, Wireless World Research
Forum (2004)

5. Kim, J.-H., Kim, D.-H., Kwak, H.-Y., Byun, Y.-C.: Address Internetworking be-
tween WSNs and Internet supporting Web Services. In: 2007 International Confer-
ence on Multimedia and Ubiquitous Engineering (MUE 2007), pp. 232–240 (2007).

6. Ho, M., Fall, K.: Poster: Delay Tolerant Networking for Sensor Networks. In: 1st
IEEE Conf. Sensor and Ad Hoc Communications and Networks (2004)

7. Dai, H., Han, R.: Unifying Micro Sensor Networks with the Internet via Overlay
Networking. In: 29th Annual IEEE International Conference on Local Computer
Networks, pp. 571–572 (2004)

8. Dunkels, A., Voigt, T., Alonso, J., Ritter, H., Schiller, J.: Connecting Wireless Sen-
sornets with TCP/IP Networks. In: 2nd International Conference on Wired/ Wire-
less Internet Communications, pp. 143–152 (2004)

9. Dunkels, A.: Full TCP/IP for 8-Bit Architectures. In: 1st International Conference
on Mobile Systems, Applications and Services, pp. 85–98 (2003)

10. Durvy, M.: Poster Abstract: Making Sensor Networks IPv6 Ready. In: 6th ACM
Conference on Networked Embedded Sensor Systems (2008)

11. Delicato, F.C., Pires, P.F., Rust, L., Pirmez, L., Rezende, J.F.: Reflective Middle-
ware for Wireless Sensor Networks. In: 2005 ACM Symposium on Applied Comput-
ing, pp. 1155–1159 (2005)

12. Priyantha, N.B., Kansal, A., Goraczko, M., Zhao, F.:Tiny Web Services: Design
and Implementation of Interoperable and EvolvableSensor Networks. In: 6th ACM
Conference on Embedded Network Sensor Systems, pp. 253–266 (2008)

13. Ozturgut, H., Scholz, C., Wieland, T. and Niedermeier, C.: SCOPE - Sensor Mote
Configuration and Operation Enhancement. In: 22nd International Conference on
Architecture of Computing Systems, pp. 84–95 (2009)

14. Damaso, A., Domingues, J. and Rosa, N.: SAGe: Sensor Advanced Gateway for In-
tegrating Wireless Sensor Networks and Internet. In: 3rd Workshop on Applications
of Ad hoc and Sensor Networks (AASNET), (2010) To appear.

15. Tavares, E.: Software Synthesis for Energy-Constrained Hard Real-Time Embed-
ded Systems. PhD Thesis, Center of informatics, Federal University of Pernambuco.
November (2009)


