
A Flexible Approach for Business Processes
Monitoring

Diana Comes, Steffen Bleul, Thomas Weise and Kurt Geihs

Distributed Systems Group, University of Kassel,
Wilhelmshöher Allee 73, 34121 Kassel, Germany
{comes,bleul,weise,geihs}@vs.uni-kassel.de

http://www.vs.uni-kassel.de/

Abstract. Business processes and their implementation as Web Service
Compositions are not only dependent on Web Services and partners all
over the Internet, but also on their failsafe execution. Service providers
have to obligate their services to perform according to negotiated Quality
of Service (QoS) parameters. For example, response time and through-
put are important parameters to achieve fast and efficient services. Over-
loaded or failing services may compromise the reliability and execution
of whole enterprise processes.
In this paper we introduce a flexible monitoring approach for the mea-
surement of QoS in BPEL (Business Process Execution Language) pro-
cesses. We propose a generic algorithm for QoS aggregation in BPEL
processes. The novel generic aggregation algorithm applies customized
aggregation functions for QoS dimensions. Furthermore, we present a
BPEL monitoring system which supports ad-hoc sensor deployment and
efficient runtime and offline data aggregation not only for whole process
descriptions but also sections inside service processes.

Key words: Business Processes, Quality of Service, BPEL, Web Ser-
vices, QoS Aggregation, Monitoring

1 Introduction

Web Services and BPEL processes are the de-facto standard for implementing
business processes in SOAs. Enterprise software is encapsulated inside web ser-
vices and offered to the partners over the Internet. Web services are composed
into more complex BPEL workflows which thus implement business processes.
The number of enterprises that adhere to this technology is rapidly increasing,
since enterprises need to offer services across organizational boundaries to their
partners. Since several services may provide the same functionality, the Quality
of Service makes the difference between different offers for business processes.

In order to ensure fast executing business processes, the QoS of a service
must fulfill the expectations of its client applications. If the business process
does not meet the quality requirements, actions need to be performed in order
to improve its behavior. Therefore the monitoring, measurement and evaluation

2 Diana Comes, Steffen Bleul, Thomas Weise and Kurt Geihs

of non-functional properties of the processes is imperative. The Business Process
Execution Language (BPEL) standard has emerged for the implementation of
interaction between services over the Internet. BPEL enables the specification of
Web Service orchestrations. However, BPEL does not contain any specifications
regarding the QoS of a business process.

In this paper we address these non-functional requirements. We present a
monitoring and assessment approach for the computing of QoS in business pro-
cesses. Our assessment approach is flexible enough to fulfill the requirements
of a continuously changing environment. So far, most research studies have not
dealt with the following QoS issues in workflows: Automatic sensor deployment,
replacing QoS parameters, customizable aggregation functions, and subsection
aggregation. Thus, these related studies do not put enough focus on the needs
of heterogeneous and dynamic changing environments.

The remainder of this paper is structured as follows. Section 2 presents the
motivation for our flexible monitoring approach. Section 3 makes a short intro-
duction to the WS-BPEL language and some of its main constructs. A formal-
ization of our model can be found in section 4. In section 5 the generic algorithm
for QoS computation of a business process is presented. The paper proceeds with
section 6 where we give an overview of our monitoring framework. The evalua-
tion of our framework can be found in section 7. We make a comparison to other
works related to ours in section 8.

2 Motivation

A Service Oriented Architecture is a dynamic environment where services and
respectively partners are continuously changing. We can describe the interaction
between these services with BPEL, but BPEL does not include extensions al-
lowing us to monitor or to ensure the performance. A SOA promotes the ability
for flexibility and change, but this is not possible for the assessment of QoS re-
lated issues. At any time, new QoS dimensions like cost and bandwidth have to
be introduced, measured and aggregated in order to allow a suitable evaluation
for performance. We designed a flexible approach, where QoS parameters can be
easily considered and aggregated with minimum effort on manual administration
and no effort spent by the business process architect. In this paper we tackle the
following issues:

Automated Deployment: A business process includes a set of activities
in order to invoke Web Services and each activity performs at a certain QoS.
In several research studies (e.g. [9], [10]), the BPEL process description is
interweaved with comments and extra activities are inserted additionally to the
BPEL process. These artifacts are used to define the required QoS parameters,
its monitoring sources and their aggregation functions. Thus, every time the
process description changes its behavior or partner services then the process
architect has to adjust the whole QoS assessment artifacts. Our goal is not to
alter the process description with artifacts for process monitoring.

A Flexible Approach for Business Processes Monitoring 3

Aggregation Functions and QoS Parameters: In contrast to the mea-
surement of QoS for single Web Services, the business processes additionally
consist of different activities such as if-conditions, loops and parallel invocations
of Web Services. This is why the measurement of QoS in business processes needs
to be treated differently as for web services. The QoS value of a business process
is computed out of the QoS values of the building blocks inside the process.

Usually, the QoS requirements and implicitly, the corresponding QoS mea-
surements for business processes, vary over time. Thus the QoS monitoring and
measurements need to be done as flexible as possible. For example, a service
provider must ensure a certain response time for his business process. If, for
some reason, the response time of the process is not the expected one, the ser-
vice provider is in charge for analyzing the bad performance of the process. As
the response time may be compromised by the bandwidth, the provider may
also want to introduce the new QoS dimension bandwidth in the monitoring. In
our approach we introduce a generic QoS assessment algorithm where we must
only provide a set of aggregation functions in order to make it work with newly
introduced QoS parameters.

Process and Section Measurement: Within a process description, we
also consider sub-orchestrations, which we call sections of a business process. By
section, we refer to a part of a BPEL process which begins within one activity
and ends with another activity, while the second activity is triggered after the
first one. Also, a structured activity like a while loop may represent a section,
contained within the beginning and the end of the structured activity. However,
a section may contain sequential and concurrent activities as well. Performing
measurements and monitoring in a section is important as we further need to
specify QoS requirements and manage the process within sections. This way the
business process architect has a better view on what sections of the business
process may cause problems in the behavior of the entire process.

3 An Overview of WS-BPEL

WS-BPEL [11] is an XML-based OASIS standard for describing and executing
business processes which consist of web services. BPEL allows arranging web
services in sequences, loops, and to execute them in parallel. A process specified
with BPEL begins its execution with a start activity such as a receive or a pick.
The BPEL engine creates a new instance of the process when a certain message
arrives. BPEL activities are triggered either sequentially or concurrently. With
invoke, a single web service is executed while the values of variables are set with
assign. The activities nested inside a flow element are executed concurrently. In
contrast, the activities defined by elements nested inside sequence are triggered
in the same order that they appear.

Besides the control flow, additional information such as partnerlinks
for defining corporate bodies that participate in the business process and
faultHandlers listing the activities to be executed in case of failures can be
specified with BPEL as well. Additional aspects like defining QoS parameters

4 Diana Comes, Steffen Bleul, Thomas Weise and Kurt Geihs

and QoS aggregation cannot be specified with BPEL. To fill these gaps, we apply
our model and algorithm.

4 Business Process Model incorporating QoS

We have designed a generic model for monitoring a business process by comput-
ing its QoS properties by aggregating the QoS of its components. In this section,
we will provide the definitions necessary to specify this approach. In our model,
we divide all BPEL elements relevant in the context of QoS computation into
two classes:

1. the set of simple element types S = {receive , reply, invoke, assign,
throw, wait, . . .} and

2. the set of complex element types C which are used for structuring the control
flow like sequence, flow, if, while, and foreach, for example.

Thus, the BPEL activity types are members of the joint set T = S ∪ C.
The instances of a simple element contribute directly to the quality of service
of the overall process. They do not contain any child elements from T . Complex
elements, on the other hand, may contain arbitrary other complex or simple
elements. They specify how these elements are to be executed and their QoS
values can be computed by aggregating the QoS of their children.

For each element elem in a BPEL process specification which belongs to one
of the types in T , a unique identifier elem.id1 ∈ I1, I1 ⊂ N will be assigned in
the initialization phase of our system. We furthermore assume that each single
execution of elem has an identifier id2 ∈ I2, I2 ⊂ N unique in the current process
instance.

The quality dimensions q which can be measured in our system, are sub-
sumed in the set Q. One example for such a set Q could be {responsetime ,
availability, cost, bandwidth}. For each quality dimension q, there exists
a domain dq which defines the set of possible values of this QoS feature. For
q = cost ∈ Q, dcost would be {x|x ∈ R+}, for instance. We define the domain
D as the union of all the domains dq. The computation of the actual quality of
service values in our model is based on two functions:

1. fvalue : Q× I2 7→ D which determines the QoS value of a single invocation
of a simple element and

2. fagg : Q × C ×D∗ 7→ D aggregating all QoS values of the elements nested
inside a complex element (where D∗ is the set of spaces of vectors of arbitrary
dimensionalities over the quality domains).

Whereas fvalue(cost, 9) would return the single value from dcost which re-
sulted from the invocation of a simple element with id2= 9 ∈ I2, we could
define fagg(cost, sequence, X) as

∑n
i=1 xi, where X = (x1, x2, . . . , xn) is a

vector in d∗cost and n would be the number of elements in this vector. For
X = (0.01, 0.03, 0.08), fagg(cost, sequence, X) evaluates to 0.12, for instance.

A Flexible Approach for Business Processes Monitoring 5

In Table 1, a set of such aggregation functions are listed for representative
quality dimensions. The vector X contains the QoS values xi that correspond to a
process execution, which means that the corresponding activities were executed.
We adapted the aggregation formulas from [1] to our approach. Since [1] con-
sider a stochastic model and we perform aggregations on running or completed
instances, we set the probabilities of executing an activity to 1 and obtained the
functions from table 1:

QoS Dimension q fagg(q, c, X)
c = sequence

fagg(q, c, X)
c = switch

fagg(q, c, X)
c = flow

fagg(q, c, X)
c = while

q=responsetime
∑n

i=1 xi

∑n
i=1 xi maxi∈1..n {xi}

∑n
i=1 xi

q=cost
∑n

i=1 xi

∑n
i=1 xi

∑n
i=1 xi

∑n
i=1 xi

Table 1. Aggregation Functions

5 The Quality of Service Aggregation Approach

In the following we present the generic algorithm for the QoS computation of
the business process and its sections. We therefore assume that the values of
the fvalue-function for the simple elements within the process are known. The
generic algorithm computes the QoS value of the entire business process and/or
its sections. The QoS aggregation of the BPEL process is done in several steps
and there are two ways for QoS aggregation possible: A) aggregation on stored
monitored data and B) live aggregation. Our algorithm is applicable in both
scenarios, QoS aggregation during runtime and also post-processing after the
processes have finished their execution.

5.1 Startup phase: The BPEL Tree

During the startup phase of our system, the BPEL documents are translated
into tree prototypes which contain only nodes for BPEL elements which are
instances of either simple or complex elements. Since T = S ∪ C only contains
the types of elements which are relevant for the execution of the BPEL process,
this tree prototypes Tree do not contain nodes for partnerLinks, for instance.
Each node qnode of the tree has the same structure and contains

1. the type qnode.elem ∈ T of the element representing the node,
2. a unique identifier qnode.id1 ∈ I1 of the element in the tree,
3. the list with m quality dimensions qnode.qDimensions ⊆ Q which are mon-

itored or aggregated for this node,
4. a map qnode.ChildrenV alues ∈ D∗×n which can hold the corresponding

QoS values of the n children of the node; we need this map due to the
propagation nature of our algorithm,

6 Diana Comes, Steffen Bleul, Thomas Weise and Kurt Geihs

5. the map qnode.V alue holding a value qnode.V alue(q) for each of the quality
dimensions q ∈ qnode.qDimensions monitored for the element itself, and

6. a reference qnode.parent to the parent node of qnode (or null if qnode is
the root node of the tree).

Both qnode.ChildrenV alues and qnode.V alue are initially empty and re-
main empty in the prototype tree Tree. For each instance of the business pro-
cess, our monitoring system creates a new copy tree of Tree. In these copies,
qnode.ChildrenV alues and qnode.V alue are filled in by the system. The result of
quality measurement of a process instance is then a tree which contains the QoS
values for each element of the business process in the field qnode.V alue of the cor-
responding node qnode. We furthermore define the function getQNode (tree, id1)
which returns the node qnode ∈ tree with qnode.id1 = id1 (or null if such a
node does not exist in tree).

We will call a node qnode a simple node if it has qnode.elem ∈ S. Analo-
gously, we call a node qnode a complex node if it has qnode.elem ∈ C. Since
simple elements cannot contain other elements, simple nodes are the leaves of
the process trees.

5.2 Monitoring a Running BPEL Process

While the business process is running, our monitoring system records a list
execution of records execElem, each holding

1. the unique identifier execElem.id1 ∈ I1 of the element which was invoked,
2. the unique identifier execElem.id2 ∈ I2 of the invocation itself,
3. and the measured quality of service values execElem.V alue which provide

the results of the fvalue-function(
execElem.V alue(q) = fvalue(q, execElem.id2)∀q ∈ Q

)
for a single invocation of an element in the BPEL tree. While the process is
running, whenever an activity corresponding to a node in the process tree is
finished, a new execElem record is added to the execution list.

5.3 The QoS Aggregation Algorithm

The generic algorithm provides as a result the aggregated values for m QoS
dimensions of an execution path of a BPEL tree or its sections. As input, the
algorithm expects the execution list execution and a copy tree of the BPEL
prototype tree. The generic algorithm listed below can be applied for any type
of QoS dimension if suitable aggregation functions are provided.

The QoS values qnode.V alue of a complex node qnode are computed from
the values of its direct children in the tree. By applying the aggregation functions
fagg on the QoS values of the children nodes, we obtain the QoS values of qnode.
The values of simple nodes are known from the execElem-records and given by
the value of the fvalue-function.

A Flexible Approach for Business Processes Monitoring 7

Algorithm 1: aggregateQoS(execution, tree)
Input: execution: the execution list
Input: tree: the process tree to be filled with QoS values

begin1

// analyze the complete execution list execution
for i←− 1 up to execution.length do2

qnode←− getQNode (tree, execution[i].id1)3

foreach q ∈ qnode.qDimensions do4

if qnode.elem ∈ C then5

// the node qnode is a complex node

qnode.V alue(q)←−6

fagg(q, qnode.elem, qnode.ChildrenV alues(q))

else7

/* the node qnode is a simple node and fvalue is

equivalent to execElem.V alue */

qnode.V alue(q)←− fvalue(q, execution[i].id2)8

// propagate this QoS value of this node to the parent

node

addQToChildrenValuesOfParent(qnode.parent, q, qnode.V alue(q))9

end10

The Algorithm 1 starts with traversing the list execution of executed activ-
ities. Each record execElem ∈ execution stands for a completed activity. Since
the QoS values of an activity can be computed in the moment the activity is
finished, each record allows us to derive a set of QoS values. In the case of an
execElem which denotes completion of an activity belonging to a simple node,
the QoS values are the data directly stored in execElem corresponding to the
fvalue function. If execElem belongs to complex node, its occurrence means that
the QoS of this node can be aggregated from its child nodes since an activity
can only terminate after all of its children have terminated. In both cases, the
new QoS values are propagated to the parent node.

Because of this propagation nature, the steps 3 to 9 of algorithm 1 can also
be executed online while the process is running. In other words, the quality of
service of the process tree tree can be built on the fly. If this is done, components
which supervise or enforce policies such as Service Level Agreements (SLA) or
management components like our BPRules framework [6] for business process
management, can be easily integrated.

5.4 Example

Figure 1 represents an example of a BPEL process execution. It is an example of
QoS aggregation for response time. On the left side of the figure, the monitored
values are represented. These are the ids of the executed activities, in the order
of execution. Also we monitored the value of response time (which represent

8 Diana Comes, Steffen Bleul, Thomas Weise and Kurt Geihs

fvalue) for the simple elements (e.g.: receive, reply, assign, invoke). These
represent the input data to the QoS aggregation algorithm.

sequence 1

receive 2 while 3 reply 11

if 5

invoke 6 invoke 7

flow 8

sequence 4

2X

2, 1 1, 33 5

execution

id1 id2 f
2 2 2
6 6 3
5 5
9 8 2

10 9 1
8 7
4 4
7 12 5
5 11
9 14 1

10 15 3
8 13
4 10
3 3

11 16 3
1 1

invoke 9 invoke 10

1. max(2,1) =2

sum(2,13,3) = 18

sum(5,8) = 13

1. sum(3,2) = 5

1. sum(3) = 3
2. sum(5) = 5

2. sum(5,3) = 8

2. max(1,3) =3

Legend

id1: identifier of the element
id2: execution identifier

element id1
1. f (x1,x2) first while-iteration
2. f (x3,x4) second while-iteration

32

value

agg

agg

fvalue

Fig. 1. Response Time aggregation

The while element (id1=3) performs two iterations. The activities inside the
while have two values except for the if element (id1=5). In the first iteration
the first branch of the if-element is executed. The computation starts with the
receive element, id1=2, fvalue(responsetime,2)=2, which is the first element
that is completed. Then this value is added to the ChildrenValues map of the
parent node (sequence, id1 = 1). The process is continued with every completed
element in the execution list. Finally, the last completed element is sequence
with id1 = 1, which is also the root of the tree. By applying the aggregation
function on the values of the children (the ChildrenValues map) of the root node
(fagg(responsetime, sequence, X) = 2+13+3=18), we determine the aggregation
value of the response time for the entire tree.

6 Automated Deployment and Monitoring Framework

The main tasks of our framework are the automated deployment, monitoring
and assessment of BPEL processes. For the monitoring purpose, previous to the
deployment, sensors need to be associated to the BPEL process. The monitoring
task is supported by the utilization of sensors which is a feature offered by

A Flexible Approach for Business Processes Monitoring 9

1. add sensors and
artifacts

2. deploy

BPEL Engine

BPEL Process

BPEL Process Description

Monitored Data

Application server

Web service 1

Web service 2

External
source

Sensor Data

Fig. 2. The framework

the Oracle BPEL Process Manager engine, where our business processes are
deployed. A sensor is associated to a BPEL activity and is fired during the
execution of the activity and on the occurrence of certain events.

Before process deployment, we dynamically associate sensors to each activity
in the process. The sensors are declared apart from the BPEL process description
inside separate XML files. We automatically generate these sensors files from
the BPEL description. They are then interpreted by the Oracle BPEL engine
for firing the sensors. The sensors provide valuable information, such as the
timestamp when the associated activity was activated, completed or faulted.
Figure 2 illustrates the deployment of a BPEL process and its associated sensors
to the BPEL engine. The BPEL process and its web services may be monitored
by different parties and the monitored data is stored into different sources.

Even if our generic algorithm takes advantage of the sensors offered by the
Oracle BPEL Process Manager, it could also run with another BPEL engine
as well. If the BPEL engine used does not support sensors similar to those
the Oracle Engine provides, these software components should be additionally
implemented. The premise that our algorithm runs on another BPEL engine is
that its input data is delivered properly. The direct impact of sensors is on the
creation of the execution list, which contains the identifiers of the activities in
the order that they were triggered.

The main component of our assessment framework is the QoS Aggregator
which performs the aggregation of the business process and its sections. Figure
3 illustrates the QoS aggregator component as well as its input and output data.

The flexibility of our monitoring framework is sustained by the use of plug-
ins, which are software components. The advantage of using plug-ins is that they
may be easily added. As the aggregation and value functions (fagg and fvalue)
are subject to modifications, we will use for each aggregation and value functions
additional plug-ins. Plug-ins are reusable components. The fagg function plug-

10 Diana Comes, Steffen Bleul, Thomas Weise and Kurt Geihs

faggregation
Plugins

BPEL Tree

QoS Aggregator QoS Result

Monitored Data

Section

fvalue
Plugins

Execution path

Sensor Data External
source

Fig. 3. The QoS Aggregator Component

ins can be reused over several instances since they only depend on the type
of BPEL activities. The advantage of the fvalue function plug-ins is that they
can retrieve monitoring data from other sources as well, regardless where the
monitoring actually takes place. An example for this is a situation where web
services inside the BPEL process are monitored by the web service providers
themselves and the monitored data is stored into a database different from the
database where the data from the monitored BPEL process is stored. This has
also been depicted in figure 2.

7 Evaluation

As example application, we have developed a Bookshop business process which
is implemented with WS-BPEL. The Bookshop process is a regular business
process for purchasing books at an online book shop. It interacts with four web
services: the Stock Service, the Distributor, the Accounting and the Bank Service.
It runs on the Oracle BPEL Process Manager and the web services are installed
on the Oracle Application Server OC4J. The monitoring data, provided by the
Oracle BPEL engine (e.g. instance data, sensor data) is automatically inserted
into the Oracle Database. The assessment data is written into a custom MySQL
database.

We performed several evaluation tests on the Bookshop process. The test
system is a Lenovo R60 notebook with Intel Core 2 Duo processor T5600
(2x1,83GHz) with 2GB memory and Windows XP Professional Version 2002,
Service Pack 2.

For the Bookshop process, we defined a section consisting of 20 elements,
while the entire process consists of 46 elements. We measured the time con-
sumption for the generic aggregation algorithm, by iteratively increasing the

A Flexible Approach for Business Processes Monitoring 11

0

10000

20000

30000

40000

50000

60000

70000

0 20000 40000 60000 80000 100000 120000 140000

- nr: number of BPEL instances for which responsetime was aggregated
- time: the time needed for the aggregations, expressed in ms

ti
m

e

nr

Fig. 4. Example Business Process Aggregation

number of process invocations. Figure 4 represents the time in ms needed for
the response time aggregation for the entire process. We observe a linear growth
of time in relation to the number of instances that were aggregated. Since we
wanted to test how our algorithm behaves if the memory is limited, we set the
Java Heap size at 90 MB. When the entire memory was allocated (at about
150000 of process instances), we also observe an abrupt increasing in the time
consumption. This is an expected result and shows that the algorithm performs
well but will fail if the resources of the system it is deployed on are exhausted.

8 Related Work

In his thesis [3], Cardoso describes a framework for estimating, predicting and
analyzing QoS in workflows. For this QoS computation, he presents a math-
ematical model and a Stochastic Workflow Reduction (SWR) algorithm. The
SWR algorithm uses six reduction rules: sequential, parallel, conditional, fault-
tolerant, loop and network. These rules are iteratively applied on the workflow
until one atomic task remains. The QoS value of this remaining task represents
the QoS value of the workflow. Even if the rules apply on most workflows, for
specific cases that may apply in a BPEL process, new rules have to be developed.

12 Diana Comes, Steffen Bleul, Thomas Weise and Kurt Geihs

Different from Cardoso’s work, we do not focus on deriving a statistical model or
to predict QoS values but only consider their measurement on a running system.
Thus, our approach would be a possible input source from which estimators for
future process behavior could be built.

In [4], Zeng et al. present a middleware platform for web service compositions
from the QoS perspective. There are two approaches described for the selection
of web services by satisfying the constraints set by the user on QoS attributes.
Their approach is based on state charts and execution plans represented as
DAGs (direct acyclic graphs). The authors define aggregation functions for price,
duration, reputation, success rate and availability.

In [7], M. Jaeger presents a method of QoS aggregation for service com-
positions based on composition patterns. There were nine composition patterns
identified that might occur in a workflow. A workflow structure is represented
as a graph which is collapsed step by step due to the composition patterns that
were identified in the workflow until one statement remains. The aggregations
are performed on the level of composition patterns. Dependent on the pattern
and QoS characteristic, aggregation rules are defined. Yet, the identification of
the composition patterns on the workflow graph is not a trivial task.

Mukherjee et al. focus in their work [5] on the QoS computation in BPEL
processes. They address three QoS dimensions response time, cost and reliabil-
ity. They also utilize fault tolerance techniques (e.g. Recovery blocks, N-version
programming) to study the impact on QoS. The computations are performed on
an activity graph, which nodes represent BPEL activities and handlers.

Canfora et al. [1] adopt a similar approach to Cardoso [3] for QoS computa-
tion. They apply the same aggregation functions as Cardoso, except for loops. In
our approach we used the same functions as Canfora but, as already stated, focus
on measurement instead of prediction. Thus, probabilities for a certain control
flow do not exist in our approach or, from another perspective, are always 1 or
0, since we aggregate the data a posteriori. In their work, Canfora et al. propose
a solution with genetic algorithms for the service selection problem in service
compositions.

In [10] Baresi et al. are also concerned with the monitoring of WS-BPEL
processes. They add monitoring rules to the BPEL process by inserting them
as comments to the source code. For monitoring purpose, we profit from the
utilization of sensors that are directly triggered by the BPEL engine, and do not
have to insert extra monitoring artifacts.

In our approach, we do not apply workflow patterns or reduction rules like
[7], [3] and [1]. We represent the BPEL process as a tree and by only apply-
ing aggregation functions on the nodes values we are able to compute the QoS
value of the entire business process. We also provide a generic algorithm that
is applicable for any QoS dimension if appropriate aggregation functions are
provided.

A Flexible Approach for Business Processes Monitoring 13

9 Conclusion

In this paper, we presented a flexible approach for the monitoring and compu-
tation of QoS in business processes. We have demonstrated the feasibility of our
method on a business process that we implemented with WS-BPEL. We have
developed a generic algorithm that performs the computation of any QoS dimen-
sion if appropriate aggregation functions are available. The algorithm may be
applied both at runtime or after a business process terminated its execution. By
executing the algorithm at runtime, the process is additionally observed whether
it behaves as expected. Otherwise, appropriate management actions may be trig-
gered to improve the process behavior. We also support QoS monitoring and
computation on sections of the process, which permits detecting the sections of
the process that cause problems and might lead to undesired QoS values of the
process.

We take advantage of the utilization of sensors for the monitoring purpose.
Sensors are dynamically associated with each activity of the BPEL process and
the BPEL process description is not affected by extra monitoring artifacts. New
QoS dimensions can be integrated with minimal effort by only specifying the
aggregation functions.

References

[1] Canfora, G., Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-
aware service composition based on genetic algorithms. In: Proceedings of the
2005 conference on Genetic and evolutionary computation, pp. 1069–1075.
ACM, Washington DC (2005)

[2] Canfora, G., Penta, M., Esposito, R., Villani, M.L.: A Lightweight Approach
for QoS-Aware Service Composition. Technical report, Research Centre on
Software Technology University of Sannio (2004)

[3] Cardoso, J.: Quality of Service and Semantic Composition of Workflows, PhD
thesis, University of Georgia, Georgia (2002).

[4] Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang,
H.: QoS-Aware Middleware for Web Services Composition. In: IEEE Trans-
actions on Software Engineering, pp. 311–327. IEEE Press, (2004)

[5] Mukherjee, D., Jalote, P., Nanda, M. : Determining QoS of WS-BPEL Com-
positions. In: Proceedings Service-Oriented Computing ICSOC 2008, pp.
378–393. Springer, Heidelberg (2008)

[6] Comes, D., Bleul, S., Zapf, M.: Management of the BPRules Language in Ser-
vice Oriented Computing. In: 16th Workshops der Wissenschaftlichen Kon-
ferenz Kommunikation in Verteilten Systemen 2009, WowKiVS, Electronic
Communications of the EASST, Kassel (2009)

[7] Jaeger, M.: Optimising Quality of Service for the Composition of Electronic
Services, PhD thesis, University of Berlin, Berlin (2007).

[8] Charfi, A., Schmeling, B., Heizenreder, A., Mezini, M.: Reliable, Secure, and
Transacted Web Service Compositions with AO4BPEL. In: Proceedings of
the European Conference on Web Services (ECOWS’06), pp. 23–34. IEEE
Computer Society, (2006)

[9] Baresi, L., Ghezzi, C., Guinea S.: Smart monitors for composed services. In:
Proceedings of the 2nd international conference on Service oriented comput-
ing, pp. 193–202. ACM, New York (2004)

[10] Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Pro-
cesses. In: Proceedings of the Third International Conference, Service-
Oriented Computing - ICSOC 2005 , pp. 269–282. Springer, Heidelberg(2005)

[11] Web Services Business Process Execution Language Version 2.0,
OASIS standard, 2007, http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html

[12] Oracle BPEL Process Manager, 2008, http://www.oracle.com/
technology/products/ias/bpel/index.html

