
Automated Assessment of Aggregate Query
Imprecision in Dynamic Environments

Vasanth Rajamani1, Christine Julien1, and Jamie Payton2

1 Department of Electrical and Computer Engineering
The University of Texas at Austin

{vasanthrajamani, c.julien}@mail.utexas.edu
2 Department of Computer Science

University of North Carolina, Charlotte
payton@uncc.edu

Abstract. Queries are widely used for acquiring data distributed in
opportunistically formed mobile networks. However, when queries are
executed in such dynamic settings, the returned result may not be con-
sistent, i.e., it may not accurately reflect the state of the environment.
It can thus be difficult to reason about the meaning of a query’s result.
Reasoning about imperfections in the result becomes even more complex
when in-network aggregation is employed, since only a single aggregate
value is returned. We define the semantics of aggregate queries in terms
of a qualitative description of consistency and a quantitative measure of
imprecision. We provide a protocol that performs in-network aggregation
while simultaneously generating quality assessments for the query result.
The protocol enables intuitive interpretations of the semantics associated
with an aggregate query’s execution in a dynamic environment.

1 Introduction

The proliferation of laptops, sensors, and wireless devices has increased the num-
ber of data providers embedded in our environment. The ability to obtain data
and expose meaningful information to applications in dynamic networks remains
a major challenge. Queries are a popular abstraction for making information-rich
environments more accessible by masking complex network details. An impor-
tant class of queries are aggregate queries, which are particularly popular in
dynamic networks because they enable in-network aggregation [1–3]—the obser-
vation that computation is significantly cheaper than communication in terms
of resource consumption. Individual hosts, then, should aggregate as much raw
data as possible to reduce the communication overhead of queries.

Though queries can simplify application development, the unpredictable con-
nectivity changes in mobile ad hoc networks make it difficult to ensure that a
query’s result is consistent, i.e., the result completely and accurately reflects the
state of the environment during query execution. Consider an application in the
construction domain for intelligent asset management. A site supervisor needs
to monitor the amount of some material present on the site (whether stationary

or mobile, e.g., in a delivery truck) to determine when to order more. Each pal-
let is tagged with a device that represents the count (or weight) of the material
present. The supervisor may issue a simple aggregate query that returns the sum
of this material across the site. While the query is executing, pallets move around
the site, which may cause a pallet’s value to be counted more than once or not
at all. In addition, the failure of any device results in the loss of all the values
that were aggregated at that device. This results in an inconsistency between
the reported total and the actual total of the material on the site. Traditionally,
delivering query results with strong consistency semantics is achieved through
distributed locking protocols, which are ill-suited for use in dynamic networks.
Most existing solutions, therefore, rely on “best-effort” queries, which make no
guarantees about the quality of the result. Consequently, the query result repre-
sents the ground truth to an arbitrary degree, making it difficult for applications
to know how to use the results. Thus, a fundamental requirement for applica-
tions employing aggregate queries is the ability to interpret the imperfections
associated with retrieving data from dynamic networks.

To measure query imperfection, we define semantics for a basic set of aggre-
gate queries and demonstrate a query processing protocol that can automatically
attach an intuitive indicator of the semantics achieved to the query result. We
define query semantics qualitatively in terms of consistency and quantitatively
in terms of numeric imprecision in the query result. Specifically, we make the
following contributions. First, we define a conceptual model for estimating nu-
merical bounds that define a query’s imprecision and demonstrate how we can
express the semantics of aggregate queries (Sections 2 and 3). Second, we develop
a protocol that computes aggregate queries while assessing their semantics; this
assessment is attached to the result to support reasoning about the returned
value (Section 4). Third, we have prototyped and evaluated a reference imple-
mentation (Section 5).

2 Background : Modeling Query Execution

Our previous work [4] defined a query processing model to express mobility as
state transitions and a set of consistency semantics for simple queries. We review
this model and use it to define the semantics of aggregate queries.

In our model of a mobile network, a host is a tuple (ι, ν, λ), where ι is a unique
identifier, ν is a data value, and λ is its location. The global abstract state of the
network, a configuration, is a set of host tuples. An effective configuration (E)
is the projection of the configuration with respect to the hosts reachable from a
specific host h̄. Reachability is often defined in terms of network connectivity,
captured by a relation that conveys the existence of a (possibly multi-hop) path
between hosts. We use a binary logical connectivity relation K to express the ex-
istence of a direct link between two hosts. Reachability is defined as the reflexive
transitive closure K∗. An evolving network is a state transition system with a
state space defined by the set of possible configurations, and transitions defined
as configuration changes. Sources of configuration change include: 1) variable

assignment, in which a host changes its data value, and 2) neighbor change, in
which a host’s changing location impacts the network connectivity.

Consider the configurations

query
initiation
bound

query
termination

bound

active configurations

C0 CnA0 Am...

E0
Em

Fig. 1. Effective Active Configurations

in Fig. 1. A query begins
with its issue (the query ini-
tiation bound, C0) and ends
when the result is delivered
(the query termination bound,
Cn). Since there is process-
ing delay when issuing a query
to and returning results from
the network, a query’s active
configurations are those within
〈C0, C1, . . . Cn〉 during which
the query interacted with the
network. Every value contributing to a query’s result must be present in some
active configuration. Moreover, only reachable hosts can contribute to a query’s
result. The relevant configurations, then, are the effective active configurations,
〈E0, E1, . . . , Em〉, containing hosts reachable from the query issuer.

A query is a function from a sequence of effective active configurations to a set
of host tuples that constitute the result. This model lends itself to a straightfor-
ward expression of a query’s result as a configuration, simplifying the expression
of the consistency of those results. While our original model considers the im-
pact of environmental conditions on the achievable consistency of simple discrete
queries, it does not capture how in-network aggregation impacts query results.
In the next section, we explore consistency semantics for queries processed using
in-network aggregation and offer an approach to present aggregate query results
that intuitively convey their associated consistency semantics.

3 Integrating Aggregation and Consistency

We introduce a model for aggregate queries that applies an in-network aggrega-
tion operator and returns a bounded aggregate value. The bounds convey the
degree to which the query result reflects the state of the environment during
query execution. The bounded aggregate is the triple [L,A,U]: L is a lower
bound, U is an upper bound, and A is the aggregate value computed over the
results available throughout query execution, i.e., A is computed over

⋂m
i=0 Ei.

3.1 Consistency Classes: Comparability

In our previous work for discrete queries, we defined a set of semantics that
lie between the common atomic (i.e., exact) and weak (i.e., best effort) seman-
tics [4]. Our consistency semantics can be divided into two classes: comparable
and non-comparable. In the first, stronger class, all the elements of the computed

aggregate are guaranteed to have existed at the same time, i.e., all of the aggre-
gated results existed in the same configuration. In the weaker class, all of the
aggregated values existed at some time during the query execution, but nothing
can be said about the temporal relationships between the aggregated items.

In our construction example, consider a query for the truck with the fewest
pallets. If material is transferred between trucks during query execution, the
result may not report the truck with the fewest pallets because the query may
aggregate values that are not comparable, e.g., the value of one truck before the
transfer and of the newly loaded truck after the transfer. Conversely, if there was
no configuration change, it is clear that the answer returned is correct. Adding
this semantic information gives new clarity to the query result. In our evaluation,
we revisit how consistency classes relate to the semantics of aggregation.

3.2 Numeric Bounds

We relax our definition of a query result (ρ) to allow for computation of im-
precision bounds. A query result has two components: 〈A,Excess〉, where A is
the aggregate result, and Excess is a set containing tuples of the form: 〈a/d, h〉,
where the first component is either a or d, indicating that the tuple represents
an addition or a departure, and the second component h is a host tuple. In the
aggregation examples below, we do not use the a and d designations explicitly.
However, these labels are necessary for computing the comparability class of a
query result (discussed in Section 5). Each element in Excess was present in at
least one of the query’s effective active configurations but missing from another:

e ∈ Excess ⇒ 〈∃i, j : 0 ≤ i, j ≤ m ∧ i 6= j :: e.h ∈ Ei ∧ e.h 6∈ Ej〉3

If a host’s value or location changed multiple times during execution, there
may be multiple tuples in Excess for the same host. This must be handled with
care for duplicate-sensitive aggregation operators [2] like sum and average.

3.3 Determining the Semantics of Aggregate Queries

A query result comprises a conservative estimate of the aggregate (A) and a
measure of its imprecision. Each aggregation type includes a different method for
using the Excess set to calculate bounds; we look at several types of aggregation
and show how bounds are calculated to define the triple [L,A,U].

Set Union Aggregation. Set union aggregation can be expressed as an
aggregation operation where A contains the stable subset of query results, i.e.,
results from hosts that experienced no changes during the query’s execution:

A = 〈set h : 〈∀i : 0 ≤ i ≤ m :: h ∈ Ei〉 :: h〉
3 In the three-part notation: 〈op quantified variables : range :: expression〉, the

variables from quantified variables take on all possible values permitted by range.
Each instantiation of the variables is substituted in expression, producing a multiset
of values to which op is applied, yielding the value of the three-part expression.

Excess contains values either added or removed (or both) during execution:

Sexcess = 〈set e : e ∈ Excess :: e.h〉

A set union query returns [−,A,A∪Sexcess], where − indicates an absent lower
bound. When no changes occurred, Excess is empty, and the upper bound is
the same as the estimate. For example, A consists of the values for pallets of
material whose data value or connectivity did not change during execution. The
upper bound will contain data values for pallets of materials that may have been
delivered or consumed during the query.

Minimum/Maximum Aggregation. In this simple form of aggregation,
A contains the minimum (or maximum) value from in-network aggregation. As
an example, a minimum aggregation can tell the site supervisor what area of the
site may lack a particular material:

A = 〈MIN h ∈ Ei : 〈∀i : 0 ≤ i ≤ m :: h ∈ Ei〉 :: h.ν〉

To compute bounds on the minimum, we need only to inspect Excess. If any
result in this set is less than A, it is the lower bound:

MINexcess = 〈MIN e : e ∈ Excess :: (e.h).ν〉

A minimum aggregate query returns [min(MINexcess ,A),A,−]. When Excess is
empty or contains no value less than A, this query returns [−,A,−].

Counting Aggregation. The counting aggregate is the first of our aggre-
gates that is duplicate sensitive, and so it should attempt to avoid counting the
same host more than once. When the query returns, A contains the number of
items that were present in every configuration.

A = 〈+h : 〈∀i : 0 ≤ i ≤ m :: h ∈ Ei〉 :: 1〉

We use Excess to place an upper bound on the number of items that could have
been present using the host’s ID to prevent double counting.

Cexcess = 〈+i : 〈∃e :: e ∈ Excess ∧ (e.h).ι = i〉 :: 1〉

The result returned to the querier is [−,A,A+Cexcess]. The site supervisor can
use the conservative estimate A if he is interested in the number of pallets of
material guaranteed to be on site. Alternatively, he can use the upper bound if
he is concerned about avoiding left-over material.

Summation Aggregation. An aggregate summation should represent the
sum over all hosts receiving the query:

A = 〈+h : 〈∀i : 0 ≤ i ≤ m :: h ∈ Ei〉 :: h.ν〉

In this case, the upper and lower bounds are calculated based on the worst pos-
sible scenario. We create all of the permutations of Excess, combine their sums
with A, and take the minimum (if less than A) as the lower bound and the max-
imum (if greater than A) as the upper bound. In calculating these permutations,
we must also suppress duplicates. We first define a set of sets, P, a duplicate
sensitive power set of Excess. P contains all possible sets p that satisfy:

|p| 6= 0 ∧ 〈∀h : h ∈ p :: 〈∃e : e ∈ Excess :: e.h = h〉〉 ∧
〈∀h1, h2 : h1 ∈ p ∧ h2 ∈ p :: h1.ι 6= h2.ι〉

p is a legal permutation if p is not empty, every element in p corresponds to an
element in Excess, and no two elements in p are from the same host. USUM is:

USUM = max (〈max p :: p ∈ P :: 〈+h : h ∈ p :: h.ν〉+A〉,A)

LSUM is defined similarly using min. A summation query returns [LSUM,A,USUM].
Average Aggregation. Average aggregation is similar to summation. How-

ever, to recalculate averages for computing bounds, we must also keep track of
how many results contribute to the aggregate average. So in this case, A is a
tuple: A = 〈A′, C〉, where C is a count of contributors to A′:

A′ = 〈avg h : 〈∀i : 0 ≤ i ≤ m :: h ∈ Ei〉 :: h.ν〉

We use the elements of the Excess set to calculate all of the potential average
values after removing duplicates, using P as above. UAVG is:

UAVG = max

(〈
max N : N ∈ P ::

〈+p : p ∈ N :: p.ν〉+A′

C + |N |

〉
,A

)
LAVG is defined similarly using min. Assuming LAVG < A′ and UAVG > A′,

an aggregate average query returns [LAVG,A′,UAVG]. In our construction site
example, if the amounts of available material on pallets varies during query
execution, the site supervisor can use the range provided by the upper and lower
bounds to determine how much confidence to place in the query response.

4 Assessing Aggregation Imprecision

The previous section discussed how to determine the semantics of an aggregate
query with global knowledge using our model. We next present a practical query
execution protocol that performs in-network aggregation and calculates error
bounds on the aggregate result using nodes’ local perspectives on the world.

4.1 Protocol Overview

Query protocols that lock data values to ensure strongly consistent results are
impractical in dynamic networks. Our protocol provides different semantics un-
der different conditions, while dynamically assessing the result’s imprecision. Our
self-assessing protocol makes an initial examination of data values accessed dur-
ing aggregate computation and maintains state about the values during query
processing to determine the consistency class and compute the result’s bounds.

We employ two controlled floods—Pre-Query and Aggregation Assessment.
The Pre-Query establishes the query participants. Additionally, it computes and
caches partial aggregates at each participant. The Aggregation Assessment per-
forms the in-network aggregation and provides a conservative aggregate result.

Establishing participants in the first phase provides a reference that we use to ob-
serve changes that impact the query execution semantics, and the cached partial
aggregates help provide error bounds on the returned aggregate.

As shown in Fig. 2, each phase consists of two waves: one to disseminate a
request; one to return the response.
Each node waits for its children

P
re

-Q
ue

ry requestWave 1

response

Wave 2

A
ss

es
sm

en
t

requestWave 1

response

Wave 2

Fig. 2. Protocol Phases and Waves

to respond before responding itself.
Participating hosts monitor changes
that can impact the query’s im-
precision; these include changes in
data values or connectivity that oc-
cur behind the second wave of the
Pre-Query and in front of the sec-
ond wave of the Aggregation Assess-
ment. If no changes occur, the query
has comparable consistency and requires no bounds since it is exact. If the
changes include only departing participants, the aggregate is computed from re-
sults that existed at the same time, and the query has comparable consistency.
The bounds include the values of the departed nodes. Finally, if the query en-
countered both departing and arriving participants, the aggregate is computed
from results that did not necessarily co-exist, resulting in non-comparable con-
sistency, and the bounds account for both departed and added values.

Flooding an entire network can be expensive, so we constrain the flood using
the query’s logical connectivity relation K; this is similar to other constrained
flooding approaches [5, 6].

4.2 Self-Assessing Aggregation

We next detail our
id – A’s unique host identifier
neighbors – A’s logically connected neighbors (given K)
membership – boolean, indicates A is in the query
monitoring – boolean, indicates A is preparing result
parent – A’s parent in the tree
replies-waiting – neighbors still to respond
participants – A’s participating descendants
op – query’s aggregation operator
data-val – A’s local data
estimated-val – estimate of applying op on A’s subtree
actual-set – data values of A and A’s neighbors
actual-val – conservative aggregate value computed
count – number of nodes in subtree rooted at A
child-yield(x) – contributions of child x to the aggregate

Fig. 3. State Variables for Protocol for Node A

protocol. Fig. 3
shows the state
for a single query.
We use I/O Au-
tomata [7] to show
the behaviors of
a host, A. Each
action has an
effect guarded by
a precondition
and executes in a
single atomic step.
Actions without
preconditions are
input actions triggered by another host. We abuse notation slightly by using,
for example, “send ParticipationRequest(r) to Neighbors” to indicate a sequence
of actions that triggers ParticipationRequestReceived on each neighbor.

Pre-Query Phase. The Pre-Query establishes a core set of participants
used to determine how well the query’s result compares to the “ground truth.”
The query issuer initiates

ParticipationRequestReceivedA(r)
Effect:

if ¬membership then
membership := true
parent := r .sender
op := r .op
if (neighbors − r.sender) 6= ∅ then

for each B ∈ (neighbors − r .sender)
send ParticipationRequest(r) to B

replies-waiting := neighbors − r .sender
else

estimated-val := data-val
count := 1
send ParticipationReply to parent

else
send CancelParticipationRequest to r.sender

Fig. 4. ParticipationRequestReceived Action

the phase by sending a Par-
ticipationRequest message.
Fig. 4 depicts a host’s be-
havior upon receiving such
a request. Generally, each
host forwards the request
to its neighbors, waiting
for their responses before
replying.4 This wave con-
tinues until a participation
request reaches a host at
the network boundary (de-
fined by K). A boundary
host caches its current data
value as an estimated ag-
gregate result. All nodes
also compute the number of nodes currently in their subtree; for a boundary
node, this count is one. The boundary node then initiates the second wave of
the Pre-Query by packaging the estimated aggregate and the counter into a
ParticipationReply message that it sends to its parent.

When a host receives a ParticipationReplyReceivedA(r)
Effect:

replies-waiting := replies-waiting−r.sender
participants := participants ∪ {r.participants}
child-yield(r.id) := (r.estimated-val, r.count)
if replies-waiting = ∅ then

child-yield(id) := (data-val, 1)
(estimated-val, count) := op(child-yield(∗))
if r.requester 6= id

send ParticipationReply to parent
else

send Query to neighbors

Fig. 5. The ParticipationReplyReceived Action

ParticipationReply (Fig. 5),
the reporting child is con-
sidered to be committed
to the query. Any future
changes impact the qual-
ity of the returned aggre-
gate result. On receiving
this message, a host locally
stores the child’s estimated
aggregate and count values.
In Fig. 5, op(child-yield(*))
refers to performing opera-
tion op on the entire child-list contained in child-yield. After all its children have
reported, it computes the partial aggregate for its subtree (estimated-val), and
forwards it to its parent.

The Pre-Query ends when the querier has collected ParticipationReply mes-
sages from all of its children. The estimates of aggregates established in Pre-
Query allow each node to capture a local “snapshot” of the environment and the
cached values aid in calculating the aggregate query result’s imprecision later.

Aggregation Assessment Phase. Once the Pre-Query completes, the
query issuer initiates Aggregation Assessment. As before, a parent waits for
4 If a node receives more than one participation request for a query (e.g., along differ-

ent communication paths), the node cancels the duplicate and notifies the sender,
removing the node from the sender’s subtree. This action is omitted for brevity.

responses from all of its children before sending its own reply, and boundary
hosts initiate the second wave. Only results from nodes present in both phases
and without any value change contribute to the final aggregate. This value for
each subtree is stored in actual-val at the root of each subtree and propagated to
the query issuer. The actual-val (i.e., A in our framework) returned to the user
reflects a conservative aggregation, as defined by the consistency class. Once
the query issuer has received QueryReply messages from all of its children, it
prepares the result. The protocol dynamically assesses and tags a result with
bounds indicating the query’s imprecision and the achieved consistency class.

Handling Dynam-
NeighborAddedA(B)

Precondition:
connected(A,B) ∧B 6∈ neighbors

Effect:
neighbors := neighbors ∪ {B}
if membership then

if ¬monitoring ∧ (replies-waiting 6= ∅) then
send ParticipationRequest to B
replies-waiting := replies-waiting ∪{B}

else
send EstimateRequest to B

NeighborDepartedA(B)
Precondition:

¬connected(A,B) ∧B ∈ neighbors
Effect:

neighbors := neighbors − {B}
if membership then

if B = parent then
[reset state]

else if ¬monitoring ∧ (replies-waiting 6= ∅) then
replies-waiting := replies-waiting −{B}

else if ¬monitoring then
participants := participants − {B}
send EstimateReply(B) to parent

else
replies-waiting := replies-waiting−{B}
send EstimateReply(B) to parent

Fig. 6. Actions for Neighbor Changes

ics. If a host detects
that one of its chil-
dren departs after the
participants are estab-
lished but before the
node has replied in
the Aggregation Assess-
ment, then the actual-
val returned will not be
computed using all val-
ues that existed during
query execution. Con-
sider a minimum aggre-
gate. If a node with the
smallest value departs
the network during the
query, the computed ag-
gregate will not re-
flect the smallest value
that existed in the net-
work. We must there-
fore include the de-
parted value in the
query result’s bounds.
To do so, the parent
calculates its estimated
value for the departed node’s subtree using the value stored in child-yield and
sends this value to the root in an EstimateReply message. Similarly, an incon-
sistency arising due to a node adding itself to the network should be reflected
in the aggregate’s bounds. When a node detects such an addition, it sends a
new EstimateRequest message to the added node, which creates and sends an
EstimateReply containing its data value and unique node identifier. We model a
data value change as a node departure followed a node addition. Since the Esti-
mateReply includes the unique node identifier, we can perform post-processing

at the query issuer to account for duplicate values when necessary. These actions
are shown in Fig. 6.

Fig. 7 illustrates network dynamics for an average query. In the first three
scenarios, the nodes are in the Aggregation Assessment phase but have not yet
sent replies. The first graph shows the query’s participants. In the second graph,
a node with a value of 20 departs. The neighboring node detects the departure
and uses locally cached values to compute and send an EstimateReply. In the
third graph, a node with a value of 0 departs. The final graph depicts the final
computation. The values present and unchanged are used to perform in-network
aggregation, which results in the average A = 10.

Bounds on the aggregate result are computed using the EstimateReply mes-
sages (arrows in Fig. 7) which carry the “excess” values to the querying host.
In this example, we calculate all potential average values after removing du-
plicate contributions. The lowest possible average includes the node with value
0 that departed, yielding an average of 8.89. The highest possible average is
11.11; this comes from the configuration that included the departed node with
value 20 but not the departed node with value 0. Therefore, the numerical re-
sult for this query would be [8.89, 10, 11.11]. In addition, because the query
issuer has recorded EstimateReply messages that indicate node departures but
no additions, the query achieved comparable consistency. Thus, the bounds were
computed using comparable values, i.e., values that existed at the same time.

In general, the query result includes the aggregate result, bounds on the
result, and an assessment of the result’s consistency semantics. Application de-
velopers can use the protocol in different network settings and receive different
query replies and their associated semantics and bounds. This enables users to
intuitively reason about the uncertainty associated with query responses.

5 Evaluation

We have prototyped our protocol using the OMNeT++ simulator and its mobil-
ity framework [8, 9]. Our protocol executes a query, establishes its consistency,

8

12 10

011 1010

20 9 10 20

0

8

12 10

011 1010

9 10 20

8

12 10

11 1010

9 10

0

20

8

12 10

11 1010

9 10

Excess
= {20}

Excess =
{20, 0}

[L = 8.89,
A = 10,
U = 11.11]

Fig. 7. Example Average Query

and provides bounds on the response. 5 We executed our protocol in a 1000m
x 900m rectangular area with 50 nodes (a network of moderate density and
good connectivity). The nodes move according to the random mobility model,
in which each node is initially placed randomly in the space, chooses a random
destination, and moves in the direction of the destination at a given speed. Once
a node reaches the destination, it repeats the process. We used the 802.11 MAC
protocol. When possible, 95% confidence intervals are shown on the graphs.

5.1 Using Aggregate Imprecision: An Application Scenario

We first demonstrate how

Fig. 8. An Application Example

an application might ap-
ply our protocol using a
construction asset man-
agement example. In our
scenario, materials are
delivered to the site over
a period of time and
then consumed. Devices
attached to the palettes
of material measure the
amount of available mate-
rial, and the palettes may
move around the site as
they are positioned for use. Initial data values are generated using a Gaussian
distribution (µ = 0, σ = 20); a value increases in steps of 10 for 50 seconds
(representing material delivery) then reduces to its original value in steps of 10.
We model a dynamic scenario where all devices are mobile and move at 20 m/s.
A node selected to be the query issuer requests the sum of the amount of ma-
terial across the site every 10 seconds. Fig. 8 plots three lines: our protocol’s
conservative estimate of the aggregate value (A); the actual sum of the material
amounts (the “oracle”); and the summation value that would be calculated by
an existing state-of-the-art best-effort querying technique (e.g., [2]). The shaded
region contains values between our upper and lower bounds, and it represents
the imprecision range associated with our result.

The plot confirms that best effort solutions often differ (sometimes signifi-
cantly) from the truth. Our approach provides both a stated consistency seman-
tic (here, the results are non-comparable) as well as imprecision bounds. While
our aggregate result is conservative and may differ from the oracle, the range
gives an indication of the space of all possible answers. The behavior exhibited
here is true for all other operators; these graphs are omitted for brevity. The
upper and lower bounds typically encapsulated the oracle value. In relatively
static networks, the aggregate value (A) returned is close to the oracle, and
the distance between the upper and lower bounds is small. In highly dynamic
networks, the aggregate value tends to be closer to the lower bound, and the
imprecision range is wider. An exception is in very dense networks, where the
5 The source code and settings used are available at http://mpc.ece.utexas.edu/

AggregationConsistency/index.html

oracle tends to be higher than our upper bound due to the significant numbers
of packets dropped because of contention in the wireless medium.

5.2 Impact of Mobility

0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45 50

Co
m
pa

ra
bi
lit
y
(%

)

Im
pr
ec
is
io
n
Ra

ng
e
(%

)
Speed m/s

Impact of Mobility
Comparable Imprecision Range

Fig. 9. Imprecision Change with Dynamics

We now show how our impre-
cision measures change with
changing network conditions.
We evaluated all five of our
aggregation operators but use
the average operator to elu-
cidate the impact of mobil-
ity. The shaded region in
Fig. 9 represents the percent-
age of query responses that
were comparable as node speed
increased. When the network
is static, all the query results are comparable because the configuration remains
the same during query execution. However, as mobility increases, the results are
increasingly non-comparable. Fig. 9 also shows the impact of mobility on aggre-
gate imprecision. The line shows the size of the imprecision range obtained by
executing our protocol6. As mobility increases, the imprecision range widens.
Using a best effort protocol can produce responses that vary significantly from
the ground truth; the difference between the oracle and best effort responses var-
ied from 0 to 20%. The imprecision range is lower than Fig. 8 because mobility
alone (not data changes) contributes to the uncertainty here. This shows that,
in a highly dynamic environment, the query responses of current protocols can
be a poor reflection of the ground truth. By explicitly exposing the degree of
uncertainty, we allow applications to reason about query results.

5.3 Protocol Performance

We measured our protocol’s performance in terms of overhead (the number of
bytes transmitted to evaluate a query) and latency (the time to process a query).
Our protocol effectively runs the best effort protocol twice, so the overhead is
about double that of the best effort protocol. In addition, our overhead increases
slightly with mobility due to sending additional information to calculate the
bounds. (This graph is omitted for brevity.) Fig. ?? shows that our protocol
does not incur significant delays. Although our protocol is clearly more expensive
than current best-effort techniques, it provides significantly more information to
enable applications to effectively reason about results of aggregate queries in
dynamic environments.
6 The line in Fig. 9 plots the difference between the upper and lower bounds normalized

by the answer returned by a best effort protocol.

6 Related Work

Consistency has been expressed in terms of precise metrics defining numerical
error, order error, and services [10]. The authors explore the design space between
strong consistency and no consistency for data access in replicated file systems.
In contrast, we focus on aggregation of (non-replicated) data items and provide
an accuracy range for a given query result. Similarly, completeness describes the
probability that a node’s data will be included in a query result [11]. This has
been applied only to a distributed shared memory system with no concern for
mobility.

Recent work has explored the impact of in-network aggregation on consis-
tency, defining the “single site validity” principle, in which a query result appears
to be equivalent to an atomic execution from the query issuer’s perspective [12];
essentially, a result is valid if every host that was connected to the querier dur-
ing the querying interval contributed. In a complementary manner, we categorize
contributions from nodes depending on the type of environmental change which
allows us to provide a range of semantics. More recent work exposes inconsistency
in query results through network imprecision [13]. This work, like ours, provides
a network monitoring approach that reports the network imprecision with the
query result. Information indicating network imprecision includes the number of
reachable nodes and the number of potentially over-counted nodes. Both these
approaches are designed for static networks. Since the impact of dynamics is
significant, these architectures are not feasible in dynamic pervasive computing
networks. In addition, we combine a measure of consistency with a measure of
imprecision providing a more complete way to convey query semantics.

Researchers in sensor networks have explored a model-driven approach to
query processing [14, 15]. Each node constructs a local model of the data in the
network and estimates the error in the model. If the estimated error is acceptable,
a node conserves energy by querying the local model. Another popular approach
provides approximate answers that trade accuracy for energy efficiency [16]. We
calculate the error on demand at query time since pro-actively maintaining local
models can be expensive in mobile environments.

7 Conclusions

In this paper, we presented an approach to defining semantics for aggregate
queries issued in dynamic pervasive computing networks. Our approach com-
bines a qualitative measure of consistency and a quantitative measure of im-
precision to provide a more intuitive way of communicating the meaning and
quality of a query’s aggregate result. To make this approach more accessible to
developers of query-based applications, we developed an automated process for
query execution that simultaneously assesses the aggregate query’s semantics
while performing in-network aggregation, and returns the assessment along with
the aggregate result.

Acknowledgements

This research was funded, in part, by NSF Grants # CNS- 0620245 and OCI-
0636299. The authors express thanks to EDGE. The conclusions herein are those
of the authors and do not necessarily reflect the views of the sponsoring agencies.

References

1. Krishnamachari, B., Estrin, D., Wicker, S.B.: The impact of data aggregation in
wireless sensor networks. In: Proc. of ICDCS. (2002) 575–578

2. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A tiny aggregation
service for ad-hoc sensor networks. ACM SIGOPS 36(SI) (2002) 131–146

3. Manjhi, A., Nath, S., Gibbons, P.: Tributaries and deltas: Efficient and robust
aggregation in sensor network streams. In: Proc. of SIGMOD. (2005) 287–298

4. Payton, J., Julien, C., Roman, G.C.: Automatic consistency assessment for query
results in dynamic environments. In: Proc. of ESEC/FSE. (2007) 245–254

5. Kabadayı S., Julien, C.: A local data abstraction and communication paradign for
pervasive computing. In: Proc. of PerCom. (2007) 57–66

6. Roman, G.C., Julien, C., Huang, Q.: Network abstractions for context-aware mo-
bile computing. In: Proc. of ICSE. (2002) 363–373

7. Lynch, N., Tuttle, M.: An introduction to I/O automata. CWI-Quarterly 2(3)
(1989) 219–246

8. Loebbers, M., Willkomm, D., Koepke, A.: The Mobility Framework for OMNeT++
Web Page. http://mobility-fw.sourceforge.net

9. Vargas, A.: OMNeT++ Web Page. http://www.omnetpp.org
10. Yu, H., Vahdat, A.: Design and evaluation of a conit-based continuous consistency

model for replicated services. ACM Trans. on Computer Systems 20(3) (August
2002) 239–282

11. Singla, A., Ramachandran, U., Hodgins, J.: Temporal notions of synchronization
and consistency in Beehive. In: Proc. of SPAA. (1997) 211–220

12. Bawa, M., Gionis, A., Garcia-Molina, H., Motwani, R.: The price of validity in
dynamic networks. In: Proc. of ACM SIGMOD. (June 2004) 515–526

13. Jain, N., Kit, D., Mahajan, D., Yalagandula, P., Dahlin, M., Zhang, Y.: Network
imprecision: A new consistency metric for scalable monitoring. In: Proc. of OSDI.
(2008) 87–102

14. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., Hong, W.: Model-driven
data acquisition in sensor networks. In: Proc. of VLDB. (2004)

15. Muttreja, A., Raghunathan, A., Ravi, S., Jha, N.: Active learning drive data
acquisition for sensor networks. In: Proc. of ISCC. (2006)

16. Considine, J., Li, F., Kollios, G., Byers, J.: Approximate aggregation techniques
for sensor databases. In: Proc. of ICDE. (2004) 449–460

