
Foraging for Better Deployment of Replicated Service
Components

Máté J. Csorba1, Hein Meling2, Poul E. Heegaard1, and Peter Herrmann1

1 Department of Telematics,
Norwegian University of Science and Technology, N-7491 Trondheim, Norway

{Mate.Csorba, Poul.Heegaard, Peter.Herrmann}@item.ntnu.no
2 Department of Electrical Engineering and Computer Science,

University of Stavanger, N-4036 Stavanger, Norway
hein.meling@uis.no

Abstract. Our work focuses on distributed software services and their require-
ments in terms of system performance and dependability. We target the problem
of finding optimal deployment mappings involving multiple services, i.e. map-
ping service components in the software architecture to the underlying platforms
for best possible execution. We capture important non-functional requirements
of distributed services, regarding performance and dependability. These models
are then used to construct appropriate cost functions that will guide our heuristic
optimization method to provide better deployment mappings for service compo-
nents. This paper mainly focuses on dependability. In particular, a logic enabling
replication management and deployment for increased dependability is presented.
To demonstrate the feasibility of our approach, we model a scenario with 15 ser-
vices each with different redundancy levels deployed over a 10-node network.
We show by simulation how the deployment logic proposed is capable to satisfy
replica deployment requirements.

1 Introduction

Distributed applications and services are increasingly being hosted by infrastructure
providers over virtualized architectures, enabling on-demand resource scaling, such as
in the Amazon EC2 platform [1]. An important concern in such platforms is the prob-
lem of finding optimal deployment mappings involving multiple services spread across
multiple sites. During service execution a plethora of parameters influence the optimal
deployment mapping, and more so in a distributed environment where concurrent ser-
vices influence each other as well. Furthermore, some applications have non-functional
requirements related to dependability, such as fault tolerance and high availability. Up-
holding such requirements demands replication protocols to ensure consistency, but
also adds additional complexity to the optimization problem. Ideally, the deployment
mappings should minimize the resource consumption, yet provide enough resources to
satisfy the dependability requirements of services.

This paper presents a novel modeling and optimization methodology for deploy-
ment of replicated service components. We model services in a platform indepen-
dent manner using the SPACE [3] methodology. As previously shown by Fernandez-

Baca [4], the general module allocation problem is NP-complete except for certain com-
munication configurations, thus heuristics are required to obtain solutions efficiently.
Based on our service models, we apply an heuristic optimization method called the
Cross-Entropy Ant System (CEAS) [5], which is able to take multiple parameters into
account when making a decision on the deployment mapping. The approach also en-
ables us to perform optimizations in a decentralized manner, where replicated services
can be deployed from anywhere within the system, avoiding the need for a centralized
control for maintaining information about services and their deployment.

There are a number of reasons to develop replicated services, including fault tol-
erance, high availability and load balancing. This work focuses on fault tolerance and
availability, and in this context, the objective is to improve the availability characteris-
tics of the service by appropriate allocation of service replicas to nodes, such that the
impact of replica failures and network failures is reduced. And at the same time mini-
mizing the resource consumption.

Generally, to support replicated services the underlying architecture needs to pro-
vide replication protocols to ensure consistency between replicas, e.g., active or passive
replication protocols [16,2]. Such protocols have different implicit communication and
computation costs and can be taken into account in our model. In addition, a replication
management infrastructure, e.g. [11,10,9], is necessary to support deployment of repli-
cas and managing reconfigurations when failures occur. One example is the distributed
autonomous replication management framework (DARM) [9]. DARM focuses on the
deployment and operational aspects of the system, where the gain in terms of improved
dependability is likely to be the greatest. DARM is equipped with mechanisms for lo-
calizing failures and system reconfiguration. Reconfiguration is handled without any
human intervention, and according to application-specific dependability requirements.
The benefits of DARM are twofold: (i) the cost of deploying and managing highly avail-
able applications can be significantly reduced, and (ii) its dependability characteristics
can be improved as shown in [6]. The approach presented in this paper can be combined
with frameworks such as DARM in order to improve the deployment mapping opera-
tion; such an implementation has been left as future work.

There are at least three cases where finding suitable deployment mappings are of
significance to replication management: (i) initial deployment of replicas according to
some policy; (ii) reconfiguration of deployed replicas that have failed or become un-
available due to a network partition according to some maintenance policy; (iii) migra-
tion of replicas to re-balance the system load. The deployment mapping policy used
in this paper, is formulated as a cost function to the optimization problem, essentially
stating that replicas should be placed on nodes and domains (sites) so as to improve the
dependability of the service being deployed.

The paper is organized as follows. The next section presents how replicas are mod-
eled in the SPACE modeling framework. Sec. 3 introduces CEAS and provides a de-
scription of the deployment algorithm. Subsequently, we formulate the optimization
problem and present cost functions used to solve it. Simulation results using our logic
are presented in Sec. 5. Finally, in Sec. 6 we conclude and touch upon future work.

2 Replica services in SPACE

To account for dependability requirements while deploying replicated service compo-
nents, collaboration-oriented models can be used. To this end, the SPACE [3] method-
ology provides a modeling technique for automated engineering of distributed applica-
tions. In contrast to other UML-based methods, it enables the composition of system
descriptions from collaboration-oriented sub-models that does not specify the behavior
of a single physical component, but rather describes the sub-functionality encompassing
various system entities. Such sub-models are typically easier to reuse than component-
oriented building blocks, since different systems in a particular domain often have sim-
ilar sub-functions, which can be coupled in various ways. Each sub-function can then
easily be specified as a collaborative building block once, and thus the creation of a new
system can be reduced to the design of a new combination of these pre-defined blocks.

R2R1 update

R4R3 update

up
da

te

up
da

te

Comm.

cost = 1

Exec.

cost = 20

Comm.

cost = 1

Comm.

cost = 1
Comm.

cost = 1

Exec.

cost = 20

Exec.

cost = 20

Exec.

cost = 20

Fig. 1. Example service, S1 with 4 replicas and corresponding costs

In SPACE, the topology of a system is modeled with UML collaborations, while
behavior is described using UML activities. SPACE is accompanied by the Arctis [7]
tool, which enables composition of models, various model checker-based correctness
proofs and automated transformation to executable Java code.

In this paper, only UML collaborations are used. Fig. 1 depicts a simple example
model. It describes the pair-wise replication of data between the physical components
R1 to R4. The updating function is modeled by four collaboration uses called update,
each specifying the alignment of data between the two linked components. Although
SPACE offers specification of multiple instances of a collaboration [8], for clarity only
four instances of update are used here. SPACE models can be embellished with addi-
tional non-functional requirements that can be exploited by our deployment logic, i.e.,
the execution costs assigned to components or costs that are specific to each collabora-
tion between replicas. Within a given service specification, some (or all) of the service
components might require replication to improve their dependability. We propose to
model and specify component replication using the same methodology applied for de-
signing the services themselves. In other words, we specify a set of replicas related to a

specific component separately, i.e. as a collaboration of replicas of a single component.
To test our deployment logic, we assume an active replication approach, where each

replica of the service performs according to the client requests. Thus, replicas have the
same execution cost. Each replica is also assigned a communication (collaboration) cost
to account for the cost of ensuring consistency (state updates) between replicas. The ex-
ample scenario illustrated in Fig. 1 is used as a basis for the simulations presented in
Sec. 5.

3 Replica Deployment using the Cross Entropy Ant System

To find suitable replica placements a collection of ant-like agents, denoted ants, search
iteratively for the best solution according to a cost function, restricted by the problem
constraints. To find a solution ants are guided using the analogy of pheromones, which
are proportional to the quality of the solution. CEAS uses the Cross Entropy method
for stochastic optimization introduced by Rubinstein [12], and has demonstrated its
capabilities and relevance through a variety of studies of different path management
strategies. For an intuitive explanation and introduction to CEAS, see [5].

Table 1 gives the notation for sets and variables used throughout our description.

Table 1. Notational shorthand

Shorthand Usage Description
S Sk ∈ S set of service instances
Ck ci ∈ Ck set of all replicas in Sk

D d ∈ D set of all existing domains
N n ∈ N set of all existing nodes
|Ck| |Ck| number of replicas to be deployed
Dr d ∈ Dr list of domains used in deployment of Sk

Nr n ∈ Nr list of nodes used in deployment of Sk

NLr nln,r ∈ NLr load-level samples for Sk

Mr mn,r ∈Mr mapping list for Sk

Hr n ∈ Hr hop-list for Sk

In this paper, we apply CEAS to obtain the best mapping of a set of replicas onto
a set of nodes, M : C → N. The pheromone values used by the ants, denoted τmn,r,
correspond to a set of replicas, m mapped to node n at iteration r. Ants use a random
proportional rule for selecting the individual mappings.

pmn,r =
τmn,r∑

l∈Mn,r
τln,r

(1)

The pheromone values τmn,r in (1) are updated continuously by the ants as follows:

τmn,r =
r∑

k=1

I(l ∈Mn,r)β
Pr

j=k+1 I(j∈Mk)H(F (Mk), γr) (2)

where I(x) = 1 if x is true, 0 otherwise. See [5] for further details.
A parameter γr denoted the temperature, controls the update of the pheromone

values and is chosen to minimize the performance function

H(F (Mr), γr) = e−F (Mr)/γr (3)

which is applied to all r samples.
To enable a distributed optimization process the cost of a mapping, F (Mr) is cal-

culated immediately after each sample i.e., when all replicas are mapped, and an auto-
regressive performance function, hr(γr) is applied, Eq. 4.

hr(γr) ≈
1− β
1− βr

r∑
i=1

βr−iH(F (Mr), γr) (4)

where β ∈ 〈0, 1〉 is a memory factor weighting (geometrically) the output of the perfor-
mance function. This mechanism smooths variations in the cost function, hence rapid
changes in the deployment mapping and undesirable fluctuations can be avoided. The
temperature, γr is determined by minimizing it subject to h(γ) ≥ ρ, thus

γr = {γ | 1− β
1− βr

r∑
i=1

βr−iH(F (Mi), γ) = ρ} (5)

where ρ is a parameter (denoted search focus) close to 0 (typically 0.05 or less).
Eq. (5) is a transcendental function that is storage and processing intensive since all

observations up to the current sample, i.e., the entire mapping cost history F (Mr),∀r
should be stored, and weights for all observations would have to be recalculated, thus
putting an impractical burden on the on-line operation of the logic. Accordingly, we
assume that, given a β close to 1, changes in γr are typically small from one iteration
to the next, enabling a first order Taylor expansion of (5), and a second order Taylor
expansion of (2), see [5] for more details. More importantly, we are able to obtain an
optimal deployment mapping with high confidence, since CEAS can be considered as a
subclass of Ant Colony Optimization (ACO) algorithms [13], which have been proven
to be able to find the optimum at least once with probability close to one. Once the
optimum has been found, convergence is secured in a finite number of iterations.

Algorithm 1 Code for Nestk
1: Initialization:
2: r ← 0 {Number of iterations}
3: γr ← 0 {Temperature}

4: while r < R {Stopping criteria}
5: antAlgo(r, γr) {Emit new ant}
6: r ← r + 1

We now present the steps executed by the deployment logic to obtain a mapping
of replicas. Behavior of the logic is separated into Algorithm 1, which describes the
simple functionality of a Nest, i.e. basic additional intelligence in one of the nodes, and
Algorithm 2, which describes the behavior of the ants that are subsequently emitted
from the Nest. The role of a Nest can be played by an arbitrary node. The steps are
executed independently by ants of each species, where a species is directly involved in
the deployment of a specific service. Each ant initiated from the nest node of a species
is assigned a set of replicas, C; in this case the replica instances to deploy. The ant then
starts a random-walk in the network, selecting the next hop at random. Behavior at a
node depends on if the ant is an explorer or a normal ant. Normal ants select a subset of
C for mapping to the current node according to the pheromone database and store this

selection in the mapping list, Mr. An explorer ant, however does the selection without
using the pheromone values in a completely random manner.

Algorithm 2 Ant code for deployment mapping of component replicas C ∈ Sk ⊂ S
from Nestk
1: Initialization:
2: Hr ← ∅ {Hop-list; insertion-ordered set}
3: Mr ← ∅ {Deployment mapping set}
4: Dr ← ∅ {Set of utilized domains}
5: NLr ← ∅ {Set of load samples}

6: function antAlgo(r, k)
7: γr ← Nestk.getTemperature() {Read the current temperature}
8: while C 6= ∅ {More replicas to deploy}
9: n← selectNextNode() {Select first node}

10: if explorer ant
11: mn,r ← random(⊆ C) {Explorer ant; randomly select a set of replicas}
12: else
13: mn,r ← rndProp(⊆ C) {Normal ant; select replicas according to Eq. (1)}
14: if {mn,r} 6= ∅, n ∈ dk {At least one replica mapped to this domain}
15: Dr ← Dr ∪ dk {Update the set of domains utilized}
16: Mr ←Mr ∪ {mn,r} {Update the ant’s deployment mapping set}
17: C← C− {mn,r} {Update the set of replicas to be deployed}
18: if r mod 10 = 0 {Only every 10th ant modifies allocations}
19: foreach ci ∈ mn,r

20: sumpp← sumpp+ fci {Sum the exec. costs imposed by Sk}
21: n.reallocProcLoad(Sk, sumpp) {(re-)allocate processing power needed by Sk}
22: nln,r ← n.getEstProcLoad() {Get the estimated processing load at node n}
23: NLr ← NLr ∪ {nln,r} {Add to the list of samples}

24: cost← F (Mr, Dr, NLr) {Parameters depending on the cost function}
25: γr ← updateTemp(cost) {Given cost, recalculate temperature according to Eq. (5)}
26: foreach n ∈ Hr.reverse() {Backtrack along the hop-list}
27: n.updatePheromone(mn,r, γr) {Update pheromone value at n, Eq. (2)}
28: Nestk.setTemperature(γr) {Update γr at Nestk}

29: function selectNextNode() {SELECT UNIQUE RANDOM NODE}
30: R← N− currentNode {Set of candidate nodes for ant traversal}
31: n← random(R) {Select candidate node at random}
32: Hr ← Hr ∪ {n} {Add node to the hop-list}
33: return n

The benefits of applying explorer ants are twofold, first they initially explore the
solution space and second, they are used for faster discovery of changes in the network
during optimization. In both cases, explorers do not use the pheromone tables, instead
they build up an initial database. Besides, they are used to detect alternative solutions
while the system undergoes short- or long-term changes. The amount of explorer vs.
normal ants is a configurable ratio parameter to the logic. Initial exploration is essen-
tially a random sampling of the problem space and the number of iterations depends
on the problem size. However, the end of this phase can be detected by monitoring the

pheromone database size. Optimizing the deployment mappings based on the available
cost functions should be performed using a distributed method, avoiding a centralized
structure. To do so, each node provides a processing power reservation mechanism. Ant
species use this mechanism to indicate their resource usage in every node they utilize
for their replicas. Processing power reservation can be updated by a given percentage
of ants, which is again a parameter to the logic, i.e., only a certain fraction (e.g. 10%)
of iterations result in re-allocation at the nodes, see Lines 18− 21 in Algorithm 2. Out-
dated allocations get invalidated in the nodes to preserve consistency. In addition, the
allocation mechanism can serve as a means of interaction between the species. Thus,
the current sum of allocations in a node can be sampled providing a general overview
for the ants. These load-level samples are denoted NLr. The decreased ratio of reser-
vations by the ants (e.g. only 10% of them) contributes to obtaining a smoother series
of NLr samples. The actual implementation of sampling is left to the middleware.

The forward search phase of an ant is over when all component replicas are mapped
and the resulting mapping is stored in Mr. The algorithm proceeds with evaluating the
resulting mapping using the appropriate cost function Fi(). After evaluating the cost of
the mapping, the ant backtracks to its nest using the hop-list, Hr. During backtrack-
ing, pheromone values distributed across the network of nodes are updated according
to Eq. (2). After the ant finds its way back to the nest node or times out a new ant can
be initiated and emitted. The same behavior can be used for all ants, even though they
are of different species.

The main purpose of the pheromone database is its usage in Algorithm 2, Line 13.
In every iteration, an ant will form |Nr| discrete subsets of C as it visits n ⊆ Nr nodes.
In order to be able to describe replica mappings to nodes, values of the pheromone
database have to be aligned with replica sets. Accordingly, the pheromone database is
built by assigning a flag to every replica available for deployment in a service, ∀ci ∈ C,
with the exception of replicas that are bound to specific nodes explicitly by require-
ments and thus, they cannot be moved.

The pheromone database will contain 2|C| elements, equal to the number of possible
combinations for a set ci at a node, which is specific for each service. This determines
a physical requirement for the execution platform that supports our logic, namely to be
able to accommodate 2|C| floating point numbers for each of the services in every node.
If the pheromone database in a node is normalized between {0 . . . 1} it can be observed
as a probability distribution of replica sets mapped to that node. In a converged state the
optimal solution(s) will emerge with probability one.

4 Construction of the Cost Function

When applying the optimization method presented in Sec. 3 it is essential to formulate a
proper cost function aimed at guiding the optimization process towards an appropriate
solution. An appropriate solution is a solution to the deployment mapping problem
satisfying the system requirements, Freq derived from the service specification, while
accounting for the costs of the mapping, Fi(). Trying to find a global optimal solution
does not make much sense in the systems considered here, as the solution would most
likely be suboptimal by the time, the optimal mapping could be applied. However, the

algorithm can continue optimization even after a feasible mapping is found, that can
trigger (re-)deployment of replicas. By optimal mapping we mean mappings with the
lowest possible cost, while for a feasible mapping Fi() < Freq is enough. Note that the
formulation of the deployment problem below is independent of the methods we apply
to obtain a solution.

min Fi() {< Freq}
subject to Φ

In each iteration of our deployment logic, the cost function is evaluated for every sug-
gested mapping,mn,r, (cf. Algorithm 2, Line 24). Properties of this function impact the
quality of the solutions obtained as well as the convergence time, or in other words, the
number of iterations required to reach a stable solution. In order to develop a logic that
can aid replica deployment and increase dependability by influencing the mapping of
software architecture the cost function has to be carefully selected. However, what is the
proper function to use depends on the requirements and goals of the service. Here, we
target efficient placement of component replicas in an active replication scheme aimed
at improving the dependability.

We define the mapping functions fk and gk,d as follows.

Definition 1. Let fk: rk → d be the mapping of replica rk to domain d ∈ D

Definition 2. Let gk,d: rk → nd be the mapping of replica rk to node nd ∈ N in
domain d ∈ D

We then define two distinct rules that the deployment logic targets. The first one states
that replicas shall be distributed across as many domains as possible for increased de-
pendability, i.e. two replicas of the same service shall not be placed in the same domain
preferably, or if there are more replicas than domains available there shall be at least
one replica in all domains (φ1).

Rule 1 φ1 : fk 6= fl ⇐⇒ k 6= l ∧ |Sk| < |D|

Whereas the other rule declares that two replicas of the same service should not be
co-located on the same node (φ2).

Rule 2 φ2 : gk,d 6= gl,d⇐⇒ k 6= l, ∀d

Deployment mappings of component replicas can be evaluated by the deployment cost
function Fi(). Accordingly, we formulate the replica deployment problem as the task
of minimizing Fi() subject to Φ = φ1 ∧ φ2.

The problem of producing deployment mappings that conform to the rules intro-
duced above is approached step-wise by introducing different types of cost functions.
We start by considering φ1 only and use information collected by the ant species during
forward search by counting the number of domains that have been used to map replicas
at an iteration, this variable will be denoted Dr. Using Dr we will experiment with a
reciprocal (6) and a linear function (7) too. The latter case uses the number of replicas,
|C|, a constant derived from the service model and thus known to each species.

F1(Dr) =
1
|Dr|

(6)

F2(Dr,C) = |C| − |Dr|+ 1 (7)

Similarly, we include φ2 into the cost function by a reciprocal and a linear function and
combine it with (6) and (7) as follows.

F3(Dr, Nr) =
1
|Dr|

· 1
|Nr|

(8)

F4(Dr, Nr,C) = (|C| − |Dr|+ 1) · (|C| − |Nr|+ 1) (9)

F5(Dr, Nr,C) =
1
|Dr|

· (|C| − |Nr|+ 1) (10)

F6(Dr, Nr,C) = (|C| − |Dr|+ 1) · 1
|Nr|

(11)

In (8)-(11) we utilize a variable, Nr, which denotes the number of nodes that have been
used by a specific species for deploying replicas at iteration r, this is also reported by
each ant during the forward search phase. We evaluate all four possible combinations
of the reciprocal and linear functions targeting φ1 and φ2.

The last combination of cost functions, in (12), is a combination of the simple re-
ciprocal function in (6) targeting φ1 combined with a more complex function used suc-
cessfully in service component deployment [14].

F7(Dr,Mr, NLr) =
1
|Dr|

· Flb(Mr, NLr) (12)

Flb uses two parameters that are updated in every iteration, the replica mapping set Mr

and the load-level samples taken in the nodes visited by the ant (nj ∈ Hr), denoted
NLr. This function accounts for the execution and communication costs derived from
the service specification as introduced in Sec. 2. Correspondingly, the function consists
of two main parts, node (NC) and collaboration related costs (LC).

Flb(Mr, NLr) = [
∑
∀nj∈Hr

NC(nj)] · (1 + x · LC) (13)

where x is a parameter used to balance the effect of the LC term, as needed. The
component LC is strictly local to each species and incorporates the collaboration costs

LC(Mr) =
K∑
j=1

Ij fkj
; where Ij =

{
1, if Collabk external
0, if Collabk internal to a node (14)

Thus, the term LC will take into account communication costs (fkj
) assigned to those

collaborations that happen between different nodes only, in other words aiming at min-
imizing remote communication.

Costs related to execution of replicas, i.e., node local costs are incorporated into the
first term in (13). Node local costs aim at achieving load-balancing among the nodes
hosting replicas. Importantly, in this term only the subset of nodes an ant has actu-
ally visited (Hr) is taken into account, not the total amount of nodes. The term that is
calculated individually for each of the nodes in Hr is shown in (15).

NCnj
(NLn,r) = [

NLn,r(nj)∑
i=0

1∑
∀nj∈Hr

NLn,r + 1− i
]y (15)

The term NC counteracts the other term in (13), LC, which puts weight on replica
mappings that have as much as possible of the collaborations within the same node(s).
NC has an effect of distributing replicas, thus equalizing execution load among the
available nodes to the highest extent possible. This way two counteracting requirement
types are tackled in the same function. The exponent y in (15) can shift the focus to-
wards load-balancing against minimization of remote communication in collaborations.
In the experiments in this paper we use x = 10−5 and y = 2, which are adjusted to the
cost values derived from the models, e.g. see the example service in Fig. 1.

Using Flb we are able to smoothen the output of the cost evaluation executed for
each iteration of the deployment logic. Its purpose is to ease convergence of the logic
by making the solution space more fine grained, i.e. simplifying differentiation between
very similar deployment mappings with nearly the same cost value.

The next section presents simulation results evaluating all the cost functions pre-
sented here using an example setup.

5 Simulation Results

To evaluate our approach and the proposed cost functions, we developed a test scenario.
The scenario consists of a network of 10 identical nodes clustered into 5 domains (cf.
Fig. 2). The 5 domains have 3, 2, 1, 1, 3 nodes. Using this network of nodes, each ant
species executing Algorithm 2 is assigned a replica service for deployment. A set of
15 actively replicated services with redundancy levels shown in Table 2 is used for the
evaluation.

Table 2. Service instances in the example

Service S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

#replicas 4 6 4 4 4 5 5 6 6 6 6 7 8 9 10

For example, see S1 in Fig. 1. Each replica within a service has identical execution
cost, and all replicas have the same cost in all services. Similarly, the same is true for
the communication costs, i.e. fci

= 20,∀i and fkj
= 1,∀j.

n9

n10

n5

n6

n8

n3

n4n1 n2

n7

d1

d2

d3

d4

d5

Fig. 2. Test network of hosts clustered into 5 domains

For the evaluation scenario with S1 . . . S15, the deployment logic (Algorithm 2) is
executed 50 times using the cost functions discussed in Sec. 4 and we compare their
behavior. The deployment logic was described by a process-oriented simulation model
implemented in Simula/DEMOS [15].

For the problem at hand, deploying replicas of each service yield NCk mapping
combinations; deploying all 15 services simultaneously would account for an exhaus-
tive search of N

P
Ck = 1090 possible configurations. For the evaluation, the execution

of Algorithm 2 was limited to rmax = 30000 iterations (significantly smaller than ex-
haustive search), unless convergence is obtained earlier. All 15 species, one for each
service, were executed simultaneously. This is in accordance with our goal to find an
appropriate solution within reasonable time, even though it may not be the optimal map-
ping. After each run, the obtained deployment mapping was checked against φ1 and φ2.
Results for selected functions are presented in Table 3.

Table 3. Replication rules satisfied, 50 trials each
Cost function φ1 φ2 Comments
F1(Dr) 88% n/a all due to no convergence

F5(Dr, Nr,C) 100% 96% all due to no convergence
F7(Dr,Mr, NLr) 100% 98% all converged

In case of F1(Dr), which is based on observing the number of domains (Dr) uti-
lized for deployment mapping of replicas, φ2 (cf. Sec. 4) is not checked because the
cost function does not consider this rule. From the 50 independent runs we see that in
some cases φ1 is not satisfied; some of the 15 services fail to utilize as many domains as
they could. That is due to the limited number of iterations we allowed for the species to
achieve convergence and because this cost function is very simple, i.e. lacking a more
smooth, more fine grained evaluation of the deployment mappings for the ant species.

In the second branch of cost functions, Eq. (8)–(11), we apply two very simple func-
tions together to take into account φ1 and φ2 at the same time. The experiments show
that the combination of two functions of the same kind, i.e. two linear or two recipro-
cal functions, gives inferior results to applying a combination of one reciprocal and a
linear. This might be caused by smoother cost output in case of the latter, which results
in better convergence and better solution quality, i.e. a deployment mapping that sat-
isfies the requirements with a higher probability. Nevertheless, there were 2 violations
of φ2 within the 50 runs, that means that one replica was co-located with another in
one of the services. This is possible for services that have a high number of replicas,
e.g. 9 or 10, which easily occupy 5 domains, thus obtain the lowest cost possible con-
sidering the first part of the cost function resulting in a mapping that violates φ2 after
convergence. These services, with these simple cost functions are able to decrease their
mapping costs only marginally by spreading their replicas further among the available
hosts, which results in sub-optimal solutions, thus violations of φ1 or φ2.

Now, if we look at the last combination of functions in Table 3, we can see how
our load-balancing function performed with the extension of taking into account the
number of domains utilized (Dr). From the 50 independent runs the deployment logic
converged to a stable solution in all of the cases. φ1 was successfully taken into account
by the first reciprocal term and resulted in no violations. In one case however, one of
the services failed to satisfy φ2, i.e. a replica was co-located with another one. After a

closer look we can see that this involved service S15 comprising 10 replicas. The rea-
son for this violation is that the load-balancing function, Flb(Mr, NLr), has enforced a
deployment mapping, which was better for global load-balancing in this particular case
by taking into account this global goal to a greater extent and thus, violating the rule
prohibiting co-location of replicas. However, as in S15 the number of replicas is equal to
the number of available nodes there is not much space left for the logic to place replicas
so that load-balancing is also achieved, which is the main goal for this part of the cost
function. Clearly, applying the cost function we propose implies taking a broader view
on the deployment problem. The tradeoff might be that under certain circumstances the
mapping of replicas might violate one of the rules formulated, but the gain is that we
can obtain a globally better and more effective mapping, still using a fully distributed
logic and doing so faster, i.e. within reasonable time.

Fig. 3. Example mapping of replicas in S1 . . . SS15, with S2 exploded

To get a picture of how replicas are mapped to the underlying nodes clustered into
domains one of the possible mappings is depicted in Fig. 3, in which each slice of the
pie diagram corresponds to a specific service Sk ⊂ S. As in this optimal mapping there
is no co-location of replicas, a slice being shaded means that there is a single replica
placed on the particular node. It is easy to notice that the two domains consisting of
a single node (d3, d4) are heavily packed with replicas due to the fact that there are
many services, which can exploit 5 domains or more. This makes overall load-balancing
among the available nodes more difficult.

Furthermore, to illustrate the behavior and convergence of our logic, in Fig. 4 we
look at the cost output of some species that guides the mapping of replicas as a function
of number of iterations.

The three services presented have 6 (S11), 8 (S13) and 10 (S15) replicas to deploy.
The first 2000 iterations, i.e. the exploration phase is not shown in the figure. After
2000 initial iterations optimization continues and the cost values decrease, thus indi-
cating increasingly improved mapping of replica components. We stop the simulation
where the costs do not improve anymore, in this particular case after approximately
10000 additional iterations. By checking φ1 and φ2 we can see that the mapping ob-
tained in this run satisfies both. In case where the number of replicas is high, e.g. 10,
values do not deteriorate too much from a consensus level between the parallel species
(consideringN = 10) as φ1 restricts the solution space. That means that for service S15

all of the nodes have to host one replica according to the rule. Whereas services with
less replicas to deploy have a significantly larger valid solution space, i.e. service S11

and S13 find, in some cases, a solution satisfying φ1 and φ2 but with a higher overall
cost, thus we can see some deviations in the cost output in the figure before obtaining
convergence. After consensus is reached among the species the actual deployment of
component replicas can be triggered. Practically, when a species detects that the cost
values obtained by its ants are stable over a period of time, replicas corresponding to this
species can be (re-)deployed. The technical solution as well as the protocol of replica
placement/re-deployment is, however, left to the middleware (e.g., DARM).

Fig. 4. Costs with 6, 8 and 10 replicas

6 Closing Remarks

Our focus has been on a heuristic optimization technique aided by swarm intelligence
that can manage deployment of software components, in particular component replicas
for increased dependability. To obtain an efficient mapping of replicas we utilize ser-
vice models specified as UML 2.0 collaborations. These models are enriched with non-
functional requirements that are used in the cost evaluation of the mappings made by the
deployment logic. Importantly, our method is a fully distributed approach, thus it is free
of discrepancies most of the existing centralized solutions suffer from, e.g. performance
bottlenecks and single points of failure. Instead of having a centralized database we use
the analogy of pheromones used by foraging ants as a distributed database across the
network of hosts. This database can be quite compact as all the intelligence is carried
along by the ant-like agents.

We have showed that, using CEAS for optimization and SPACE for modeling, the
deployment logic is capable of handling various non-functional requirements present
in service specifications. Extending on our previous work, in this paper focus has been
on how the logic can deal with basic dependability requirements concerning replication
management. Eventually, our goal is to aid run-time (re-)deployment and replication of
software components while considering the execution environment and satisfying the

requirements of the service.
For future work we plan to introduce new types of species corresponding to user

demands towards the services being deployed. However, this will introduce new chal-
lenges as it will increase the dimensions of the deployment problem significantly. More
fine grained cost modeling, e.g. passive replication, with costs dependent on replica
attributes will be part of future investigations. This will also involve more extensive
simulations with new experimental settings. Larger network sizes will also be inves-
tigated together with their impact on convergence and scalability. Another interesting
aspect we will experiment with is how splitting/merging of domains influences the out-
put of our logic, besides assessing what level of node churn can be tolerated by our
method. Generally, context-aware adaptation is considered one of the main tracks we
follow in our future work.

References
1. Amazon Elastic Compute Cloud. http://aws.amazon.com/ecs2.
2. N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The Primary-Backup Approach. In

S. Mullender, editor, Distributed Systems, ch. 8, pp. 199–216. Addison-Wesley, 2nd ed., 1994.
3. F. A. Kraemer, P. Herrmann. Service Specification by Composition of Collaborations - An

Example. In Proc. IEEE/WIC/ACM Int’l Conference on Web Intelligence, Int’l Workshop on
Service Composition (Sercomp’06), pp. 129-133, Hong Kong, IEEE CS, Dec. 2006.

4. D. Fernandez-Baca. Allocating modules to processors in a distributed system. IEEE Transac-
tions on Software Engineering, vol. 15, no. 11, 1989.

5. P. E. Heegaard and B. E. Helvik and O. J. Wittner. The Cross Entropy Ant System for Network
Path Management. Telektronikk, 104(01), pp. 19-40, 2008.

6. B. E. Helvik, H. Meling, and A. Montresor. An Approach to Experimentally Obtain Service
Dependability Characteristics of the Jgroup/ARM System. In Proc. 5th European Dependable
Computing Conference, vol. 3463 of LNCS, pp. 179–198. Springer-Verlag, Apr. 2005.

7. F. A. Kraemer and R. Bræk and P. Herrmann. Compositional Service Engineering with Arctis,
to appear in Telektronikk, 2009

8. F. A. Kraemer, R. Bræk, P. Herrmann. Synthesizing Components with Sessions from
Collaboration-Oriented Service Specications. In Proc. 13th System Design Language Forum
2007, pp. 166-185, LNCS 4745, Paris, September 2007.

9. H. Meling and J. L. Gilje. A Distributed Approach to Autonomous Fault Treatment in Spread.
In Proc. 7th European Dependable Computing Conference. IEEE CS, May 2008.

10. H. Meling, A. Montresor, B. E. Helvik, and O. Babaoglu. Jgroup/ARM: a distributed object
group platform with autonomous replication management. Software: Practice and Experi-
ence, 38(9):885–923, July 2008.

11. OMG. Fault Tolerant CORBA Specification. OMG Document ptc/00-04-04, Apr. 2000.
12. R. Y. Rubinstein. The Cross-Entropy Method for Combinatorial and Continuous Optimiza-

tion. Methodology and Computing in Applied Probability, 1999.
13. M. Dorigo, et al. The Ant System: Optimization by a colony of cooperating agents. IEEE

Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, vol. 26, no. 1, 1996.
14. M. J. Csorba and P. E. Heegaard and P. Herrmann. Adaptable model-based component

deployment guided by artificial ants. In Proc. 2nd Int’l Conf. on Autonomic Computing and
Communication Systems (Autonomics), ICST/ACM, Turin, September 2008.

15. G. Birtwistle. Demos - a system for discrete event modelling on simula. 1997.
16. F. B. Schneider. Replicated Management using the State-Machine Approach. In S. Mullen-

der, editor, Distributed Systems, ch. 7, pp. 169–198. Addison-Wesley, 2nd ed., 1994.

