
Exploiting Synergies Between Coexisting
Overlays

Shen Lin, François Täıani, and Gordon S. Blair

Computing Department
Lancaster University, UK

{s.lin,f.taiani,gordon}@comp.lancs.ac.uk

Abstract. Overlay networks have emerged as a powerful paradigm to
realise a large range of distributed services. However, as the number of
overlays grows and the systems that use them become more intercon-
nected, overlays must increasingly co-exist within the same infrastruc-
ture. When this happens, overlays have to compete for limited resources,
which causes negative interferences. This paper takes an opposite view,
and argues that coexisting overlays may also introduce positive syner-
gies that can be exploited to benefit a distributed system. Unfortunately,
and in spite of some pioneering work, this phenomenon is still poorly un-
derstood and has yet to be investigated systematically. To address this
problem, this paper proposes a principled classification of synergies, and
illustrates how it can be used to exploit synergies in a typical overlay
platform targeting gossip protocols (GossipKit). We review in detail
the risks and benefits of each identified synergy; we present experimen-
tal data that validate their added value, and finally discuss the lessons
we have learnt from our implementation.

Key words: coexistence, synergy, gossip, overlay framework

1 Introduction

An overlay network creates a virtual topology that is built on top of another vir-
tual or physical topology. Over the past decade, overlay networks have emerged
as a popular paradigm to offer more tailored services to specific classes of ap-
plication such as multicasting, inter-domain routing, distributed file sharing and
storage, and multimedia streaming [21, 9, 5, 6].

As more overlays are being developed, and as the systems that support them
become more interconnected, overlays must increasingly co-exist in the same in-
frastructure. Because overlays are typically domain specific, a given node needs
to support a growing number of overlays for different functions (e.g. a personal
computer user might be making a Skype call over a VoIP overlay while down-
loading videos from a BitTorrent overlay). Furthermore, one overlay often de-
pends on other overlays in intricate patterns, and must co-exist with them: for
instance, T-Man [9] relies on overlays that maintain random graph to build

various structured network topologies. Finally, changing requirements in long-
running systems will lead deployed overlays to be replaced, adding a dynamic
dimension to the co-existence of overlays.

When overlays coexist in the same infrastructure, they may affect each other
adversely: they must compete for node and network resources; they may also
interact in unexpected ways, causing inconsistencies [4, 3]. In this paper we take
an opposite view, and look instead at the cases when coexisting overlays might
benefit from each other through potential synergies — i.e. when a set of mutually
collaborating protocols perform more efficiently than the individual protocols
operating in isolation.

Specific cases of synergies have been studied in a number of pioneering works
[1, 5, 2]. Unfortunately, and in spite of these works, the general phenomenon of
synergies remains poorly understood, and has never been studied systematically.
This lack of analytical framework in turn limits the ability of overlay develop-
ers to analyse and exploit synergies, and prevent users of complex distributed
systems to receive the full benefits that coexisting overlays can bring.

As a first step towards addressing these challenges, this paper presents a prin-
cipled classification of synergies (Section 2), and illustrates its value by demon-
strating how it can be used to identify and exploit synergies in GossipKit [8],
a representative component framework that supports coexisting gossip overlays.
More precisely, we discuss four concrete examples of synergies that demonstrate
the main categories of our classification, and highlight their potential risks and
benefits (Section 3). We then present experimental data based on a prototype
implementation based on GossipKit that validate the added values of these syn-
ergies (Section 4). We finally discuss the lessons learnt from this work (Section
5), before discussing related work and concluding (Sections 6 and 7).

2 A Classification of Synergies Between Coexisting
Overlays

We define synergy as the beneficial emergent behaviour of a set of coexisting and
collaborating overlays that achieves a higher efficiency than when they operate
in isolation. Synergies provide a global benefit through the local adaptation of
each overlay’s behaviour, thus delivering a high payoff at a minimum cost.

Since synergies result from the interactions of coexisting overlays, they de-
pend on the orientation of these overlays in a system’s physical architectural
space, i.e. on how overlays coexist with respect to each other. In addition, and
because of their nature, synergies must involve the collaboration of some key
elements of each overlay. We have termed these key elements facets. Orientation
and facets provide the two main dimensions of our classification (Fig. 1).

Communication protocols in general, and overlays in particular, are very
often layered in stacks [14, 18]. In terms of orientation, this translates into two
classic forms of coexistence (Fig 1): The horizontal orientation indicates overlays
that execute in parallel at the same layer of a system, but do not normally require
each other to deliver their individual service, in the same way that say TCP and

Fig. 1. A Classification of Synergies

UDP reside above IP. Meanwhile, the vertical orientation occurs when an overlay
uses the functionality of an overlay located in a lower layer to provide its services.
For instance, Ghodsi et al. [2] discuss how gossip-based unstructured overlays
can be built on top of a structured overlay such as Chord [21].

In terms of facets, three key elements are likely to introduce synergies between
overlays: their patterns of communication (communication facet), their states
(state facet), and the possible external services they rely on (service facet). The
communication facet refers to how the nodes of an overlay maintain a particular
virtual topology by selecting neighbours according to specific control algorithms.
When overlays coexist, their communication facets can often be coordinated
locally to cause them to communicate with the same destination in a way that
does not degrade the original service. When this happens, the network traffic
can be reduced through piggybacking [22, 23] by merging together the data and
control messages of multiple overlays to the same destination.

The state facet denotes the local data such as sensor readings, routing tables
or unstable message buffers that an overlay maintains on a node. The state facets
of coexisting overlays can often be shared to improve the overall performance
of a distributed system through state synergies [5, 1]. For instance, the Synergy
[5] networking platform enables co-existing overlays to share their local routing
information. As a result, the messages of a given overlay can utilise the routes
maintained by another overlay if those are shorter. This kind of cooperation is
analogous to code sharing between airlines: a customer with a ticket from airline
A might use airline B ’s flight on part of his journey if the two companies have
agreed to share certain routes. Another example of state synergy is the joint
overlay proposed by Maniymaran et al. [1]. In this work, the structured overlay
Pastry [12] organises nodes in a ring topology. It coexists with an unstructured
Clustering overlay that brings together nodes with close interests (e.g. similar
videos or games on the node). When operating independently, both overlays need
to maintain a list of virtual neighbours along with a “pool” of random peers. This
pool acts as a shortcut for joining nodes to quickly discover their neighbours.
Maniymaran et al. point out that the virtual neighbours of each overlay can be
used as a pool of random peers by the other. Doing so significantly reduces the

network messages (2/3 of the overall messages) used by both overlays.
Finally, the service facet denotes the combination of distributed services that

an overlay may provide. For instance, the prime functionality of a structured
overlay such as Pastry is a standard key-based routing mechanism. However,
Pastry’s ring topology can also be used to broadcast messages or to aggregate
data. Recognising this particular mix of services can allow an overlay that re-
quires both routing and broadcast to use Pastry alone instead of a combination
of two different overlays [2]. This in turn saves both computing and network
resources. We refer to this kind of overlay “consolidation” as service synergies.

As mentioned in our introduction, long-running systems means overlays need
to be reconfigurable at run-time. This dynamicity adds a third temporal dimen-
sion to the orientations and facets we have just discussed (Fig. 1). Temporal
synergies refer to the situation when the initialisation of a newly loaded overlay
can benefit from pre-existing overlays, in particular from those being replaced.

3 Case Study: Identifying Synergies within GossipKit

The classification of synergies that we have just presented provides a space of
potential synergy types, which can serve as a guideline for developers to iden-
tify and exploit synergies between coexisting overlays. To evaluate this point,
we apply here this classification to GossipKit [8], a representative component
framework that supports coexisting gossip overlays, and discuss four synergy
examples that illustrate the key categories of Figure 1.

3.1 Background: Gossip overlays and GossipKit

Gossip algorithms allow information to spread over a network in the way a
rumour is randomly gossiped amongst a group of people. Gossip-based overlays
have been widely applied to provide highly scalable communication in both IP-
based networks [9, 10, 16, 17] and mobile adhoc environments [19]. To deliver
scalable communication in a large fixed network, a gossip algorithm repeatedly
exchanges limited data with a fixed number of randomly selected peers during
gossip rounds. The random selection of peers can itself be implemented as a
gossip overlay (e.g. RPS [10]). Gossip overlays in mobile adhoc networks differ
in that they favour a probabilistic broadcast mechanism rather than a random
selection of neighbours, and tend to be reactive rather than periodic, but their
probabilistic and scalable approach remains unchanged [19].

Gossip overlays offer many classic examples of coexistence and hence are
ideal candidates for the concrete study of synergies: they are often composed
of simpler gossip overlays to achieve more complex tasks [11] (vertical coexis-
tence); they are frequently employed to maintain various aspects of structured
and unstructured overlays [9] (vertical/horizontal coexistence); and because they
are built on randomised mechanisms and behave stochastically, are sometimes
replicated to improve reliability (horizontal coexistence) [17].

GossipKit [8] is a fine-grained component framework that we have developed
to ease the development of (re)configurable gossip overlays. In particular, it pro-
vides a toolkit to develop middleware platforms that support the coexistence of
multiple gossip overlays. To illustrate its value, we have used GossipKit to im-
plement eight different gossip-based overlays1. We have shown that GossipKit
promotes code reuse, simplifies the configuration of gossip-based middleware,
and supports the concurrent execution of multiple gossip overlays [8].

Fig. 2. GossipKit’s Common Interaction Model

GossipKit’s design follows a component model that captures the key ele-
ments of most gossip overlays [8] (Fig. 2). The Gossip component orchestrates
the dissemination of data to random peers selected by the Peer Selection
component via the Network component. The Network component supports inter-
node interactions by encapsulating different communication mechanisms (TCP,
UDP, or another overlays). The Gossip component can either be triggered re-
actively by events from external applications or periodically by the Periodic
Trigger component. The State component maintains the data (e.g. a tem-
perature reading, a list of temporary network packets or a set of neighbouring
nodes) that is gossiped between nodes and is updated by the State Process
component. Finally, the Gossip Decision component captures the conditions
that trigger a gossip dissemination. This component model is recursive — each
component can itself be implemented as a gossip overlay that follows the same
component model. For instance, the Peer Selection component that provides
topological maintenance can itself be a membership overlay such as RPS [10].
GossipKit provides different implementations for each of the above compo-
nents, and thus allows users to realise a wide range of gossip-based overlays by
simple composition.

3.2 Synergy Identification

To explore synergies within GossipKit, we first need to map each of three
facets of our classification (Fig. 1) onto the components of GossipKit’s model.
In Figure 2, the State component directly matches the state facet in Figure 1.
The Peer Selection component decides the communication target of individual

1 The source code of these overlays and of GossipKit is available on line: www.lancs.
ac.uk/postgrad/lins6/GossipKit.html

nodes, and is therefore a prime candidate for potential communication synergies.
The Network component can itself be implemented as an overlay, and may thus
provide additional services (service facet) that are exploitable by the gossip
overlays. The remaining four components in Fig. 2 do not directly match any
of our three overlay facets: they encapsulate processes that are limited to local
computations, and are thus unlikely to provide exploitable synergies.

In the following we use this mapping to analyse four scenarios of overlay
coexistence, both horizontal and vertical, and we investigate their potential for
synergies through a study of the functionalities and semantics of the State, Peer
Selection and Network components of each overlay.

3.2.1 Potential Horizontal Communication Synergy A Communication
Synergy coordinates the communication facets of coexisting overlays so that
these overlays can share the same set of communication targets and reduce the
number of their network messages through piggybacking (see Section 2).

This situation may occur for instance when a distributed file storage system
uses two gossip overlays for different parts of its functionalities: a failure detection
overlay [16] to aggregate evidence of failed nodes; and a data aggregation overlay
[17] to calculate the average data storage on overlay nodes and assist with load-
balancing of the system. The impacts of a communication synergy between these
two overlays can be analysed as follows.

Benefit (Network Usage): When operating independently, these two over-
lays must both select a constant number of M random peers to communicate
with. The probability of a given node to be selected in a gossip round is M

N , and
these two overlays will on average have M × M

N = M2

N communication targets in
common, thus contacting an overall average of 2M − M2

N peers at each round. In
large-scale networks (N À M), the number of messages sent during each round
will thus approaches 2M , and more generally the total number of messages will
increase linearly with the number of coexisting overlays.

In contrast, using communication synergy, both overlays can consolidate their
communication needs and invoke the Peer Selection component only once dur-
ing each round. This allows both overlays to communicate with the same set of
M random peers during the same round. With the exploitation of piggyback-
ing mechanism, this approach limits the number of peers to be contacted to a
constant M, regardless of the number of coexisting gossip overlays, and corre-
spondingly reduces the number of network messages.

Risk (Aggregation Speed): Despite the above benefit, communication
synergy raises a potential risk as the randomised exchange of information (e.g.
through random peer selection) is crucial for a data aggregation gossip overlay to
achieve a high convergence speed (typically O(logN) rounds). Communication
Synergies might therefore jeopardise an overlay’s overall efficiency by introducing
interferences in its peer selection process.

3.2.2 Potential Horizontal State Synergy A State Synergy considers that
coexisting overlays can benefit from sharing the data they maintain. We have

already mentioned the work of Maniymaran et al. [1]. As a further example, con-
sider the coexistence of T-MAN [9] and Clustering [1]. T-MAN constructs various
logical topologies (e.g. a ring) from any initial random graph, and maintains a
set of peers that are closer to the local node’s coordinates (i.e. the neighbour
set state). In addition to its neighbour set state, T-MAN also relies on the RPS
protocol (see Section 3.1) to provide a random set of nodes that act as shortcuts
for joining nodes to quickly discover their neighbours. Clustering (Section 2) is
a gossip overlay that maintains nodes with close interests (e.g. similar videos or
games on the node) in its cluster state. Similarly to T-MAN, Clustering also use
RPS to obtain a random state. Because T-MAN uses random node coordinates,
its neighbour set and Clustering’s cluster state are not strongly correlated. One
overlay’s neighbour set can thus be viewed as random by the other overlay. By
sharing their states, Clustering can use T-MAN’s neighbour set as its random
state and T-MAN can access Clustering’s cluster set for the same purpose, thus
eliminating the need to maintain the RPS overlay.

Benefit (Network Usage): Without state synergy, the combination of T-
MAN, Clustering, and RPS generates a total number of 3 ∗M messages at each
gossip round, where M is the number of peers contacted by each overlay. The
state synergy eliminates RPS from the system, hence potentially reducing the
total number of network messages to 2 ∗M .

Risk (Convergence Speed): Both Clustering and T-MAN aim for conver-
gence: T-MAN converges from any random topology to a predefined structure,
while Clustering converges to an unstructured topology where nodes with close
interests are linked. Both overlays eventually reach a stable situation, where the
contents of T-MAM’s neighbour set and Clustering’s cluster state remain un-
changed. As a result, when they approach convergence, each overlay might fail
to provide enough random peers to the other, thus reducing the effectiveness
of shortcuts, and slowing down both overlays’ convergence speed. Therefore, to
safely exploit this synergy type, developers must ensure that the state contents
of two overlays are actually uncorrelated.

3.2.3 Potential Temporal State Synergy GossipKit supports the recon-
figuration of gossip-based overlays at runtime, introducing the opportunity of
temporal synergies (see Section 2). For instance, consider the case where the
SCAMP overlay [15] is being replaced by T-MAN/RPS [9] because of changes
in application requirements. SCAMP is a light-weight membership overlay that
maintains a random partial membership with maximal entropy to ensure an opti-
mal propagation of broadcast messages. Compared with SCAMP, T-MAN/RPS
constructs various logical topologies from any initial random graph to provide a
number of services that are not limited to broadcasting. It does so by updating
each node’s local membership view with the closest logical neighbours (i.e. as
defined by a ranking function) on receipt of periodically exchanged random mem-
bership information. In order to bootstrap its topological construction, T-MAN
normally relies on RPS. This bootstrapping stage requires each joining peer to
contact some well-known starting peers, which then propagate join messages to

the rest of the overlay.
Benefit (Stabilisation Speed): Using state synergy, T-MAN/RPS can

work more efficiently by reusing the random partial view previously maintained
by SCAMP. Intuitively, SCAMP already contains a lists of nodes belonging to
the system. By using this lists, RPS can speed up its joining process, and directly
interact with multiple other group members, rather than a limited set of well-
known peers, and thus stabilise more rapidly to a stable global state.

3.2.4 Potential Vertical Service Synergy As introduced in Section 3.1,
the Network component of GossipKit can be implemented by an underlying
overlay that provides a communication service (e.g. Pastry). Such overlays often
exhibit properties in addition to communication (e.g. Pastry’s ring topology).
These properties can be leveraged to provide additional distributed services to
the stacked overlays that use them, and thus consolidate services.

For instance, consider some gossip overlays that run atop a structured over-
lay such as Chord [21] to exploit its efficient broadcasting mechanism [2]. In
this case, Chord can also provide a random peer sampling service, thus elimi-
nating the need for an explicit sampling overlay such as RPS. This can be done
by generating random identifiers from Chord’s identifier space, followed by a
distributed lookup with Chord’s find successor API [21].

Benefit (Flexibility): In contrast with gossip-based membership overlays
that can only provide a fixed number of random peers in any gossip round,
structured overlays can provide a set of random peers of any size.

Benefit (Network Usage): Chord’s find successor algorithm only requires
a worst case of log N network messages to find a random peers in a network of N
nodes, which is potentially much more efficient than the periodic 2∗N messages
(2 indicates the bi-directional exchange of information) used by a gossip-based
membership overlay such as RPS.

Risk (Network Usage): A periodic gossip overlay typically requires every
node to select a random peer to gossip at each gossip round. Since each random
peer selection takes log N messages, the global number of messages will reach
N ∗ log N per gossip round for a network of N nodes with Chord, which is less
efficient than the 2 ∗N messages of RPS.

4 Quantitative Evaluation

The four synergies that we have just presented provide both potential benefits
and potential risks. To validate their actual value, and assess how difficult they
are to realise, we have implemented each of them in GossipKit. We first present
below a quantitative evaluation based on this implementation and a network
simulation. We will then move on (in Section 5) to discuss the lessons we learnt
from this implementation.

In the experiments that follow, we used the network simulator Jist/SWANS
[20] underneath GossipKit to provide a virtual network environment. In par-
ticular, this experimental set-up maintained GossipKit’s ability to insert and
remove overlays at run-time, thus allowing us to study temporal synergies.

4.1 Horizontal Communication Synergy (Failure Detection and
Data Aggregation)

As explained in Section 3.2.1, the reduction in network messages that this syn-
ergy provides might come as the cost of an increased number of gossip rounds for
the data aggregation of both protocols. To investigate this drawback, we perform
the following experiment.

We execute both the failure detection overlay and the data aggregation over-
lay within GossipKit. In our implementation, both overlay protocols are con-
figured to periodically send their local states (i.e. part of the global information
that must be aggregated) to one randomly selected peer. A simulation run ter-
minates when both overlays have converged — i.e. when the data aggregation
overlay has reached a global average and the failure detection overlay has gath-
ered liveness information about all the system’s nodes. Each simulation run can
be parameterised to exploit the communication synergy (i.e. by selecting the
same random peer) or not. The corresponding simulation results, averaged over
20 simulation runs, are shown in Fig. 3 and Fig. 4 for various network sizes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800 900 1000

N
o
.
o
f

N
et

w
o
rk

 M
es

sa
g
es

Network Size

Communication Synergy
Without Synergy

Fig. 3. Less network messages with the
communication Synergy (ave. -50%)

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600 700 800 900 1000

N
o
.
o
f

G
o
ss

ip
 R

o
u
n
d
s

Network Size

Communication Synergy
Without Synergy

Fig. 4. Gossip rounds not degraded with
the communication synergy

Benefit (Network Usage): Fig. 3 indicates that network messages are
reduced by 50% when both overlays select the same peer at each gossip round
and then merge their messages to be sent to this peer (piggybacking). This shows
that communication synergy can significantly save network resources.

Risk (Aggregate Speed): Fig. 4 shows that the expected O(logN) con-
vergence rate remains as the network size grows, thus demonstrating that in
this case the communication synergy does not affect the scalability of either
overlays, and does not come at a cost of a slower convergence rate. This result
can be generalised to any pair of independent gossip overlays who have identical
randomness requirements.

4.2 Horizontal State Synergy (T-MAN and Clustering)

We have seen in Section 3.2.2 how some gossip overlays can share each other’s
state to obtain random links, and thus eliminate the need for an explicit peer
sampling overlay such as RPS. To evaluate this type of synergy, we execute

T-MAN and Clustering in parallel (see Section 3.2.2), and run two types of sim-
ulations. In the first type, T-Man and Clustering rely on RPS to select random
peers, while in the second, they share each other’s state to obtain random links
(state synergy).

Benefit (Network Usage): The number of messages required by both types
of simulation, averaged over 20 runs, is shown in Fig. 5 for various network
sizes. On average, the state synergy reduces network messages by 35% across all
network sizes.

Risk (Convergence Speed): As mentioned in Section 3.2.2, T-MAN and
Clustering might not be able to provide each other with peers that are “random
enough” to maintain their speed of convergence. We look at this risk in Fig.
6 which plots the number of rounds needed for both T-MAN and Clustering
to converge for various network sizes. This number remains unchanged with
or without state synergy. The reasons for this is because the main topologies
maintained by T-MAN and Clustering are not correlated. (T-Man maintains
peers that are close in a virtual coordinate space while Clustering maintains peers
who share similar interests.) Thus both overlays can provide enough random
peers for each other even once they have stabilised. In fact, this reasoning applies
to any pair of coexisting gossip overlays that maintain both a main topology
and a random set of peers, as along as their main topologies are uncorrelated.
Maniymaran’s [1] joint use of Pastry and Clustering is a similar example of this
type of state synergy (see Section 2).

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 100 200 300 400 500 600 700 800 900 1000

N
o
.
o
f

N
et

w
o
rk

 M
es

sa
g
es

Network Size

State Synergy
Without Synergy

Fig. 5. Network messages
are reduced with a state
synergy (ave. -35%)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 100 200 300 400 500 600 700 800 900 1000

N
o
.
o
f

G
o
ss

ip
 R

o
u
n
d
s

Network Size

State Synergy
Without Synergy

Fig. 6. Convergence re-
mains unchanged with a
state synergy

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60 70 80 90 100

N
o

.
o

f
G

o
ss

ip
 R

o
u

n
d

s

Network Size

With State Synergy
Without State Synergy

Fig. 7. Bootstrap speed
improved with a temporal
synergy (ave. -26%)

4.3 Temporal State Synergy (SCAMP Replaced by T-MAN)

In Section 3.2.3, we explained how nodes running T-MAN/RPS could poten-
tially reduce their bootstrapping overhead by reusing the membership infor-
mation maintained by a preexisting SCAMP overlay. The following experiment
quantifies this reduction by using T-MAN/RPS to construct a ring topology in
two sorts of simulation. In the first sort, T-MAN/RPS starts on each node with
a empty local view (i.e. a bootstrap is required), while in the second, SCAMP is
executed first and used to initialise T-MAN/RPS with a resulting set of random
peers. We terminate both types of runs when T-MAN/RPS converges to a ring.

In all these experiments, T-MAN maintains a local state of size 2, and ex-
changes messages with both neighbours during every round; RPS maintains a
local view of size 4 and communicates with only one random peer per round.
SCAMP, as per construction, does not limit the size of its local view. Instead
its sample size approximates log N for a network of N nodes. In the simulations
in which T-MAN/RPS initialises its state with SCAMP’s, RPS only keeps four
random peers from SCAMP’s view if SCAMP has more than four.

Benefit (Stabilisation Speed): Fig. 7 shows the number of gossip rounds
needed by T-MAN to converge (averaged over 20 runs), with and without tem-
poral state synergy. As expected, the synergy helps reduce the number of gossip
rounds (an average of 26% reduction) needed to construct a ring topology on
various network sizes.

4.4 Vertical Service Synergy (Gossiping Over Chord)

In Section 3.2.4, we have analysed that gossip overlays can exploit the find successor
service of a structured overlay such as Chord to select random peers on demand,
and have discussed the potential risks of doing so for periodic gossip overlays.
To evaluate the actual benefits and risks, we carry out the follow experiment
with Chord configured to use an identifier space between 0 and 159.

Benefit (Flexibility): The RPS overlay can only return a limited number
of random peers per round: calling the service repeatedly in the same round will
return the same peers. In contrast, Chord can support an unlimited number of
queries over any period of time. Fig. 8 illustrates this by plotting the distribution
of 1000 random queries made by the same node on a Chord ring.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

S
el

ec
te

d
 R

an
d

o
m

 P
ee

r
ID

Experiments

Fig. 8. 1000 Uniformly
Random Peers are Se-
lected for a Random Node
on Chord

 0

 50

 100

 150

 200

 250

 300

 350

 20 40 60 80 100 120 140 160

N
o

.
o

f
N

et
w

o
rk

 M
es

sa
g

e

Network Size

Use PSS
Use Chord

Fig. 9. The Network Us-
age for Selecting Random
Peers on Demand

 0

 200

 400

 600

 800

 1000

 1200

 1400

 20 40 60 80 100 120 140 160

N
o

.
o

f
N

et
w

o
rk

 M
es

sa
g

es

Network Size

Use PSS
Use Chord

Fig. 10. The Network Us-
age for Selecting Random
Peers Periodically on All
Nodes

Benefit (Network Usage): Fig. 9 shows the average number of messages
used by a single invocation of Chord’s find successor. The graph shows that
Chord is indeed much more efficient than RPS if random peer selection is only
needed occasionally, because it avoids the periodic flooding generated by RPS.
Chord is thus a perfect candidate to maintain a static random graph, e.g. to
broadcast probabilistic messages, and only occasionally select some random peers
when a node joins or leaves the network (i.e. on demand).

Risk (Network Usage): However, our experiments (Fig. 10) have also
confirmed that our case study of service synergy uses more network messages if
it is used to support gossip overlays that require all nodes to gossip periodically.

5 Discussion

Fig. 11 summarises the results of the previous section for the synergies we have
presented. In the remainder of this section, we discuss the lessons we learnt from
this implementation and from our experimental evaluation.

Fig. 11. A Summary of the Synergy Examples within GossipKit

1. We have demonstrated the existence of synergies for each of the four syn-
ergies we identified in Section 3.2, based on the classification we proposed in Sec-
tion 2. The fact that GossipKit is a fine-grained component-based framework
played a major role in this identification. This is because fine-grained compo-
nent frameworks often clearly separate the key functional facets of an overlay,
and hence help analyse these facets’ potential for synergies. They also simplify
the implementation of synergies by facilitating collaboration between facets.

2. Our temporal synergy example shows that synergies do not only exist
between overlays executing in parallel, but also between overlays that coexist
transiently during a reconfiguration. We think this directly impacts the design
of future reconfigurable middleware, which should ideally support the automatic
exploitation of synergies. Towards this aim, it seems that an overlay’s state
structure should be made explicitly manipulable by the middleware to support
automatic reasoning.

3. To be exploitable, potential synergies should not violate the “good prop-
erties” of existing overlays. For instance, a main advantage of gossip overlays
is their ability to converge in logarithmic rounds. Synergies, in particular those
that limit the amount of entropy present in a platform, should maintain this.

4. Finally, while implementing the above four synergies, we found Gossip-
Kit’s reflection mechanisms to be particularly helpful. For instance reflection
allowed us to easily expose internal interfaces to other overlays. The use of a
component model also opens the path for adaptor components that can resolve
incompatible interfaces between different overlays.

6 Related Work

The iOverlay [6] framework was one of the earliest attempts to support overlay
networks. It is essentially a low-level software cross-connect that forwards mes-
sages according to a script that embodies the semantics of a particular overlay.
Macedon [7] provides a high-level domain specific language to facilitate the con-
figuration of overlays. Both iOvelay and Macedon provide generic platforms for
overlays, but do not focus on the coexistence of multiple overlays. GridKit [18]
is a reflective middleware framework that supports the coexistence and cooper-
ation of multiple of overlays in the same system. ODIN-S [4] addresses resource
contention between coexisting overlays, and provides a scheduling mechanism to
optimise resource usage. Very few studies have considered exploiting the poten-
tial synergies amongst coexisting overlays, and most of them only considered a
particular instance of synergies. We have already discussed many of these works
[5, 1, 2]. In addition, Ucan et al. [22] proposed a piggybacking mechanism to re-
duce overheads between multiple gossip broadcasts in a wireless sensor network.

7 Conclusion

In this paper, we have shown that coexisting overlays can introduce a wide range
of potential synergies to benefit a distributed system. More precisely, as an early
approach towards the systematic study of synergies, we have proposed a prin-
cipled classification of synergies and demonstrated how this classification can
help identify exploitable synergies within GossipKit, a representative compo-
nent framework for gossip overlays. We have discussed the benefits and risks of
each identified synergies, and provided an experimental evaluation on each of
them, before discussing the lessons learnt from our experiments.

This paper opens up several exciting avenues of research. First, our classi-
fication could be further refined by studying a broader range of overlays. Sec-
ond, because synergies are fraught with risks, an assessment mechanism seems
inevitable to ensure that the exploitation of synergies does not cause negative
side-effects to overlay systems. Finally, since new overlays will emerge and might
need to be dynamically deployed into a distributed system without restart (e.g. a
long-life system), we think that new (re)configuration mechanisms will be needed
that directly support the dynamic exploitation of synergies.

Acknowledgement: This work has been partially supported by ESF MiNEMA
Project and by the EU FP7 ICT Project WISEBED n. 224460.

References

1. B. Maniymaran, M. Bertier, A-M. Kermarrec. Build One, Get One Free: Leveraging
the Coexistence of Multiple P2P Overlay Networks. In Proc. of 27th International
Conference on Distributed Computing Systems, 2007.

2. A. Ghodsi, S. Haridi, H. Weatherspoon. Exploiting the Synergy Between Gossiping
and Structured Overlays. In Proc. of ACM SIGOPS Op. Sys. Review, 2007.

3. S. Steinhauer, P. Okanda, G. Blair Virtual Overlays: An Approach to the Manage-
ment of Competing or Collaborating Overlay Structures. In Proc. of 8th IFIP
Conference on Distributed Applications and Interoperable Systems, 2008.

4. B. Cooper. Trading Off Resources Between Overlapping Overlays. In Proc. of
Middleware Conference, 2006.

5. M. Kwon and S. Fahmy. Synergy: An Overlay Internetworking Architecture. In
Proc. of 14th Inter. Conf. on Computer Communications and Networks, 2005.

6. B. Li, J. Guo, et al. iOverlay: A Lightweight Middleware Infrastructure for Overlay
Application Implementations. In Proc. of IFIP/ACM Middleware Conf., 2004.

7. A. Rodriguez, C. Killian, C. Bhat, and et al. MACEDON: Methodology for au-
tomatically creating, evaluating, and designing overlay networks. In Proc. of
USENIX/ACM Symposium on Networked Systems Design, 2004.

8. Shen Lin, Francois Taiani, Gordon Blair. Facilitating Gossip Programming with the
GossipKit Framework. In Proc. of the 8th IFIP International Conference on
Distributed Applications and Interoperable Systems, 2008.

9. M. Jelasity and O. Babaoglu, T-Man: Gossip-based overlay topology management.
In EngineeringSelf-Organising Systems: 3rd International Workshop, 2005.

10. M. Jelasity, R. Guerraoui, A. Kermarrec et al. The Peer Sampling Service: Exper-
imental Evaluation of Unstructured Gossip-Based Implementations. In Proc. of
the 5th ACM/IFIP/USENIX international conference on Middleware, 2004.

11. E. Riviere, R. Baldoni, H. Li, et al. , Compositional gossip: a conceptual architecture
for designing gossip-based applications. ACM SIGOPS Op. Sys. Review, 2007.

12. A. Rowstron and P. Druschel Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems. IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), 2001.

13. A-M. Kermarrec, L. Massoulie, A. Ganesh, et al. Probabilistic Reliable Dissemina-
tion in Large-Scale Systems. IEEE Trans. Parallel Distrib. Syst. 2003.

14. K. Birman, A. Abbadi, W. Dietrich, et, al. An Overview of the ISIS Project. IEEE
Distributed Processing Technical Committee Newsletter. January 1985.

15. A. Ganesh, A.-M. Kermarrec and L. Massoulie, SCAMP: Peer-to-Peer Lightweight
Membership Service for Large-Scale Group Communication. In Proc. of the 3rd
International workshop on Networked Group Communication, 2001.

16. R. Renesse, Y. Minsky and M. Hayden, A gossip-style failure-detection service. In
Proc. Distributed Systems Platform and Open Distributed Processing, 1998.

17. M. Jelasity, A. Montresor and O. Babaoglu, Gossip-based aggregation in large dy-
namic networks. ACM Trans. Comput. Syst. 23, 3 (Aug. 2005), 219-252.

18. P. Grace, G. Coulson, G. Blair et al. GRIDKIT: Pluggable Overlay Networks for
Grid Computing. Proc. Int. Symp. on Distributed Objects and Applications, 2004.

19. R. Friedman, D. Gavidia, L. Rodirgues et al. Gossiping on MANETs: the Beauty
and the Beast. ACM Operating Systems Review, 2007.

20. R. Barr, Z. Haas and R. van Renesse, JiST: an efficient approach to simulation
using virtual machines: Research Articles. Software Practical Experiments, 2005.

21. I. Stoica, R. Morris, D. Liben-Nowell, and et al., Chord: A Scalable Peer-to-peer
Lookup Protocol for Internet Applications. In Proc. of 2001 ACM SIGCOMM.

22. Ercan Ucan, Nathanael Thompson, Indranil Gupta. A Piggybacking Approach to
Reduce Overhead in Sensor Network Gossiping. In 2nd International Workshop
on Middleware for Sensor Networks (MidSens’07).

23. V. Ananthanarayana and K. Vidyasankar. Dynamic Primary Copy with Piggy-
Backing Mechanism for Replicated UDDI Registry. In Proc. of Distributed Com-
puting and Internet Technology, 2006.

